Glucosylceramide synthase inhibition for the treatment of collapsing glomerulopathy and other glomerular disease

Information

  • Patent Grant
  • 9481671
  • Patent Number
    9,481,671
  • Date Filed
    Thursday, April 17, 2014
    10 years ago
  • Date Issued
    Tuesday, November 1, 2016
    8 years ago
Abstract
A method of treating a glomerular disease selected from the group consisting of mesangial proliferative glomerulonephritis, collapsing glomerulopathy, proliferative lupus nephritis, crescentic glomerulonephritis and membranous nephropathy in a subject comprises administering to the subject an effective amount of a glucosylceramide synthase inhibitor.
Description
BACKGROUND OF THE INVENTION

Many diseases affect kidney function by attacking the glomeruli, the tiny units within the kidney where blood is cleaned. Glomerular diseases include many conditions with a variety of genetic and environmental causes, but they fall into two major categories:


1. Glomerulonephritis describes the inflammation of the membrane tissue in the kidney that serves as a filter, separating wastes and extra fluid from the blood.


2. Glomerulosclerosis describes the scarring or hardening of the tiny blood vessels within the kidney.


Although glomerulonephritis and glomerulosclerosis have different causes, they can both lead to kidney failure.


Glomerular diseases damage the glomeruli, letting protein and sometimes red blood cells leak into the urine. Sometimes a glomerular disease also interferes with the clearance of waste products by the kidney, so they begin to build up in the blood. Furthermore, loss of blood proteins like albumin into the urine can result in a fall in their level in the bloodstream. In normal blood, albumin acts like a sponge, drawing extra fluid from the body into the bloodstream, where it remains until the kidneys remove it. But when albumin leaks into the urine, the blood loses its capacity to absorb extra fluid from the body. Fluid can accumulate outside the circulatory system in the face, hands, feet, or ankles and cause swelling. A number of different specific glomerular diseases are discussed below:


Mesangial proliferative glomerulonephritis is a kidney disorder characterized by swelling and blood in the urine (dark urine). It is caused by inflammation of an internal kidney structure (glomerulus), and specifically an increase in number of certain glomerular cells (mesangial cells), accompanied by antibody deposits in the mesangium layer of the glomerular capillary.


Mesangial proliferative glomerulonephritis is a form of glomerulonephritis (inflammation of the kidney glomeruli). The mesangial cells (part of the glomerular capillaries) increase in size and number, giving the glomeruli a lumpy appearance.


The mechanism that triggers the disorder is unknown, but it is believed to be some type of immune response, because inflammation of the glomeruli is associated with deposits of antibodies.


This is a relatively uncommon disorder. The term mesangial proliferative glomerulonephritis is actually a description of the microscopic pattern of this disease.


It may be seen more commonly in lupus patients who develop glomerulonephritis, and in patients who have IgA mediated kidney disease. It can affect both adults and children. Men may be affected slightly more often than women.


The disorder usually causes nephrotic syndrome (protein loss in the urine and swelling of the body). It may be present as acute, chronic, or rapidly progressive glomerulonephritis, and may progress to chronic kidney failure. Rapidly progressive glomerulonephritis (also known as crescentic glomerulonephritis) is a form of kidney disease that causes damage to the small structures (glomeruli) inside the kidneys that help filter waste and fluids from blood to form urine. The disease leads to a rapid loss of kidney function.


Collapsing glomerulopathy is a proliferative disease defined by segmental or global wrinkling of the glomerular basement membranes associated with podocyte proliferation. These lesions are particularly poor responders to standard therapies. First described as an idiopathic disorder or following HIV infection, it is now associated with a broad group of diseases and different pathogenetic mechanisms, which participate in podocyte injury and mitogenic stimulation. Because of this etiologic heterogeneity, there is clear need for new therapeutic approaches to target each variant of this entity.


Proliferative lupus nephritis is the name given to a kidney disease caused by systemic lupus erythematosus, and it occurs when autoantibodies form or are deposited in the glomeruli, causing inflammation. Ultimately, the inflammation may create scars that keep the kidneys from functioning properly.


Conventional treatment for lupus nephritis includes a combination of two drugs, cyclophosphamide, a cytotoxic agent that suppresses the immune system, and prednisolone, a corticosteroid used to reduce inflammation. A newer immunosuppressant, mychophenolate mofetil (MMF), has been used instead of cyclophosphamide. Preliminary studies indicate that MMF may be as effective as cyclophosphamide and has milder side effects.


Membranous nephropathy, also called membranous glomerulopathy, is the second most common cause of the nephrotic syndrome (proteinuria, edema, high cholesterol) in U.S. adults after diabetic nephropathy. Diagnosis of membranous nephropathy requires a kidney biopsy, which reveals unusual deposits of immunoglobulin G and complement C3, substances created by the body's immune system. Fully 75 percent of cases are idiopathic, which means that the cause of the disease is unknown. The remaining 25 percent of cases are the result of other diseases such as systemic lupus erythematosus, hepatitis B or C infection, or some forms of cancer. Drug therapies involving penicillamine, gold, or captopril have also been associated with membranous nephropathy. About 20 to 40 percent of patients with membranous nephropathy progress, usually over decades, to total kidney failure, but most patients experience either complete remission or continued symptoms without progressive kidney failure. Doctors disagree about how aggressively to treat this condition, since about 20 percent of patients recover without treatment. ACE inhibitors and ARBs are generally used to reduce proteinuria. Additional medication to control high blood pressure and edema is frequently required. Some patients benefit from steroids, but this treatment does not work for everyone. Additional immunosuppressive medications are helpful for some patients with progressive disease.


There is a need for agents and methods for preventing the onset of, or slowing the progression of glomerular diseases, such as the ones described above.


SUMMARY OF THE INVENTION

The present invention is directed to a method of treating a glomerular disease selected from the group consisting of mesangial proliferative glomerulonephritis, collapsing glomerulopathy, proliferative lupus nephritis, crescentic glomerulonephritis and membranous nephropathy in a subject, comprising administering to the subject an effective amount of a glucosylceramide synthase inhibitor.


Also included in the present invention is the use of glucosylceramide synthase inhibitors disclosed herein for treating a glomerular disease selected from the group consisting of mesangial proliferative glomerulonephritis, collapsing glomerulopathy, proliferative lupus nephritis, crescentic glomerulonephritis and membranous nephropathy in a subject.


The present invention also includes the use of glucosylceramide synthase inhibitors disclosed herein for the manufacture of a medicament for treating a subject having a glomerular disease selected from the group consisting of mesangial proliferative glomerulonephritis, collapsing glomerulopathy, proliferative lupus nephritis, crescentic glomerulonephritis and membranous nephropathy.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is micrographs showing hematoxylin and eosin stained kidney sections from early stage animals (left) or late stage animals (right). Arrow: normal glomerulus; arrowhead: injured glomerulus; *: microcyst.



FIG. 1B is bar graphs showing kidney (left) and serum (right) glucosylceramide levels of Tg26 transgenic mouse and control mouse, respectively, measured by LC/MS analysis. Kidney samples were normalized to total phosphate content. Mean values+/−SEM are shown.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to a method of treating a glomerular disease selected from the group consisting of mesangial proliferative glomerulonephritis, collapsing glomerulopathy, proliferative lupus nephritis, crescentic glomerulonephritis and membranous nephropathy that comprises administering an effective amount of a glucosylceramide synthase inhibitor to a subject.


Glucosylceramides are precursors to gangliosides, such as GM1, GM2 and GM3, which are glycosphingolipids (GSLs) comprised of ceramide and at least one acidic sugar. Glucosylceramide synthase is an enzyme in the biosynthesis of glucosylceramides. Gangliosides are generally found in the outer leaflet of the plasma membrane (Nojri et al., Proc. Natl. Acad. ScL USA 83:782 (1986)). Gangliosides are involved in cell signaling and act as modulators of receptor activity (Yamashita et al., Proc. Natl. Acad. ScL USA 100(6):3445 (2003)). A number of GSLs are derived from glucosylceramide, which is enzymatically formed from ceramide and UDP-glucose. The formation of glucosylceramide is catalyzed by glucosylceramide synthase.


As used herein, “glucosylceramide synthase inhibitors” are defined as an agent which is capable of inhibiting glucosylceramide synthesis. A number of glucosylceramide synthase inhibitors have been identified. One class of glucosylceramide synthase inhibitors includes 2-acylaminopropoanol derivatives, disclosed in International Patent Application No. PCT/US2008/006906, the entire teachings of which are incorporated herein by reference. Examples of glucosylceramide inhibitors disclosed in PCT/US2008/006906 are described below.


In one embodiment, the glucosylceramide synthase inhibitor is represented by Structural Formula (I),




embedded image


or a pharmaceutically acceptable salt thereof.


A first set of values and preferred values for the variables in Structural Formula (I) is provided in the following paragraphs:


R1 is a substituted or unsubstituted aryl group, such as a substituted or unsubstituted phenyl group. Preferably, R1 is an aryl group optionally substituted with one or more substituents selected from halogen, alkyl, haloalkyl, Ar1, —OR30, —O(haloalkyl), —SR30, —NO2, —CN, —NCS, —N(R31)2, —NR31C(O)R30, —NR31C(O)OR32, —N(R31)C(O)N(R31)2, —C(O)R30, —C(S)R30, —C(O)OR30, —OC(O)R30, —C(O)N(R31)2, —S(O)2R30, —SO2N(R31)2, —S(O)R32, —SO3R30, —NR31SO2N(R31)2, —NR, —Vo—Ar1, —Vo—OR30, —Vo—O(haloalkyl), —Vo—SR30, —Vo—NO2, —Vo—CN, —Vo—N(R31)2, —Vo—NR31C(O)R30, —Vo—NR31CO2R32, —Vo—N(R31)C(O)N(R31)2, —Vo—C(O)R30, —Vo—C(S)R30, —Vo—CO2R30, —Vo—OC(O)R30, —Vo—C(O)N(R31)2—, —Vo—S(O)2R30, —Vo—SO2N(R31)2, —Vo—S(O)R32, —Vo—SO3R30, —Vo—NR31SO2N(R31)2, —Vo—NR31SO2R32, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —NR31C(O)—Vo—N(R31)2, —NR31C(O)—Vo—Ar1, —C(O)—Vo—N(R31)2, —C(O)—Vo—Ar1, —C(S)—Vo—N(R31)2, —C(S)—Vo—Ar1, —C(O)O—V1—N(R31)2, —C(O)O—Vo—Ar1, —O—C(O)—V1—N(R31)2, —O—C(O)—Vo—Ar1, —C(O)N(R31)—V1—N(R31)2, —C(O)N(R31)—Vo—Ar1, —S(O)2—Vo—N(R31)2, —S(O)2—Vo—Ar1, —SO2N(R31)—V1—N(R31)2, —SO2N(R31)—Vo—Ar1, —S(O)—Vo—N(R31)2, —S(O)—Vo—Ar1, —S(O)2—O—V1—N(R31)2, —S(O)2—O—Vo—Ar1, —NR31SO2—Vo—N(R31)2, —NR31SO2—Vo—Ar1, —S—[CH2]p—S—, or —[CH2]q—. More preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, and —[CH2]q—. Even more preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 alkoxy(C1-C6)alkoxy, C1-C6 haloalkoxy(C1-C6)alkoxy, C1-C6 hydroxyalkoxy and —O—[CH2]p—O—. Even more preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH3, —OC2H5 and —O—[CH2]p—O—.


Y is —H, a hydrolyzable group, or a substituted or unsubstituted alkyl group. Examples of hydrolyzable groups include —C(O)R, —C(O)OR, —C(O)NRR′, C(S)R, —C(S)OR, —C(O)SR or —C(S)NRR′. Preferably, Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′; more preferably, —H.


R2 and R3 are each independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group, or R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a substituted or unsubstituted non-aromatic heterocyclic ring, or a substituted or unsubstituted bridged heterobicyclic ring comprising 6-10 ring carbon atoms and 1 or 2 ring nitrogen atoms. Preferably, R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring; or, R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a substituted or unsubstituted bridged heterobicyclic ring comprising 6 or 7 ring carbon atoms and 1 or 2 ring nitrogen atoms. More preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl, azepinyl or morpholinyl group,




embedded image



Even more preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl, piperidinyl, azepinyl group,




embedded image



Even more preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl group,




embedded image


Suitable substituents for the aliphatic and aryl groups represented by R2 and R3, and suitable substituents for the non-aromatic heterocyclic ring or the bridged heterobicyclic ring comprising 6-10 ring carbon atoms and 1 or 2 ring nitrogen atoms represented by —N(R2R3) each independently include halogen, alkyl, haloalkyl, —OR40, —O(haloalkyl), —SR40, —NO2, —CN, —N(R41)2, —NR41C(O)R40, —NR41C(O)OR42, —N(R41)C(O)N(R41)2, —C(O)R40, —C(S)R40, —C(O)OR40, —OC(O)R40, —C(O)N(R41)2, —S(O)2R40, —SO2N(R41)2, —S(O)R42, —SO3R40, Ar2, V2—Ar2, —V2—OR40, —V2—O(haloalkyl), —V2—SR40, —V2—NO2, —V2—CN, —V2—N(R41)2, —V2—NR41C(O)R40, —V2—NR41CO2R42, —V2—N(R41)C(O)N(R41)2, —V2—C(O)R40, —V2—C(S)R40, —V2—CO2R40, —V2—OC(O)R40, —V2—C(O)N(R41)2—, —V2—S(O)2R40, —V2—S(O)R42, —V2—SO3R40, —O—V2—Ar2 and —S—V2—Ar2. Preferably, suitable substituents for the non-aromatic heterocyclic ring or the bridged heterobicyclic ring comprising 6-10 ring carbon atoms and 1 or 2 ring nitrogen atoms represented by —N(R2R3) each independently include halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxyl, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl or C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino. More preferably, suitable substituents for the non-aromatic heterocyclic ring or the bridged heterobicyclic ring comprising 6-10 ring carbon atoms and 1 or 2 ring nitrogen atoms represented by —N(R2R3) each independently include halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.


X is —(CR5R6)n-Q-; Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR7—, —NR7—, —NR7C(O)—, —NR7C(O)NR7—, —OC(O)—, —SO3—, —SO—, —S(O)2—, —SO2NR7—, or —NR7SO2—; and R4 is —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group. Preferably, Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR7—, —NR7C(O)NR7—, —OC(O)—, —SO3—, —SO—, —S(O)2—, —SO2NR7— or —NR7SO2—. More Preferably, Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR7— or —OC(O)—. Even more preferably, Q is —O—, —S—, —C(O)— or —C(S)—.


Alternatively, X is a covalent bond, —O—, —S— or —NR7—; and R4 is a substituted or unsubstituted aliphatic group, or substituted or unsubstituted aryl group.


Preferably, R4 is an optionally substituted aliphatic, such as a lower alkyl, or aryl group. More preferably, R4 is an optionally substituted aryl or lower arylalkyl group. Even more preferably, R4 is selected from the group consisting of:




embedded image



wherein each of rings A-Z5 is optionally and independently substituted; and each x is independently 0 or 1, specifically x is 0. Even more preferably, R4 is an optionally substituted




embedded image



group. Alternatively, R4 is an optionally substituted phenyl group. Alternatively, R4 is an aryl group substituted with Ar3, such as a phenyl group substituted with Ar3. It is noted that, as shown above, rings A-Z5 can be attached to variable “X” of Structural Formula (I) through —(CH2)x— at any ring carbon of rings A-Z5 which is not at a position bridging two aryl groups. For example, R4 represented by




embedded image



means that R4 is attached to variable “X” through either ring J or ring K.


Preferred substituents for each of the aliphatic group and the aryl group represented by R4, including lower alkyl, arylalkyl and rings A-Z5, include halogen, alkyl, haloalkyl, Ar3, Ar3—Ar3, —OR50, —O(haloalkyl), —SR50, —NO2, —CN, —NCS, —N(R51)2, —NR51C(O)R50, —NR51C(O)OR52, —N(R51)C(O)N(R51)2, —C(O)R50, —C(S)R50, —C(O)OR50, —OC(O)R50, —C(O)N(R51)2, —S(O)2R50, —S(O)R52, —SO3R50, —NR51SO2N(R51)2, —NR51SO2R52, —V4—Ar3, —V—OR50, —V4—O(haloalkyl), —V4—SR50, —V4—NO2, —V4—N(R51)2, —V4—NR51C(O)R50, —V4—NR51CO2R52, —V4—N(R51)C(O)N(R51)2, —V4—C(O)R50, —V4—C(S)R50, —V4—CO2R50, —V4—OC(O)R50, —V4—C(O)N(R51)2—, —V4—S(O)2R50, —V4—S(O)R52, —V4—SO3R50, —V4—NR51SO2N(R51)2, —V4—NR51SO2R52, —O—V4—Ar3, —O—V5—N(R51)2, —S—V4—Ar3, —S—V5—N(R51)2, —N(R51)—V4—Ar3, —N(R51)—V5—N(R51)2, —NR51C(O)—V4—N(R51)2, —NR51C(O)—V4—Ar3, —C(O)—V4—N(R51)2, —C(O)—V4—Ar3, —C(S)—V4—N(R51)2, —C(S)—V4—Ar3, —C(O)O—V5—N(R51)2, —C(O)O—V4—Ar3, —O—C(O)—V5—N(R51)2, —O—C(O)—V4—Ar3, —C(O)N(R51)—V5—N(R51)2, —C(O)N(R51)—V4—Ar3, —S(O)2—V4—N(R51)2, —S(O)2—V4—Ar3, —SO2N(R51)—V5—N(R51)2, —SO2N(R51)—V4—Ar3, —S(O)—V4—N(R51)2, —S(O)—V4—Ar3, —S(O)2—O—V5—N(R51)2, —S(O)2—O—V4—Ar3, —NR51SO2—V4—N(R51)2, —NR51SO2—V4—Ar3, —O—[CH2]p′—O—, —S—[CH2]p′—S—, and —[CH2]q′—. More preferably, substituents for each of the aliphatic group and the aryl group represented by R4, including lower alkyl, arylalkyl and rings A-Z5, include halogen, C1-C10 alkyl, C1-C10 haloalkyl, Ar3, Ar3—Ar3, —OR50, —O(haloalkyl), —SR50, —NO2, —CN, —N(R51)2, —NR51C(O)R50, —C(O)R50, —C(O)OR50, —OC(O)R50, —C(O)N(R51)2, —V4—Ar3, —V—OR50, —V4—O(haloalkyl), —V4—SR50, —V4—NO2, —V4—CN, —V4—N(R51)2, —V4—NR51C(O)R50, —V4—C(O)R50, —V4—CO2R50, —V4—OC(O)R50, —V4—C(O)N(R51)2—, —O—V4—Ar3, —O—V5—N(R51)2, —S—V4—Ar3, —S—V5—N(R51)2, —N(R51)—V4—Ar3, —N(R51)—V5—N(R51)2, —NR51C(O)—V4—N(R51)2, —NR51C(O)—V4—Ar3, —C(O)—V4—N(R51)2, —C(O)—V4—Ar3, —C(O)O—V5—N(R51)2, —C(O)O—V4—Ar3, —O—C(O)—V5—N(R51)2, —O—C(O)—V4—Ar3, —C(O)N(R51)—V5—N(R51)2, —C(O)N(R51)—V4—Ar3, —O—[CH2]p′—O— and —[CH2]q′—. More preferably, substituents for each of the aliphatic group and the aryl group represented by R4, including lower alkyl, arylalkyl and rings A-Z5, include halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, aryl, aryloxy, hydroxy, C1-10 alkoxy, —O—[CH2]p—O— or —[CH2]q—. Even more preferably, substituents for each of the aliphatic group and the aryl group represented by R4, including lower alkyl, arylalkyl and rings A-Z5, include halogen, cyano, amino, nitro, Ar3, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy. Even more preferably, substituents for each of the aliphatic and aryl groups represented by R4, including lower alkyl, arylalkyl and rings A-Z5, include —OH, —OCH3, —OC2H5 and —O—[CH2]p′—O—. Preferably, phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, —OR50, —Ar3, —V4—Ar3, —V—OR50, —O(C1-C10 haloalkyl), —V4—O(C1-C10 haloalkyl), —O—V4—Ar3, —O—[CH2]p—O— and —[CH2]q—. More preferably, phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, aryl, aryloxy, hydroxy, C1-10 alkoxy, —O—[CH2]p—O— and —[CH2]q—. Even more preferably, phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH3, —OC2H5 and —O—[CH2]p—O—. Specifically, when R4 is phenyl ring A, at least one of the substituents of ring A is at the para position.


R5 and R6 are each independently —H, —OH, —SH, a halogen, a substituted or unsubstituted lower alkoxy group, a substituted or unsubstituted lower alkylthio group, or a substituted or unsubstituted lower aliphatic group. Preferably, R5 and R6 are each independently —H; —OH; a halogen; or a lower alkoxy or lower alkyl group. More preferably, R5 and R6 are each independently —H, —OH or a halogen. Even more preferably, R5 and R6 are each independently —H.


Each R7 is independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group, or R7 and R4 taken together with the nitrogen atom of NR7R4 form a substituted or unsubstituted non-aromatic heterocyclic group. Preferably, each R7 is independently —H, an aliphatic group or phenyl. Even more preferably, each R7 is independently —H or C1-C6 alkyl.


Each n is independently 1, 2, 3, 4, 5 or 6. Preferably, each n is independently 1, 2, 3 or 4. Alternatively, each n is independently 2, 3, 4 or 5.


Each p is independently 1, 2, 3 or 4, preferably 1 or 2.


Each q is independently 3, 4, 5 or 6, preferably 3 or 4.


Each p′ is independently 1, 2, 3 or 4, preferably 1 or 2.


Each q′ is independently 3, 4, 5 or 6, preferably 3 or 4.


Each Vo is independently a C1-C10 alkylene group, preferably C1-C4 alkylene group.


Each V1 is independently a C2-C10 alkylene group, specifically C2-C4 alkylene group.


Each V2 is independently a C1-C4 alkylene group.


Each V4 is independently a C1-C10 alkylene group, preferably a C1-C4 alkylene group.


Each V5 is independently a C2-C10 alkylene group, preferably a C2-C4 alkylene group.


Each Ar1 is an aryl group optionally and independently substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy and haloalkyl. Preferably, Ar1 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. More preferably, Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


Each Ar2 is an aryl group optionally and independently substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino.


Each Ar3 is independently an aryl group, such as phenyl, each optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy and haloalkyl. Preferably, Ar3 is independently an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 haloalkoxy, amino, C1-C10 alkylamino and C1-C10 dialkylamino Even more preferably, Ar3 is independently an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.


Each R30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl and alkylcarbonyl. Preferably, each R30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl. More preferably, each R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl.


Each R31 is independently R30, —CO2R30, —SO2R30 or —C(O)R30; or —N(R31)2 taken together is an optionally substituted non-aromatic heterocyclic group. Preferably, each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.


Each R32 is independently an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl and alkylcarbonyl. Preferably, each R32 is independently an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl. More preferably, each R32 is independently a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl.


Each R40 is independently hydrogen; an aryl group, such as a phenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino.


Each R41 is independently R40, —CO2R40, —SO2R40 or —C(O)R40; or —N(R41)2 taken together is an optionally substituted non-aromatic heterocyclic group.


Each R42 is independently an aryl group, such as a phenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino.


Each R50 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl. Preferably, each R50 is independently hydrogen; an aryl group, such as a phenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino.


Each R51 is independently R50, —CO2R50, —SO2R50 or —C(O)R50, or —N(R51)2 taken together is an optionally substituted non-aromatic heterocyclic group. Preferably, each R51 is independently R50, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.


Each R52 is independently an aryl group optionally substituted with one or two substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl. Preferably, each R52 is independently an aryl group, such as a phenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino.


R and R′ are each independently —H; a lower aliphatic group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO2, —NH2, lower alkoxy, lower haloalkoxy and aryl; or an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO2, —NH2, lower alkoxy, lower haloalkoxy, lower aliphatic group and lower haloaliphatic group; or R and R′ taken together with the nitrogen atom of NRR′ form a non-aromatic heterocyclic ring optionally substituted with one or more substituents selected from the group consisting of: halogen; —OH; —CN; —NCS; —NO2; —NH2; lower alkoxy; lower haloalkoxy; lower aliphatic group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO2, —NH2, lower alkoxy, lower haloalkoxy and aryl; and aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO2, —NH2, lower alkoxy, lower haloalkoxy, lower aliphatic group and lower haloaliphatic group. Preferably, R and R′ are each independently —H; a lower aliphatic group; a lower aliphatic group substituted with phenyl; or an aryl group. More preferably, R and R′ are each independently —H, C1-C4 alkyl, phenyl or benzyl.


A second set of values for the variables in Structural Formula (I) is provided in the following paragraphs:


Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.


R1 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar1, —OR30, —O(haloalkyl), —SR30, —NO2, —CN, —NCS, —N(R31)2, —NR31C(O)R30, —NR31C(O)OR32, —N(R31)C(O)N(R31)2, —C(O)R30, —C(S)R30, —C(O)OR30, —OC(O)R30, —C(O)N(R31)2, —S(O)2R30, —SO2N(R31)2, —S(O)R32, —SO3R30, —NR31SO2N(R31)2, —NR31SO2R32, —Vo—Ar1, —Vo—OR30, —Vo—O(haloalkyl), —Vo—SR30, —Vo—NO2, —Vo—CN, —Vo—N(R31)2, —Vo—NR31C(O)R30, —Vo—NR31CO2R32, —Vo—N(R31)C(O)N(R31)2, —Vo—C(O)R30, —Vo—CO2R30, —Vo—OC(O)R30, —Vo—C(O)N(R31)2—, —Vo—S(O)2R30, —Vo—S(O)R32, —Vo—SO3R30, —Vo—NR31SO2N(R31)2, —Vo—NR31SO2R32, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —NR31C(O)—Vo—N(R31)2, —NR31C(O)—Vo—Ar1, —C(O)—Vo—N(R31)2, —C(O)—Vo—Ar1, —C(S)—Vo—N(R31)2, —C(S)—Vo—Ar1, —C(O)O—V1—N(R31)2, —C(O)O—Vo—Ar1, —O—C(O)—V1—N(R31)2, —O—C(O)—Vo—Ar1, —C(O)N(R31)—V1—N(R31)2, —C(O)N(R31)—Vo—Ar1, —S(O)2—Vo—N(R31)2, —S(O)2—Vo—Ar1, —SO2N(R31)—V1—N(R31)2, —SO2N(R31)—Vo—Ar1, —S(O)—Vo—N(R31)2, —S(O)—Vo—Ar1, —S(O)2—O—V1—N(R31)2, —S(O)2—O—Vo—Ar1, —NR31SO2—Vo—N(R31)2, —NR31SO2—Vo—Ar1, —O—[CH2]p—O—, —S—[CH2]p—S— and —[CH2]q—.


Values and preferred values for the remainder of the variables of Structural Formula (I) are each independently as described above for the first set of values.


A third set of values for the variables in Structural Formula (I) is provided in the following four paragraphs.


Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.


R1 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar1, —OR30, —O(haloalkyl), —SR30, —NO2, —CN, —NCS, —N(R31)2, —NR31C(O)R30, —NR31C(O)OR32, —N(R31)C(O)N(R31)2, —C(O)R30, —C(S)R30, —C(O)OR30, —OC(O)R30, —C(O)N(R31)2, —S(O)2R30, —SO2N(R31)2, —S(O)R32, —SO3R30, —NR31SO2N(R31)2, —NR31SO2R32, —Vo—Ar1, —Vo—OR30, —Vo—O(haloalkyl), —Vo—SR30, —Vo—NO2, —Vo—CN, —Vo—N(R31)2, —Vo—NR31C(O)R30, —Vo—NR31CO2R32, —Vo—N(R31)C(O)N(R31)2, —Vo—C(O)R30, —Vo—C(S)R30, —Vo—CO2R30, —Vo—OC(O)R30, —Vo—C(O)N(R31)2—, —Vo—S(O)2R30, —Vo—S(O)R32, —Vo—SO3R30, —Vo—NR31SO2N(R31)2, —Vo—NR31SO2R32, —O—Vo—Ar1, —O—V1—N(R31)2, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —NR31C(O)—Vo—N(R31)2, —NR31C(O)—Vo—Ar1, —C(O)—Vo—N(R31)2, —C(O)—Vo—Ar1, —C(S)—Vo—N(R31)2, —C(S)—Vo—Ar1, —C(O)O—V1—N(R31)2, —C(O)O—Vo—Ar1, —O—C(O)—V1—N(R31)2, —O—C(O)—Vo—Ar1, —C(O)N(R31)—V1—N(R31)2, —C(O)N(R31)—Vo—Ar1, —S(O)2—Vo—N(R31)2, —S(O)2—Vo—Ar1, —SO2N(R31)—V1—N(R31)2, —SO2N(R31)—Vo—Ar1, —S(O)—Vo—N(R31)2, —S(O)—Vo—Ar1, —S(O)2—O—V1—N(R31)2, —S(O)2—O—Vo—Ar1, —NR31SO2—Vo—N(R31)2, —NR31SO2—Vo—Ar1, —O—[CH2]p—O—, —S—[CH2]p—S— and —[CH2]q—.


R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a substituted or unsubstituted non-aromatic heterocyclic ring, or a substituted or unsubstituted bridged heterobicyclic ring comprising 6-10 ring carbon atoms and 1 or 2 ring nitrogen atoms. Preferably, R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring; or, R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a substituted or unsubstituted bridged heterobicyclic ring comprising 6 or 7 ring carbon atoms and 1 or 2 ring nitrogen atoms. More preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl, azepinyl or morpholinyl group,




embedded image



Even more preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl, piperidinyl, azepinyl group,




embedded image



Even more preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl group,




embedded image


Examples of suitable substituents for the non-aromatic heterocyclic ring or the bridged heterobicyclic ring comprising 6-10 ring carbon atoms and 1 or 2 ring nitrogen atoms represented by —NR2R3 are as described in the first set of values for Structural Formula (I).


Values and preferred values for the remainder of the variables of Structural Formula (I) are as described above for the first set of values.


A fourth set of values for the variables in Structural Formula (I) is provided in the following paragraphs:


Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.


R1 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar1, —OR30, —O(haloalkyl), —SR30, —NO2, —CN, —NCS, —N(R31)2, —NR31C(O)R30, —NR31C(O)OR32, —N(R31)C(O)N(R31)2, —C(O)R30, —C(S)R30, —C(O)OR30, —OC(O)R30, —C(O)N(R31)2, —S(O)2R30, —SO2N(R31)2, —S(O)R32, —SO3R30, —NR31SO2N(R31)2, —NR31SO2R32, —Vo—Ar1, —Vo—OR30, —Vo—O(haloalkyl), —Vo—SR30, —Vo—NO2, —Vo—CN, —Vo—N(R31)2, —Vo—NR31C(O)R30, —Vo—NR31CO2R32, —Vo—N(R31)C(O)N(R31)2, —Vo—C(O)R30, —Vo—C(S)R30, —Vo—CO2R30, —Vo—OC(O)R30, —Vo—C(O)N(R31)2—, —Vo—S(O)2R30, —Vo—SO2N(R31)2, —Vo—S(O)R32, —Vo—SO3R30, —Vo—NR31SO2N(R31)2, —Vo—NR31SO2R32, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —NR31C(O)—Vo—N(R31)2, —NR31C(O)—Vo—Ar1, —C(O)—Vo—N(R31)2, —C(O)—Vo—Ar1, —C(S)—Vo—N(R31)2, —C(S)—Vo—Ar1, —C(O)O—V1—N(R31)2, —C(O)O—Vo—Ar1, —O—C(O)—V1—N(R31)2, —O—C(O)—Vo—Ar1, —C(O)N(R31)—V1—N(R31)2, —C(O)N(R31)—Vo—Ar1, —S(O)2—Vo—N(R31)2, —S(O)2—Vo—Ar1, —SO2N(R31)—V1—N(R31)2, —SO2N(R31)—Vo—Ar1, —S(O)—Vo—N(R31)2, —S(O)—Vo—Ar1, —S(O)2—O—V1—N(R31)2, —S(O)2—O—Vo—Ar1, —NR31SO2—Vo—N(R31)2, —NR31SO2—Vo—Ar1, —O—[CH2]p—O—, —S—[CH2]p—S— and —[CH2]q—.


R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a substituted or unsubstituted non-aromatic heterocyclic ring, or a substituted or unsubstituted bridged heterobicyclic ring comprising 6-10 ring carbon atoms and 1 or 2 ring nitrogen atoms. Preferably, R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring; or, R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a substituted or unsubstituted bridged heterobicyclic ring comprising 6 or 7 ring carbon atoms and 1 or 2 ring nitrogen atoms. More preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl, azepinyl or morpholinyl group,




embedded image



Even more preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl, piperidinyl, azepinyl group,




embedded image



Even more preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl group,




embedded image


Examples of suitable substituents for the non-aromatic heterocyclic ring or the bridged heterobicyclic ring comprising 6-10 ring carbon atoms and 1 or 2 ring nitrogen atoms represented by —NR2R3 are as described in the first set of values for Structural Formula (I).


R5 and R6 are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.


Values and preferred values of the remainder of the variables of Structural Formula (I) are each independently as described above for the first set of values.


A fifth set of values for the variables in Structural Formula (I) is provided in the following paragraphs:


Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.


R1 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar1, —OR30, —O(haloalkyl), —SR30, —NO2, —CN, —NCS, —N(R31)2, —NR31C(O)R30, —NR31C(O)OR32, —N(R31)C(O)N(R31)2, —C(O)R30, —C(S)R30, —C(O)OR30, —OC(O)R30, —C(O)N(R31)2, —S(O)2R30, —SO2N(R31)2, —S(O)R32, —SO3R30, —NR31SO2N(R31)2, —NR31SO2R32, —Vo—Ar1, —Vo—OR30, —Vo—O(haloalkyl), —Vo—SR30, —Vo—NO2, —Vo—CN, —Vo—N(R31)2, —Vo—NR31C(O)R30, —Vo—NR31CO2R32, —Vo—N(R31)C(O)N(R31)2, —Vo—C(O)R30, —Vo—C(S)R30, —Vo—CO2R30, —Vo—OC(O)R30, —Vo—C(O)N(R31)2—, —Vo—S(O)2R30, —Vo—SO2N(R31)2, —Vo—S(O)R32, —Vo—SO3R30, —Vo—NR31SO2N(R31)2, —Vo—NR31SO2R32, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —NR31C(O)—Vo—N(R31)2, —NR31C(O)—Vo—Ar1, —C(O)—Vo—N(R31)2, —C(O)—Vo—Ar1, —C(S)—Vo—N(R31)2, —C(S)—Vo—Ar1, —C(O)O—V1—N(R31)2, —C(O)O—Vo—Ar1, —O—C(O)—V1—N(R31)2, —O—C(O)—Vo—Ar1, —C(O)N(R31)—V1—N(R31)2, —C(O)N(R31)—Vo—Ar1, —S(O)2—Vo—N(R31)2, —S(O)2—Vo—Ar1, —SO2N(R31)—V1—N(R31)2, —SO2N(R31)—Vo—Ar1, —S(O)—Vo—N(R31)2, —S(O)—Vo—Ar1, —S(O)2—O—V1—N(R31)2, —S(O)2—O—Vo—Ar1, —NR31SO2—Vo—N(R31)2, —NR31SO2—Vo—Ar1, —O—[CH2]p—O—, —S—[CH2]p—S— and —[CH2]q—.


R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a substituted or unsubstituted non-aromatic heterocyclic ring, or a substituted or unsubstituted bridged heterobicyclic ring comprising 6-10 ring carbon atoms and 1 or 2 ring nitrogen atoms. Preferably, R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring; or, R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a substituted or unsubstituted bridged heterobicyclic ring comprising 6 or 7 ring carbon atoms and 1 or 2 ring nitrogen atoms. More preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl, azepinyl or morpholinyl group,




embedded image



Even more preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl, piperidinyl, azepinyl group,




embedded image



Even more preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl group,




embedded image


Examples of suitable substituents for the non-aromatic heterocyclic ring or the bridged heterobicyclic ring comprising 6-10 ring carbon atoms and 1 or 2 ring nitrogen atoms represented by —NR2R3 are as described in the first set of values for Structural Formula (I).


R4 is an aliphatic or aryl group each optionally substituted with one or more substituents. Examples of suitable substituents are as described above for the first set of values.


R5 and R6 are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.


Values and preferred values of the remainder of the variables of Structural Formula (I) are each independently as described above for the first set of values.


In a second embodiment, the glucosylceramide synthase inhibitor is represented by Structural Formula (II), (III), (IV), (V), (VI), (VII) or (VIII):




embedded image


embedded image



or a pharmaceutically acceptable salt thereof.


A first set of values for the variables of Structural Formulas (II)-(VIII) is provided in the following paragraphs:


R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S— and —[CH2]q—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2]p—O— and —[CH2]q—.


Ar1 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


R30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group. Examples of suitable substituents are as described above in the first set of values for Structural Formula (I).


R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a substituted or unsubstituted non-aromatic heterocyclic ring, or a substituted or unsubstituted bridged heterobicyclic ring comprising 6-10 ring carbon atoms and 1 or 2 ring nitrogen atoms. Preferably, R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring; or, R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a substituted or unsubstituted bridged heterobicyclic ring comprising 6 or 7 ring carbon atoms and 1 or 2 ring nitrogen atoms. More preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl, azepinyl or morpholinyl group,




embedded image



Even more preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl, piperidinyl, azepinyl group,




embedded image



Even more preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl group,




embedded image


Examples of suitable substituents for the non-aromatic heterocyclic ring or the bridged heterobicyclic ring comprising 6-10 ring carbon atoms and 1 or 2 ring nitrogen atoms represented by —NR2R3 are as described in the first set of values for Structural Formula (I).


R4 is an aliphatic or aryl group each optionally substituted with one or more substituents described above in the first set of values for Structural Formula (I).


R5 and R6 for Structural Formulas (II), (III) and (V) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.


For Structural Formula (VIII), R7 is —H or C1-C6 alkyl, preferably —H.


Values and preferred values of the remainder of the variables of Structural Formulas (II)-(VIII) are each independently as described above in the first set of values for Structural Formula (I).


A second set of values for the variables in Structural Formulas (II)-(VIII) is provided in the following paragraphs:


R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, or —[CH2]q—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2], —O— and —[CH2]q—.


Ar1 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


R30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.


—N(R2R3) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl, azepinyl or morpholinyl group or




embedded image



each optionally substituted at one or more ring carbon atoms with a substituent selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxyl, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl or C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino. Preferably, —N(R2R3) is a pyrrolidinyl, piperidinyl, or azepinyl group, or




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy. More preferably, —N(R2R3) is pyrrolidinyl,




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.


R4 is an aliphatic or aryl group each optionally substituted with one or more substituents. Examples of suitable substituents are described above in the first set of values for Structural Formula (I).


R5 and R6 for Structural Formulas (II), (III) and (V) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.


For Structural Formula (VIII), R7 is —H or C1-C6 alkyl, preferably —H.


Values and preferred values of the remainder of the variables of Structural Formulas (II)-(VIII) are each independently as described above in the first set of values for Structural Formula (I).


A third set of values for the variables in Structural Formulas (II)-(VIII) is provided in the following paragraphs:


R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, or —[CH2]q—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2]p—O— and —[CH2]q—.


Ar1 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


R30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.


—N(R2R3) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl, azepinyl or morpholinyl group or




embedded image



each optionally substituted at one or more ring carbon atoms with a substituent selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxyl, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl or C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino. Preferably, —N(R2R3) is a pyrrolidinyl, piperidinyl, or azepinyl group, or




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy. More preferably, —N(R2R3) is pyrrolidinyl,




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.


R4 is an optionally substituted aryl or an optionally substituted lower arylalkyl group. Example of suitable substituents are as described in the first set of values for Structural Formula (I).


R5 and R6 for Structural Formulas (II), (III) and (V) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.


For Structural Formula (VIII), R7 is —H.


Preferably, Q in Structural Formula (II) is —O—, —S—, —C(O)—, —C(S)—, —NR7(CO)— or —C(O)NR7


Values and preferred values of the remainder of the variables of Structural Formulas (II)-(VIII) are each independently as described above in the first set of values for Structural Formula (I). Preferably, for Structural Formula (II), Q is —O—, —S—, —C(O)—, —C(S)—, —NR7(CO)— or —C(O)NR7—.


A fourth set of values for the variables in Structural Formulas (II)-(VIII) is provided in the following paragraphs:


R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, or —[CH2]q—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2]p—O— and —[CH2]q—.


Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


Each R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.


—N(R2R3) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl, azepinyl or morpholinyl group or




embedded image



each optionally substituted at one or more ring carbon atoms with a substituent selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxyl, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl or C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino. Preferably, —N(R2R3) is a pyrrolidinyl, piperidinyl, or azepinyl group, or




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy. More preferably, —N(R2R3) is pyrrolidinyl,




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.


R4 is an optionally substituted aryl or an optionally substituted lower arylalkyl group. Examples of suitable substitutents for R4 are as provided above in the first set of values for Structural Formula (I). Preferably, R4 is selected from the group consisting of:




embedded image



Each of rings A-Z5 is optionally and independently substituted.


For Structural Formula (VIII), R7 is —H.


Values and preferred values of the remainder of the variables of Structural Formulas (II)-(VIII) are each independently as described above in the first set of values for Structural Formula (I). When the compound of the invention is represented by Structural Formula (III) or (IV), or a pharmaceutically acceptable salt thereof, n is 1, 2, 3 or 4. Alternatively, when the compound of the invention is represented by Structural Formula (V) or (VI), or a pharamceutically acceptable salt thereof, n is 3, 4 or 5.


A fifth set of values for the variables in Structural Formulas (II)-(VIII) independently is as defined in the first set, second set, third set, fourth set, fifth set, sixth set or seventh set of values for the variables for Structural Formula (I).


In a third embodiment, the compound of the invention is represented by Structural Formula (IX) or (X):




embedded image



or a pharmaceutically acceptable salt thereof.


A first set of values for the variables in Structural Formulas (IX) and (X) is defined in the following paragraphs:


R1 is a phenyl group optionally substituted with one or more substituents. Examples of suitable substituents include halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, and —[CH2]q—; preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH3, —OC2H5 and —O—[CH2]p—O—.


—N(R2R3) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl, azepinyl or morpholinyl group or




embedded image



each optionally substituted at one or more ring carbon atoms with a substituent selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxyl, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl or C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino. Preferably, —N(R2R3) is a pyrrolidinyl, piperidinyl, or azepinyl group, or




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy. More preferably, —N(R2R3) is pyrrolidinyl,




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.


Phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, —OR50, —Ar3, —V4—Ar3, —V—OR50, —O(C1-C10 haloalkyl), —V4—O(C1-C10 haloalkyl), —O—V4—Ar3, —O—[CH2]p′—O— and —[CH2]q′—.


Ar3 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


Each R50 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


For Structural Formula (IX), n is 1, 2, 3 or 4. For Structural Formula (X), n is 3, 4 or 5.


Values and preferred values of the remainder of the variables of Structural Formulas (IX) and (X) are each independently as defined above in the first set of values for Structural Formula (I).


A second set of values and preferred values for the variables in Structural Formulas (IX) and (X) is as defined in the following paragraphs:


R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 alkoxy(C1-C6)alkoxy, C1-C6 haloalkoxy(C1-C6)alkoxy, C1-C6 hydroxyalkoxy and —O—[CH2]p—O—.


—N(R2R3) is pyrrolidinyl,




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.


Phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, aryl, aryloxy, hydroxy, C1-C10 alkoxy, —O—[CH2]p′—O— and —[CH2]q′—. Preferably, phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH3, —OC2H5 and —O—[CH2]p′—O—.


For Structural Formula (IX), n is 1, 2, 3 or 4. For Structural Formula (X), n is 3, 4 or 5.


Values and preferred values of the remaining variables of Structural Formulas (IX) and (X) are each independently as described above in the first set of values for Structural Formula (I).


A third set of values for the variables in Structural Formulas (IX) and (X) independently is as defined in the first set, second set, third set, fourth set or fifth set, of values for Structural Formulas (II)-(VIII).


In a fourth embodiment, the compound of the invention is represented by Structural Formula (XI), (XII) or (XIII):




embedded image



or a pharmaceutically acceptable salt thereof.


A first set of values and preferred values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:


R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, or —[CH2]q—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2]p—O— and —[CH2]q—.


Ar1 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


R30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group. Examples of suitable substituents are as described above in the first set of values for Structural Formula (I).


R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a substituted or unsubstituted non-aromatic heterocyclic ring, or a substituted or unsubstituted bridged heterobicyclic ring comprising 6-10 ring carbon atoms and 1 or 2 ring nitrogen atoms. Preferably, R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring; or, R2 and R3 taken together with the nitrogen atom of —N(R2R3) form a substituted or unsubstituted bridged heterobicyclic ring comprising 6 or 7 ring carbon atoms and 1 or 2 ring nitrogen atoms. More preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl, azepinyl or morpholinyl group,




embedded image



Even more preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl, piperidinyl, azepinyl group,




embedded image



Even more preferably, —N(R2R3) is a substituted or unsubstituted pyrrolidinyl group,




embedded image


Examples of suitable substituents for the non-aromatic heterocyclic ring or the bridged heterobicyclic ring comprising 6-10 ring carbon atoms and 1 or 2 ring nitrogen atoms represented by —NR2R3 are as described in the first set of values for Structural Formula (I).


R4 is an optionally substituted aryl group. Examples of suitable substituents for R4 are as provided above in the first set of values for Structural Formula (I).


Alternatively, R4 is a straight chained C1-C20 alkyl group, preferably C6-C20 alkyl group, more preferably C6-C10 alkyl group, even more preferably C6-C8 alkyl group, each optionally substituted with hydroxy.


R5 and R6 for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.


Values and preferred values of the remainder of the variables of Structural Formulas (XI)-(XIII) are each independently as described above in the first set of values for Structural Formula (I).


A second set of values and preferred values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:


R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, or —[CH2]q. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2]p—O—, and —[CH2]q—.


Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


Each R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; and


Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.


—N(R2R3) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl, azepinyl or morpholinyl group or




embedded image



each optionally substituted at one or more ring carbon atoms with a substituent selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxyl, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl or C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino. Preferably, —N(R2R3) is a pyrrolidinyl, piperidinyl, or azepinyl group, or




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy. More preferably, —N(R2R3) is pyrrolidinyl,




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.


R4 is an optionally substituted aryl group. Suitable substituents and preferred substitutents are as provided above in the first set of values for Structural Formula (I). Preferably, R4 is selected from the group consisting of:




embedded image



Each of rings A-Z5 is optionally and independently substituted. Preferably, each of rings A-Z5 is optionally and independently substituted with one or more substituents selected from Ar3 and Ar3—Ar3 wherein values and preferred values of Ar3 are as described above for the first set of values for Structural Formula (I). Preferably, Ar3 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 haloalkoxy, amino, C1-C10 alkylamino and C1-C10 dialkylamino. More preferably, Ar3 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.


Alternatively, R4 is a straight chained C1-C20 alkyl group optionally substituted with hydroxy, preferably a straight chained C6-C20 alkyl group, more preferably a straight chained C6-C10 alkyl group, even more preferably a straight chained C6-C8 alkyl group.


R5 and R6 for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.


Values and preferred values of the remainder of the variables of Structural Formulas (XI)-(XIII) are each independently as described above in the first set of values for Structural Formula (I).


A third set of values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:


R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—NR31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, or —[CH2]q—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2]p—O—, and —[CH2]q—.


Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


Each R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.


—N(R2R3) is a pyrrolidinyl, piperidinyl, or azepinyl group, or




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.


Preferably, —N(R2R3) is pyrrolidinyl,




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.


R4 is a biaryl group, such as a biphenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar3, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.


Alternatively, R4 is a straight chained C1-C20 alkyl group optionally substituted with hydroxy, preferably a straight chained C6-C20 alkyl group, more preferably a straight chained C6-C10 alkyl group, even more preferably a straight chained C6-C8 alkyl group.


R5 and R6 for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group, preferably —H.


Values and preferred values of the remainder of the variables of Structural Formulas (XI)-(XIII) are each independently as described above in the first set of values for Structural Formula (I).


A fourth set of values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:


R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 alkoxy(C1-C6)alkoxy, C1-C6 haloalkoxy(C1-C6)alkoxy, C1-C6 hydroxyalkoxy and —O—[CH2]p—O—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH3, —OC2H5 and —O—[CH2]p—O—. Alternatively, R1 is




embedded image



where r is 1, 2, 3 or 4, preferably 1 or 2.


—N(R2R3) is pyrrolidinyl,




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.


R4 is a biaryl group, such as a biphenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar3, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.


Alternatively, R4 is a straight chained C1-C20 alkyl group optionally substituted with hydroxy, preferably a straight chained C6-C20 alkyl group, more preferably a straight chained C6-C10 alkyl group, even more preferably a straight chained C6-C8 alkyl group.


R5 and R6 for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group, preferably —H.


n is an integer from 1 to 4.


Values and preferred values of the remainder of the variables of Structural Formulas (XI)-(XIII) are each independently as described above in the first set of values for Structural Formula (I).


A fifth set of values preferred values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:


R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 alkoxy(C1-C6)alkoxy, C1-C6 haloalkoxy(C1-C6)alkoxy, C1-C6 hydroxyalkoxy and —O—[CH2]p—O—. Alternatively, R1 is




embedded image



where r is 1, 2, 3 or 4, preferably 1 or 2.


—N(R2R3) is pyrrolidinyl,




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.


R4 is




embedded image



optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar3, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.


Alternatively, R4 is a straight chained C6-C8 alkyl group.


n is 1.


R5 and R6 for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group, preferably —H.


Values and preferred values of the remainder of the variables of Structural Formulas (XI)-(XIII) are each independently as described above in the first set of values for Structural Formula (I).


A sixth set of values for the variables in Structural Formulas (XI)-(XIII) independently is as defined in the first set, second set, third set, fourth set, fifth set, sixth set or seventh set of values for Structural Formula (I).


In a fifth embodiment, the compound of the invention is represented by Structural Formula (XIV) or (XV):




embedded image



or a pharmaceutically acceptable salt thereof. A first set of values and preferred values for the variables in Structural Formulas (XIV) and (XV) is as defined in the following paragraphs:


R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, or —[CH2]q—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2]p—O—, and —[CH2]q—.


Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy and C1-C6 haloalkyl.


Each R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.


—N(R2R3) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl, azepinyl or morpholinyl group or




embedded image



each optionally substituted at one or more ring carbon atoms with a substituent selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxyl, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl or C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino. Preferably, —N(R2R3) is a pyrrolidinyl, piperidinyl, or azepinyl group, or




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy. More preferably, —N(R2R3) is pyrrolidinyl,




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.


k is 0, 1, 2, 3, 4, 5 or 6.


R8 is —H, or an optionally substituted aryl or an optionally substituted lower alkyl group. Examples of suitable substituents are as described for the first set of values for Structural Formula (I). Preferably, R8 is selected from the group consisting of:




embedded image



Each of rings A-Z5 is optionally and independently substituted. Examples of suitable substituents for R8 are as provided above in the first set of values for R4 in Structural Formula (I). More preferably, R8 is




embedded image



group. Alternatively, R8 is an aryl group substituted with Ar3, such as a phenyl group substituted with Ar3, where values and preferred values of Ar3 are as described above in Structural Formula (I).


Values and preferred values of the remainder of the variables of Structural Formulas (XIV) and (XV) are each independently as described above in the first set of values for Structural Formula (I).


A second set of values for the variables in Structural Formulas (XIV) and (XV) is defined in the following paragraphs:


R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —V—OR30, —V—N(R31)2, —V—Ar1, —O—V—Ar1, —O—V1—N(R31)2, —S—V—Ar1, —S—V1—N(R31)2, —N(R31)—V—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S— and —[CH2]q—.


Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


Each R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.


—N(R2R3) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl, azepinyl or morpholinyl group or




embedded image



each optionally substituted at one or more ring carbon atoms with a substituent selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxyl, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl or C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino. Preferably, —N(R2R3) is a pyrrolidinyl, piperidinyl, or azepinyl group, or




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy. More preferably, —N(R2R3) is pyrrolidinyl,




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.


Values and preferred values for k and R8 are as provided above in the first set of values for Structural Formulas (XIV) and (XV).


Values and preferred values of the remainder of the variables of Structural Formulas (XIV) and (XV) are each independently as described above in the first set of values for Structural Formula (I).


A third set of values for the variables in Structural Formulas (XIV) and (XV) is defined in the following paragraphs:


R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 alkoxy(C1-C6)alkoxy, C1-C6 haloalkoxy(C1-C6)alkoxy, C1-C6 hydroxyalkoxy and —O—[CH2]p—O—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH3, —OC2H5 and —O—[CH2]p—O—. Alternatively, R1 is




embedded image



where r is 1, 2, 3 or 4, preferably 1 or 2.


—N(R2R3) is pyrrolidinyl,




embedded image



each optionally substituted at one or more ring carbon atoms with halogen, —OH, C1-C6 alkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.


Values and preferred values for k and R8 are each independently as provided above in the first set of values for Structural Formulas (XIV) and (XV).


Values and preferred values of the remainder of the variables of Structural Formulas (XIV) and (XV) are each independently as described above in the first set of values for Structural Formula (I).


A fourth set of values for the variables in Structural Formulas (XIV)-(XV) is as defined in the first set, second set, third set, fourth set, fifth set, sixth set or seventh set for Structural Formula (I).


In one preferred embodiment, the compound of the invention is represented by Structural Formula (XVIA) or (XVIB):




embedded image



or a pharmaceutically acceptable salt thereof, wherein: Q is —O—, —C(O)— or —NH, specifically, —O— or —C(O)—; r and s are each independently 1, 2, 3 or 4; each n independently is 1, 2, 3, 4, 5 or 6; and R4 has values and preferred values provided above in the first set of values for Structural Formula (I).


In an alternative, —O—(CH2)r-O— is replaced by one or more substituents selected from the group consisting of —OH, C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 alkoxy(C1-C6)alkoxy, C1-C6 haloalkoxy(C1-C6)alkoxy, C1-C6 hydroxyalkoxy and —O—[CH2]p—O—, preferably by one or more substituents selected from the group consisting of —OH, —OCH3, —OC2H5 and —O—[CH2]p—O—, and/or R4 is a straight chained C6-C8 alkyl group.


In another preferred embodiment, the compound of the invention is represented by Structural Formula (XVIC) or (XVID):




embedded image



or a pharmaceutically acceptable salt thereof, wherein:


Q is —O—, —C(O)— or —NH, specifically, —O— or —C(O)—;


r and s are each independently 1, 2, 3 or 4;


each n independently is 1, 2, 3, 4, 5 or 6;


R4 has values and preferred values provided above in the first set of values for Structural Formula (I). Alternatively, —(CH2)n-R4 is a C6-C8 straight chained alkyl group, optionally substituted with hydroxy, and/or —O—(CH2)r-O— is replaced by one or more substituents selected from the group consisting of —OH, C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 alkoxy(C1-C6)alkoxy, C1-C6 haloalkoxy(C1-C6)alkoxy, C1-C6 hydroxyalkoxy and —O—[CH2]p—O—, preferably by one or more substituents selected from the group consisting of —OH, —OCH3, —OC2H5 and —O—[CH2]p—O—.


B is halogen, hydroxy, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy or C1-C6 haloalkoxy. Preferably, B is halogen, hydroxy, C1-C5 alkoxy or C1-C5 haloalkoxy.


k″ is 0 or 1.


In another preferred embodiment, the compound of the invention is represented by Structural Formula (XVII), (XVIII), (XIX) or (XX):




embedded image



or a pharmaceutically acceptable salt thereof, wherein phenyl ring A is optionally substituted; each n is 1, 2, 3, 4, 5, or 6; and k is 0, 1 or 2. Values and preferred values of suitable substituents of phenyl ring A are as described above in the first set of values for Structural Formula (I).


Examples of bridged heterobicyclic ring comprising 5-12 ring carbon atoms and 1 or 2 ring nitrogen atoms include




embedded image



The bridged bicyclic ring carbon atoms can be optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, —OH, —SH, —O(C1-C6 alkyl), —S(C1-C6 alkyl), —O(C1-C6 haloalkyl), —S(C1-C6 haloalkyl), C1-C6 alkyl, C1-C6 haloalkyl, amino, C1-C6 alkylamino and C1-C6 dialkylamino. Alternatively, the bridged bicyclic ring carbon atoms can be optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —O(C1-C6 alkyl) and —O(C1-C6 haloalkyl). The bridged bicyclic ring nitrogen atoms can be optionally substituted with one or more substituents selected from the group consisting of C1-C6 alkyl and phenyl, the alkyl being optionally substituted with halogen, cyano, nitro, —OH, —SH, —O(C1-C6 alkyl), —S(C1-C6 alkyl), —O(C1-C6 haloalkyl), —S(C1-C6 haloalkyl), phenyl, amino, C1-C6 alkylamino and C1-C6 dialkylamino, and the phenyl being optionally substituted with halogen, cyano, nitro, —OH, —SH, —O(C1-C6 alkyl), —S(C1-C6 alkyl), —O(C1-C6 haloalkyl), —S(C1-C6 haloalkyl), C1-C6 alkyl, C1-C6 haloalkyl, amino, C1-C6 alkylamino and C1-C6 dialkylamino. Alternatively, the bridged bicyclic ring nitrogen atoms can be optionally substituted with C1-C6 alkyl that is optionally substituted with halogen, —OH, —O(C1-C6 alkyl) and —O(C1-C6 haloalkyl).


In another embodiment, the compound of the invention is represented by a structural formula selected from Structural Formulas (I)-(VIII) and (XI)-(XV), wherein values, including preferred values, of the variables in the structural formulas, other than R30, R31 and R32 for the substituents of R1, are independently as defined in each embodiment described above for Structural Formulas (I)-(VIII) and (XI)-(XV). In this embodiment, each R30 is independently: i) hydrogen; ii) an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or iii) an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, nitro, cyano, hydroxy, phenyl, phenylamino, diphenylamino, aryloxy, benzoyl, phenoxycarbonyl, alkylamino, dialkylamino, alkoxy, alkoxycarbonyl and alkylcarbonyl. Each R31 is independently R30, —CO2R30, —SO2R30 or —C(O)R30; or —N(R31)2 taken together is an optionally substituted non-aromatic heterocyclic group. Each R32 is independently: i) an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkylcarbonyl and haloalkoxy and haloalkyl; or ii) an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, nitro, cyano, hydroxy, phenyl, phenylamino, diphenylamino, aryloxy, benzoyl, phenoxycarbonyl, alkylamino, dialkylamino, alkoxy, alkoxycarbonyl and alkylcarbonyl. Each of the phenyl, phenylamino, diphenylamino, aryloxy, benzoyl, phenoxycarbonyl for the substituents of the alkyl group represented by R30 and R32 is independently and optionally substituted with one or more substituents selected from the group consisting of halogen, hydroxy, cyano, nitro, amino, C1-C5 alkyl, C1-C5 haloalkyl, C1-C5 alkoxy, C1-C5 haloalkoxy, C1-C5 alkylamino, C1-C5 dialkylamino, (C1-C5 alkoxy)carbonyl and (C1-C5 alkyl)carbonyl. Each of the alkylamino, dialkylamino, alkoxy, alkoxycarbonyl and alkylcarbonyl for the substituents of the alkyl group represented by R30 and R32 is independently and optionally substituted with one or more substituents selected from the group consisting of halogen, hydroxy, cyano, nitro, amino, phenyl, C1-C5 alkoxy, C1-C5 haloalkoxy, phenylamino, C1-C5 alkylamino, C1-C5 dialkylamino, diphenylamino, (C1-C5 alkoxy)carbonyl, (C1-C5 alkyl)carbonyl, benzoyl and phenoxycarbonyl.


Another class of glucosylceramide synthase inhibitors include iminosugars and their derivatives. Iminosugars (deoxynojirimycin and its analogs) are polyhydroxylated alkaloids that are structural mimics of monosaccharides, where a nitrogen atom replaces the ring oxygen. Examples of iminosugars and their derivatives have been described, for example:


U.S. Pat. No. 4,065,562, the entire teachings of which are incorporated herein by reference, discloses deoxyjirimycin (2-hydroxymethyl-3,4,5-trihydroxypiperidine);


U.S. Pat. No. 4,182,767, the entire teachings of which are incorporated herein by reference, discloses the following deoxyjirimycin analog:




embedded image



R is alkyl of 1 to 4 carbon atoms;


U.S. Pat. No. 4,533,668, the entire teachings of which are incorporated herein by reference, discloses the following deoxynojirimycin analog:




embedded image



wherein X is divalent alkyl or alkenyl of 3 to 6 carbon atoms, Y is hydrogen, methyl or




embedded image



and Z is




embedded image



or thienyl, wherein R1, R2, R3 and R4 are independently hydrogen, halogen, lower alkyl, lower alkoxy, hydroxyl, trihalomethyl, phenoxy, diloweralkylamino, cyano, carboxyl, carbamoyl or carboloweralkoxy, R5 is hydrogen or hydroxymethyl and R6 is hydrogen, methyl, ethyl or methoxyethyl, or a pharmaceutically acceptable nontoxic acid addition salt thereof;


U.S. Pat. No. 4,639,436, the entire teachings of which are incorporated herein by reference, discloses the following deoxyjirimycin analog:




embedded image



wherein R1 is C5-C30 alkyl, C2-C18 alkenyl, C2-C18 alkinyl, C3-C8 cycloalkyl, C3-C8 cycloalkenyl, C3-C8-cycloalkinyl, phenyl (a), C1-C2 and C7-C30 alkyl substituted by phenyl (b) or substituted C1-C4-alkyl said C5-C30 alkyl, cycloalkyl, cycloalkenyl and cycloalkinyl being unsubstituted or substituted by hydroxy, C1-C4-alkoxy, acyloxy, amino, mono-C1-C4 alkylamino, di-C1-C4 alkylamino, acylamino, mercapto, C1-C4 alkylthio, halogen, C1-C4 alkylcarbonyl, carboxyl nitro, cyano, formyl, sulfo, a heterocyclic radical derived from a hexose or pentose, attached to the alkyl moiety directly via a ring atom or via an —O—, —S— or —NH-bridge or naphthyl said phenyl (a) being unsubstituted or substituted by C1 to C10 alkyl, C1 to C10 chloroalkyl, C1 to C10 nitroalkyl, C1 to C10 cyanoalkyl, C1 to C10 alkenyl, hydroxyl, C1 to C4 alkoxy, amino, mono-C1 to C4 alkylamino, di-C1-C4 alkylamino, mercapto, C1-C4 alkylthio, carboxyl, C1-C4 carbalkoxy, sulfo, C1-C4 alkylsulfonyl, phenylsulfonyl, aminosulfonyl, C1-C4 alkylaminosulfonyl, di-C1-C4 alkylaminosulfonyl, nitro, cyano, formyl, C1-C4 alkylcarbonylamino, C1-C4 alkylcarbonyl, benzoyl, benzylcarbonyl or phenylethylcarbonyl; said substituted C1-C4 alkyl being substituted by hydroxy, C1-C4-alkoxy, acyloxy, amino, mono-C1-C4 alkylamino, di-C1-C4 alkylamino, acylamino, mercapto, C1-C4 alkylthio, halogen, C1-C4 alkylcarbonyl, carboxyl nitro, cyano, formyl, sulfo, a heterocyclic radical derived from a hexose or pentose, attached to the alkyl moiety directly via a ring atom or via an —O—, —S— or —NH-bridge or naphthyl, said acyl being derived from an aliphatic carboxylic acid having from 1 to 7 C-atoms, a phenyl carboxylic acid, unsubstituted or substituted by carboxy, hydroxy, halogen, C1 to C4 alkyl, C1 to C4 alkoxy, nitro or amino, or a 5- or 6-membered aromatic heterocyclic carboxylic acid containing from 1 to 3 hetero-atoms each of which is N, O or S, unsubstituted or substituted by C1 to C4 alkyl, chlorine, bromine or amino; said naphthyl and phenyl (b) being unsubstituted or substituted by hydroxyl, amino, C1-C4 alkylamino, di-C1-C4 alkylamino, C1-C4 alkoxy, nitro, cyano, carboxy, C1-C4 alkoxycarbonyl, C1-C6 alkyl, halogen, C1-C4 alkylthio, mercapto, C1-C4 alkylsulfonyl, sulfo, aminosulfonyl or C1-C4 alkylaminosulfonyl; R2 is




embedded image



wherein phenyl is unsubstituted or substituted by methyl, ethyl, methoxy, chlorine, bromine or nitro; R3 is —H, —CH3, —CH2OH, —CH2—NH2, NHR′—CH2—, NR′R″—CH2—, R′CONH—CH2, R′CO—NR″CH2—, R′O—CH2, R′COOCH2—, R′SO2NHCH2—, R′SO2—NR″CH2—, R′NH—CO—NH—CH2—, R′NHCS—NH—CH2, R′O—CO—NH—CH2—, wherein R′ and R″ are the same or different and each has the meaning hydrogen or C1-C30 alkyl, C2-C18 alkenyl, C2-C18 alkinyl, C3-C8 cycloalkyl, C3-C8 cycloalkenyl, C3-C8-cycloalkinyl or phenyl (a), said alkyl, cycloalkyl, cycloalkenyl and cycloalkinyl being unsubstituted or substituted by hydroxy, C1-C4-alkoxy, acyloxy, amino, mono-C1-C4 alkylamino, di-C1-C4 alkylamino, acylamino, mercapto, C1-C4 alkylthio, halogen, C1-C4 alkylcarbonyl, carboxyl, nitro, cyano, formyl, sulfo, a heterocyclic radical derived from a hexose or pentose, attached to the alkyl moiety directly via a ring atom or via an —O—, —S— or —NH-bridge, naphthyl or phenyl (b) said acyl being derived from an aliphatic carboxylic acid having from 1 to 7 C-atoms, a phenyl carboxylic acid, unsubstituted or substituted by carboxy, hydroxy, halogen, C1 to C4 alkyl, C1 to C4 alkoxy, nitro or amino, or a 5- or 6-membered aromatic heterocyclic carboxylic acid containing from 1 to 3 hetero-atoms each of which is N, O or S, unsubstituted or substituted by C1 to C4 alkyl, chlorine, bromine or amino; said phenyl (a) being unsubstituted or substituted by C1 to C10 alkyl, C1 to C10 chloroalkyl, C1 to C10 nitroalkyl, C1 to C10 cyanoalkyl, C1 to C10 alkenyl, hydroxyl, C1 to C4 alkoxy, amino, mono-C1 to C4 alkylamino, di-C1-C4 alkylamino, mercapto, C1-C4 alkylthio, carboxyl, C1-C4-carbaloxy, sulfo, C1-C4 alkylsulfonyl, phenylsulfonyl, aminosulfonyl, C1-C4 alkylaminosulfonyl, di-C1-C4 alkylaminosulfonyl, nitro, cyano, formyl, C1-C4 alkylcarbonylamino, C1-C4 alkylcarbonyl, benzoyl, benzylcarbonyl or phenylethylcarbonyl; said napthyl and phenyl (b) being unsubstituted or substituted by hydroxyl, amino, C1-C4 alkylamino, di-C1-C4 alkylamino, C1-C4 alkoxy, nitro, cyano, carboxy, C1-C4 alkoxycarbonyl, C1-C6 alkyl, halogen, C1-C4 alkylthio, mercapto, C1-C4 alkylsulfonyl, sulfo, aminosulfonyl or C1-C4 alkylaminosulfonyl;


U.S. Pat. No. 6,177,447, the entire teachings of which are incorporated herein by reference, discloses deoxynojirimycin compounds containing a hydrophobic moiety linked through a spacer to the nitrogen atom of deoxynojirimycin, and salts thereof, wherein the spacer comprises an alkoxy polyalkylene or polyalkylene chain of from 3 to 8 carbon atoms and the hydrophobic moiety is a polycyclic alcohol group containing three or more rings that each share two or more carbon atoms with another ring and is capable of inserting in lipid bilayers;


U.S. Patent Application Publication No. 2006/0058349, the entire teachings of which are incorporated herein by reference, discloses the following deoxynojirimycin analog:




embedded image



wherein R is C1-3alkylAr1 where Ar1 is phenyl or pyridyl; wherein phenyl is substituted by one or more substituents selected from CN, CON(R1)2, SOnR2, SO2N(R1)2, N(R5)2, N(R1)COR2, N(R1)SOnR2, C0-6alkylAr2, C2-6 alkenylAr2 and C3-6 alkynylAr2 wherein one or more of the —CH2— groups of the alkyl chain may be replaced with a heteroatom selected from O, S and NR3, provided that when the heteroatom is O, at least two —CH2— groups separate it from any additional O atom in the alkyl chain; or two adjacent substituents on the Ar1 phenyl may together form a fused 5- or 6-membered saturated or unsaturated ring wherein the ring optionally contains 1 or 2 heteroatoms selected from O, S and NR4 and is optionally substituted by one or more substituents selected from, an oxo group, C1-6alkyl and C0-3alkylAr4; and the Ar1 phenyl is optionally substituted by one or more additional substituents selected from F, Cl, Br, CF3, OCF3, OR3 and C1-6alkyl; and wherein pyridyl is substituted by one or more substituents, selected from, CN, CON(R1)2, SOnR2, SO2N(R1)2, N(R5)2, N(R1)COR2, N(R1)SOnR2, F, Cl, Br, CF3, OCF3, OR3, C1-6 alkyl, C0-6alkylAr2, C2-6alkenylAr2 and C3-6 alkynylAr2 wherein one of the —CH2— groups of the alkyl chain may be replaced with a heteroatom selected from O, S and NR3, provided that when the heteroatom is O, at least two —CH2— groups separate it from any additional O atom in the alkyl chain; or two adjacent substituents on the Ar1 pyridyl may together form a fused 5- or 6-membered saturated or unsaturated ring wherein the ring optionally contains 1 or 2 heteroatoms selected from O, S and NR4 and is optionally substituted by one or more substituents selected from, an oxo group, C1-6alkyl and C0-3alkylAr4; R1 is H, C1-6alkyl optionally substituted by OH, Ar3, or C1-6 alkylAr3, or the group N(R1)2 may form a 5- to 10-membered heterocyclic group optionally containing one or more additional heteroatoms selected from O, S and NR3 and is optionally substituted by an oxo group; R2 is C1-6alkyl optionally substituted by OH, Ar3, or C1-6alkylAr3; R3 is H, or C1-6alkyl; R4 is H, C1-6alkyl or C0-3alkylAr4; R5 is H, C1-6alkyl optionally substituted by OH, Ar3, or C1-6alkylAr3, or the group N(R5)2 may form a 5- to 10-membered heterocylic group optionally containing one or more additional heteroatoms selected from O, S and NR3 and is optionally substituted by an oxo group; Ar2 and Ar3 are independently phenyl or a 5- to 10-membered heteroaryl group containing, up to 3 heteroatoms selected from O, S and NR3, which may be optionally substituted by one or more substituents selected from F, Cl, Br, CN, CF3, OCF3, OR3 and C1-6alkyl; Ar4 is phenyl or pyridyl either of which may be optionally substituted by one or more substituents selected from F, Cl, Br, CN, CF3, OCF3, OR3 and C1-6alkyl; and n=0, 1 or 2;


U.S. Patent Application Publication No. 2006/0074107, the entire teachings of which are incorporated herein by reference, discloses the following deoxynojirimycin analog:




embedded image


wherein R is C1-16 straight or branched-chain alkyl, optionally substituted by C3-7 cycloalkyl, and optionally interrupted by —O—, the oxygen being separated from the ring nitrogen by at least two carbon atoms, or C1-10 alkylaryl where aryl is phenyl, pyridyl, thienyl or furyl wherein phenyl is optionally substituted by one or more substituents selected from F, Cl, Br, CF3, OCF3, OR1, and C1-16 straight or branched-chain alkyl; and R1 is hydrogen, or C1-6 straight or branched-chain alkyl;


U.S. Patent Application Publication No. 2007/0066581, the entire teachings of which are incorporated herein by reference, discloses the following deoxynojirimycin analog:




embedded image



wherein R1-R5 each independently comprise H or (CH2)nCH3 or X; R6 comprises H, CH2OH or CH2OX; m is 0 or 1; n is 0-9; a, b, c, d, e are chiral centra having an R or S configuration; and X comprises a large hydrophobic moiety and a spacer, whereby the hydrophobic moiety is linked through the spacer to the nitrogen atom or carbon atom concerned, and wherein the large hydrophobic moiety is derived from a polycyclic alcohol containing three or more rings each sharing two or more carbon atoms with another ring and is capable of inserting in lipid bilayers; and


U.S. Patent Application Publication No. 2007/0112028, the entire teachings of which are incorporated herein by reference, discloses the following iminosugar:




embedded image



wherein R is phenylmethyl-, wherein phenyl is substituted by OR1; and R1 is C4-5 alkyl.


Specific examples of the compounds of the invention are shown below:




embedded image


embedded image


embedded image


embedded image


embedded image



and pharmaceutically acceptable salts thereof.


Other specific examples of the compounds of the invention include compounds shown in Tables 1-3 and those exemplified in the examples below, stereoisomers thereof, and pharmaceutically acceptable salts thereof.


Also included are solvates, hydrates or polymorphs of the disclosed compounds herein. Thus, it is to be understood that when any compound is referred to herein by name and structure, solvates, hydrates and polymorphs thereof are included.


The compounds of the invention may contain one or more chiral centers and/or double bonds and, therefore, may exist as stereoisomers, such as double-bond isomers (i.e., geometric isomers), enantiomers, or diastereomers. When compounds of the invention are depicted or named without indicating the stereochemistry, it is to be understood that both stereomerically pure forms (e.g., geometrically pure, enantiomerically pure, or diastereomerically pure) and stereoisomeric mixtures are encompassed. For example, the compound represented by Structural Formula (I) below has chiral centers 1 and 2. Accordingly, the compounds of the invention depicted by Structural Formula (I) include (1R,2R), (1R,2S), (1S,2R) and (1S,2S) stereoisomers and mixtures thereof.




embedded image


As used herein, a racemic mixture means about 50% of one enantiomer and about 50% of is corresponding enantiomer relative to all chiral centers in the molecule. The invention encompasses all enantiomerically-pure, enantiomerically-enriched, diastereomerically pure, diastereomerically enriched, and racemic mixtures of the compounds of the invention.


In some preferred embodiments, the compounds of the invention are (1R,2R) stereoisomers.


Enantiomeric and diastereomeric mixtures can be resolved into their component enantiomers or stereoisomers by well known methods, such as chiral-phase gas chromatography, chiral-phase high performance liquid chromatography, crystallizing the compound as a chiral salt complex, or crystallizing the compound in a chiral solvent. Enantiomers and diastereomers can also be obtained from diastereomerically- or enantiomerically-pure intermediates, reagents, and catalysts by well known asymmetric synthetic methods.


Included in the invention are pharmaceutically acceptable salts of the compounds disclosed herein. The disclosed compounds have basic amine groups and therefore can form pharamceutically acceptable salts with pharmaceutically acceptable acid(s). Suitable pharmaceutically acceptable acid addition salts of the compounds of the invention include salts of inorganic acids (such as hydrochloric acid, hydrobromic, phosphoric, metaphosphoric, nitric, and sulfuric acids) and of organic acids (such as, acetic acid, benzenesulfonic, benzoic, citric, ethanesulfonic, fumaric, gluconic, glycolic, isethionic, lactic, lactobionic, maleic, malic, methanesulfonic, succinic, p-toluenesulfonic, and tartaric acids). Compounds of the invention with acidic groups such as carboxylic acids can form pharamceutically acceptable salts with pharmaceutically acceptable base(s). Suitable pharmaceutically acceptable basic salts include ammonium salts, alkali metal salts (such as sodium and potassium salts) and alkaline earth metal salts (such as magnesium and calcium salts). Compounds with a quaternary ammonium group also contain a counteranion such as chloride, bromide, iodide, acetate, perchlorate and the like. Other examples of such salts include hydrochlorides, hydrobromides, sulfates, methanesulfonates, nitrates, maleates, acetates, citrates, fumarates, tartrates [e.g. (+)-tartrates, (−)-tartrates or mixtures thereof including racemic mixtures], succinates, benzoates and salts with amino acids such as glutamic acid.


When the stereochemistry of the disclosed compounds is named or depicted by structure, the named or depicted stereoisomer is at least 60%, 70%, 80%, 90%, 99% or 99.9% by weight pure relative to the other stereoisomers. When a single enantiomer is named or depicted by structure, the depicted or named enantiomer is at least 60%, 70%, 80%, 90%, 99% or 99.9% by weight optically pure. Percent optical purity by weight is the ratio of the weight of the enatiomer over the weight of the enantiomer plus the weight of its optical isomer.


As used herein, the term “hydrolyzable group” means an amide, ester, carbamate, carbonate, ureide, or phosphate analogue, respectively, that either: 1) does not destroy the biological activity of the compound and confers upon that compound advantageous properties in vivo, such as improved water solubility, improved circulating half-life in the blood (e.g., because of reduced metabolism of the prodrug), improved uptake, improved duration of action, or improved onset of action; or 2) is itself biologically inactive but is converted to a biologically active compound. Examples of hydrolyzable amides include, but are not limited to, lower alkyl amides, α-amino acid amides, alkoxyacyl amides, and alkylaminoalkylcarbonyl amides. Examples of biohydrolyzable esters include, but are not limited to, lower alkyl esters, alkoxyacyloxy esters, alkyl acylamino alkyl esters, and choline esters. Examples of biohydrolyzable carbamates include, but are not limited to, lower alkylamines, substituted ethylenediamines, aminoacids, hydroxyalkylamines, heterocyclic and heteroaromatic amines, and polyether amines.


An “aliphatic group” is non-aromatic, consists solely of carbon and hydrogen and may optionally contain one or more units of unsaturation, e.g., double and/or triple bonds. An aliphatic group may be straight chained, branched or cyclic. When straight chained or branched, an aliphatic group typically contains between about one and about twenty carbon atoms, typically between about one and about ten carbon atoms, more typically between about one and about six carbon atoms. When cyclic, an aliphatic group typically contains between about three and about ten carbon atoms, more typically between about three and about seven carbon atoms. A “substituted aliphatic group” is substituted at any one or more “substitutable carbon atom”. A “substitutable carbon atom” in an aliphatic group is a carbon in an aliphatic group that is bonded to one or more hydrogen atoms. One or more hydrogen atoms can be optionally replaced with a suitable substituent group. A “haloaliphatic group” is an aliphatic group, as defined above, substituted with one or more halogen atoms. Suitable substituents on a substitutable carbon atom of an aliphatic group are the same as those for an alkyl group.


The term “alkyl” used alone or as part of a larger moiety, such as “alkoxy”, “haloalkyl”, “arylalkyl”, “alkylamine”, “cycloalkyl”, “dialkyamine”, “alkylamino”, “dialkyamino” “alkylcarbonyl”, “alkoxycarbonyl” and the like, includes as used herein means saturated straight-chain, cyclic or branched aliphatic group. As used herein, a C1-C6 alkyl group is referred to “lower alkyl.” Similarly, the terms “lower alkoxy”, “lower haloalkyl”, “lower arylalkyl”, “lower alkylamine”, “lower cycloalkylalkyl”, “lower dialkyamine”, “lower alkylamino”, “lower dialkyamino” “lower alkylcarbonyl”, “lower alkoxycarbonyl” include straight and branched saturated chains containing one to six carbon atoms.


The term “alkoxy” means —O-alkyl; “hydroxyalkyl” means alkyl substituted with hydroxy; “aralkyl” means alkyl substituted with an aryl group; “alkoxyalkyl” mean alkyl substituted with an alkoxy group; “alkylamine” means amine substituted with an alkyl group; “cycloalkylalkyl” means alkyl substituted with cycloalkyl; “dialkylamine” means amine substituted with two alkyl groups; “alkylcarbonyl” means —C(O)—R*, wherein R* is alkyl; “alkoxycarbonyl” means —C(O)—OR*, wherein R* is alkyl; and where alkyl is as defined above.


The terms “amine” and “amino” are used interchangeably throughout herein and mean —NH2, —NHR or —NR2, wherein R is alkyl.


“Cycloalkyl” means a saturated carbocyclic ring, with from three to eight carbons.


The terms “haloalkyl” and “haloalkoxy” mean alkyl or alkoxy, as the case may be, substituted with one or more halogen atoms. The term “halogen” means F, Cl, Br or I. Preferably the halogen in a haloalkyl or haloalkoxy is F.


The term “acyl group” means —C(O)R, wherein R is an optionally substituted alkyl group or aryl group (e.g., optionally substituted phenyl). R is preferably an unsubstituted alkyl group or phenyl.


An “alkylene group” is represented by —[CH2]z—, wherein z is a positive integer, preferably from one to eight, more preferably from one to four.


As used herein, the term “alkenyl” refers to a straight or branched hydrocarbon group that contains one or more double bonds between carbon atoms. Suitable alkenyl groups include, e.g., n-butenyl, cyclooctenyl and the like. An alkenyl group may be substituted.


The term “aryl group” used alone or as part of a larger moiety as in “aralkyl”, “aralkoxy”, or “aryloxyalkyl”, includes carbocyclic aromatic rings and heteroaryl rings. The term “aromatic group” may be used interchangeably with the terms “aryl”, “aryl ring” “aromatic ring”, “aryl group” and “aromatic group”. An aromatic group typically has six-fourteen ring atoms. A “substituted aryl group” is substituted at any one or more substitutable ring atom.


Carbocyclic aromatic rings have only carbon ring atoms (typically six to fourteen) and include monocyclic aromatic rings such as phenyl and fused polycyclic aromatic ring systems in which two or more carbocyclic aromatic rings are fused to one another. Examples include 1-naphthyl, 2-naphthyl, 1-anthracyl.


The term “heteroaryl”, “heteroaromatic”, “heteroaryl ring”, “heteroaryl group” and “heteroaromatic group”, used alone or as part of a larger moiety as in “heteroaralkyl” or “heteroarylalkoxy”, refers to aromatic ring groups having five to fourteen ring atoms selected from carbon and at least one (typically 1-4, more typically 1 or 2) heteroatom (e.g., oxygen, nitrogen or sulfur). They include monocyclic rings and polycyclic rings in which a monocyclic heteroaromatic ring is fused to one or more other carbocyclic aromatic or heteroaromatic rings. Examples of monocyclic heteroaryl groups include furanyl (e.g., 2-furanyl, 3-furanyl), imidazolyl (e.g., N-imidazolyl, 2-imidazolyl, 4-5-imidazolyl), isoxazolyl(e.g., 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl), oxadiazolyl (e.g., 2-oxadiazolyl, 5-oxadiazolyl), oxazolyl (e.g., 2-oxazolyl, 4-oxazolyl, 5-oxazolyl), pyrazolyl (e.g., 3-pyrazolyl, 4-pyrazolyl), pyrrolyl (e.g., 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl), pyridyl (e.g., 2-pyridyl, 3-pyridyl, 4-pyridyl), pyrimidinyl (e.g., 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl), pyridazinyl (e.g., 3-pyridazinyl), thiazolyl (e.g., 2-thiazolyl, 4-thiazolyl, 5-thiazolyl), triazolyl (e.g., 2-triazolyl, 5-triazolyl), tetrazolyl (e.g., tetrazolyl) and thienyl (e.g., 2-thienyl, 3-thienyl. Examples of monocyclic six-membered nitrogen-containing heteraryl groups include pyrimidinyl, pyridinyl and pyridazinyl. Examples of polycyclic aromatic heteroaryl groups include carbazolyl, benzimidazolyl, benzothienyl, benzofuranyl, indolyl, quinolinyl, benzotriazolyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, isoquinolinyl, indolyl, isoindolyl, acridinyl, or benzisoxazolyl.


The term “non-aromatic heterocyclic group”, used alone or as part of a larger moiety as in “non-aromatic heterocyclylalkyl group”, refers to non-aromatic ring systems typically having five to twelve members, preferably five to seven, in which one or more ring carbons, preferably one or two, are each replaced by a heteroatom such as N, O, or S. A non-aromatic heterocyclic group can be monocyclic or fused bicyclic. A “nitrogen-containing non-aromatic heterocyclic group” is a non-aromatic heterocyclic group with at least one nitrogen ring atom.


Examples of non-aromatic heterocyclic groups include (tetrahydrofuranyl (e.g., 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl), [1,3]-dioxalanyl, [1,3]-dithiolanyl, [1,3]-dioxanyl, tetrahydrothienyl (e.g., 2-tetrahydrothienyl, 3-tetrahydrothieneyl), azetidinyl (e.g., N-azetidinyl, 1-azetidinyl, 2-azetidinyl), oxazolidinyl (e.g., N-oxazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl, 5-oxazolidinyl), morpholinyl (e.g., N-morpholinyl, 2-morpholinyl, 3-morpholinyl), thiomorpholinyl (e.g., N-thiomorpholinyl, 2-thiomorpholinyl, 3-thiomorpholinyl), pyrrolidinyl (e.g., N-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl) piperazinyl (e.g., N-piperazinyl, 2-piperazinyl), piperidinyl (e.g., N-piperidinyl), 2-piperidinyl, 3-piperidinyl, 4-piperidinyl), thiazolidinyl (e.g., 4-thiazolidinyl), diazolonyl and N-substituted diazolonyl. The designation “N” on N-morpholinyl, N-thiomorpholinyl, N-pyrrolidinyl, N-piperazinyl, N-piperidinyl and the like indicates that the non-aromatic heterocyclic group is attached to the remainder of the molecule at the ring nitrogen atom.


A “substitutable ring atom” in an aromatic group is a ring carbon or nitrogen atom bonded to a hydrogen atom. The hydrogen can be optionally replaced with a suitable substituent group. Thus, the term “substitutable ring atom” does not include ring nitrogen or carbon atoms which are shared when two aromatic rings are fused. In addition, “substitutable ring atom” does not include ring carbon or nitrogen atoms when the structure depicts that they are already attached to a moiety other than hydrogen.


An aryl group may contain one or more substitutable ring atoms, each bonded to a suitable substituent. Examples of suitable substituents on a substitutable ring carbon atom of an aryl group include halogen, alkyl, haloalkyl, ArA, —ORA, —O(haloalkyl), —SRA, —NO2, —CN, —N(RB)2, —NRBC(O)RA, —NRBCO2RC, —N(RB)C(O)N(RB)2, —C(O)RA, —CO2RA, —S(O)2RA, —SO2N(RB)2, —S(O)RC, —NRBSO2N(RB)2, —NRBSO2RC, —VA—ArA, —VA—ORA, —V—O(haloalkyl), —VA—SRA, —VA—NO2, —VA—CN, —VA—N(RB)2, —VA—NRBC(O)RA, —VA—NRBCO2RC, —VA—N(RB)C(O)N(R)2, —VA—C(O)RA, —VA—CO2RA, —VA—S(O)2RA, —VA—SO2N(RB)2, —VA—S(O)RC, —VA—NRBSO2N(RB)2, —VA—NRBSO2RC, —O—VA—ArA, —O—VB—N(RB)2, —S—VA—ArA, —S—VB—N(RB)2, —N(RB)—VB—ArA, —N(RB)—VB—N(RB)2, —NRBC(O)—VA—N(RB)2, —NRBC(O)—VA—ArA, —C(O)—VA—N(RB)2, —C(O)—VA—ArA, —CO2—VB—N(RB)2, —CO2—VA—ArA, —C(O)N(RB)—VB—N(RB)2, —C(O)N(RB)—VA—ArA, —S(O)2—VA—N(RB)2, —S(O)2—VA—ArA, —SO2N(RB)—VB—N(RB)2, —SO2N(Rb)—VA—ArA, —S(O)—VA—N(RB)2, —S(O)—VA—ArA, —NRBSO2—VA—N(RB)2 or —NRBSO2—VA—ArA; or two adjacent substituents, taken together, form a methylenedioxy, ethylenedioxy or —[CH2]4— group.


Each VA is independently a C1-C10 alkylene group.


Each VB is independently a C2-C10 alkylene group.


ArA is a monocyclic aromatic group each substituted with zero, one or two groups independently selected from halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy or haloalkyl.


Each RA is independently i) hydrogen; ii) an aromatic group substituted with zero, one or two groups represented by halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy or haloalkyl; or iii) an alkyl group optionally substituted with halogen, hydroxyl, alkoxy, nitro, cyano, alkoxycarbonyl, alkylcarbonyl or haloalkoxy.


Each RB is independently RA, —CO2RA, —SO2RA or —C(O)RA; or —N(RB)2 taken together is an optionally substituted non-aromatic heterocyclic group.


Each RC is independently: i) an aromatic group substituted with zero, one or two groups represented by halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy or haloalkyl; or ii) an alkyl group optionally substituted with halogen, hydroxyl, alkoxy, nitro, cyano, alkoxycarbonyl, alkylcarbonyl or haloalkoxy.


An alkyl or a non-aromatic heterocyclic group (including, but not limited to, non-aromatic heterocyclic groups represented by —N(R31)2, —N(R41)2, —N(R51)2 and —N(RB)2) may contain one or more substituents. Examples of suitable substituents for an alkyl or a ring carbon of a non-aromatic heterocyclic group include those listed above for a substitutable carbon of an aryl and the following: ═O, ═S, ═NNHRC, ═NN(RC)2, ═NNHC(O)RC, ═NNHCO2 (alkyl), ═NNHSO2 (alkyl), ═NRC, spiro cycloalkyl group, fused cycloalkyl group or a monocyclic non-aromatic nitrogen-containing heterocyclic group attached by a ring nitrogen atom (e.g., N-piperidinyl, N-pyrrolidinyl, N-azepanyl, N-morpholinyl, N-thiomorphinyl, N-piperazinyl or N-diazepanyl group). Each RC is independently selected from hydrogen, an unsubstituted alkyl group or a substituted alkyl group. Examples of substituents on the alkyl group represented by RC include amino, alkylamino, dialkylamino, aminocarbonyl, halogen, alkyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminocarbonyloxy, dialkylaminocarbonyloxy, alkoxy, nitro, cyano, carboxy, alkoxycarbonyl, alkylcarbonyl, hydroxy, haloalkoxy, or haloalkyl. Preferred substituents for an alkyl or a ring carbon of a non-aromatic heterocyclic group include C1-C2 alkyl, —OH, N-pyrrolidinyl, N-piperidinyl, N-(4-alkyl)piperazinyl, N-morpholinyl or N-pyrrolyl.


Suitable substituents on the nitrogen of a non-aromatic heterocyclic group or heteroaryl group include —RD, —N(RD)2, —C(O)RD, —CO2RD, —C(O)C(O)RD, —C(O)CH2 C(O)RD, —SO2RD, —SO2N(RD)2, —C(═S)N(RD)2, —C(═NH)—N(RD)2, and —NRDSO2RD; wherein RD is hydrogen, an alkyl group, a substituted alkyl group, phenyl (Ph), substituted Ph, —O(Ph), substituted —OPh), CH2(Ph), substituted CH2(Ph), or an unsubstituted heteroaryl or heterocyclic ring. Examples of substituents on the alkyl group or the phenyl ring represented by RD include amino, alkylamino, dialkylamino, aminocarbonyl, halogen, alkyl, alkylaminocarbonyl, dialkylaminocarbonyloxy, alkoxy, nitro, cyano, carboxy, alkoxycarbonyl, alkylcarbonyl, hydroxy, haloalkoxy, or haloalkyl. Preferred substituents on a substitutable nitrogen atom of a nitrogen-containing heteroaryl or nitrogen-containing non-aromatic heterocyclic group include C1-C2 alkyl, C1-C2 hydroxyalkyl, or benzyl optionally substituted with halogen, nitro, cyano, C1-C2 alkyl, C1-C2 haloalkyl, C1-C2 alkoxy or C1-C2 haloalkoxy.


In some specific embodiments, non-aromatic heterocyclic groups (including, but not limited to, non-aromatic heterocyclic groups represented by —N(R31)2, —N(R41)2, —N(R51)2 and —N(RB)2) each independently are optionally substituted with one or more substituents selected from the group consisting of halogen, ═O, ═S, ═N(C1-C6 alkyl), C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, (C1-C6 alkoxy)carbonyl, (C1-C6 alkyl)carbonyl, C1-C6 haloalkoxy, amino, (C1-C6 alkyl)amino and (C1-C6 dialkyl)amino. In some more specific embodiments, the non-aromatic heterocyclic groups each independently are optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, (C1-C6 alkoxy)carbonyl, (C1-C6 alkyl)carbonyl, C1-C6 haloalkoxy, amino, (C1-C6 alkyl)amino and (C1-C6 dialkyl)amino.


As used herein, a bridged heterobicyclic ring means two rings having at least three adjacent ring carbon atoms in common.


As used herein a subject is a mammal, preferably a human, but can also be an animal in need of veterinary treatment, such as a companion animal (e.g., dogs, cats, and the like), a farm animal (e.g., cows, sheep, pigs, horses, and the like) or a laboratory animal (e.g., rats, mice, guinea pigs, and the like). Subject and patient are used interchangeably. A subject “in need of treatment” includes a subject with chronic renal failure.


“Treatment” or “treating” refers to both therapeutic and prophylactic treatment.


An “effective amount” of a pharmaceutical composition disclosed above is a quantity that results in a beneficial clinical outcome of or exerts an influence on, the condition being treated with the pharmaceutical composition compared with the absence of treatment. The administering amount of a pharmaceutical composition disclosed above to the subject will depend on the degree, severity, and type of the disease or condition, the amount of therapy desired, and the release characteristics of the pharmaceutical composition. It will also depend on the subject's health, size, weight, age, sex, and tolerance to drugs. Typically, the pharmaceutical compositions of the invention are administered for a sufficient period of time to achieve the desired therapeutic effect. Dosages may range from 0.1 to 500 mg/kg body weight per day. In one embodiment, the dosing range is 1-20 mg/kg/day. The compound of the invention may be administered continuously or at specific timed intervals. For example, the compound of the invention may be administered 1, 2, 3, or 4 times per day, such as, e.g., a daily or twice-daily formulation. Commercially available assays may be employed to determine optimal dose ranges and/or schedules for administration. For example, assays for measuring blood glucose levels are commercially available (e.g., OneTouch® Ultra®, Lifescan, Inc. Milpitas, Calif.). Kits to measure human insulin levels are also commercially available (Linco Research, Inc. St. Charles, Mo.). Additionally, effective doses may be extrapolated from dose-response curves obtained from animal models (see, e.g., Comuzzie et al., Obes. Res. 11 (1): 75 (2003); Rubino et al., Ann. Surg. 240(2):389 (2004); Gill-Randall et al., Diabet. Med. 21 (7): 759 (2004), the entire teachings of which are incorporated herein by reference). Therapeutically effective dosages achieved in one animal model can be converted for use in another animal, including humans, using conversion factors known in the art (see, e.g., Freireich et al., Cancer Chemother. Reports 50(4):219 (1996), the entire teachings of which are incorporated herein by reference) and Table A below for equivalent surface area dosage factors.














From:













Mouse
Rat
Monkey
Dog
Human



(20 g)
(150 g)
(3.5 kg)
(8 kg)
(60 kg)





To: Mouse
 1
½
¼

  1/12


To: Rat
 2
1
½
¼
1/7


To: Monkey
 4
2
1




To: Dog
 6
4

1
½


To: Human
12
7
3
2
1









Typically, the pharmaceutical compositions of the invention can be administered before or after a meal, or with a meal. As used herein, “before” or “after” a meal is typically within two hours, preferably within one hour, more preferably within thirty minutes, most preferably within ten minutes of commencing or finishing a meal, respectively.


In one embodiment, the method of the present invention is a mono-therapy where the pharmaceutical compositions of the invention are administered alone. Accordingly, in this embodiment, the compound of the invention is the only pharmaceutically active ingredient in the pharmaceutical compositions.


In another embodiment, the method of the invention is a co-therapy with other therapeutically active drugs known in the art for treating the desired diseases or indications, such as one or more known drugs for treating, diabetes, lysosomal diseases, tumors, etc.


In a particular embodiment, the method of the invention is a combination therapy for treating a glomerular disease selected from the group consisting of mesangial proliferative glomerulonephritis, collapsing glomerulopathy, proliferative lupus nephritis, crescentic glomerulonephritis and membranous nephropathy. The combination therapy comprise any of the compounds of the invention described herein and at least one other compound suitable for treating glomerular disease.


The pharmaceutical compositions of the invention optionally include one or more pharmaceutically acceptable carriers and/or diluents therefor, such as lactose, starch, cellulose and dextrose. Other excipients, such as flavoring agents; sweeteners; and preservatives, such as methyl, ethyl, propyl and butyl parabens, can also be included. More complete listings of suitable excipients can be found in the Handbook of Pharmaceutical Excipients (5th Ed., Pharmaceutical Press (2005)).


The carriers, diluents and/or excipients are “acceptable” in the sense of being compatible with the other ingredients of the pharmaceutical composition and not deleterious to the recipient thereof. The pharmaceutical compositions can conveniently be presented in unit dosage form and can be prepared by any suitable method known to the skilled artisan. In general, the pharmaceutical compositions are prepared by uniformly and intimately bringing into association the compounds disclosed herein with the carriers, diluents and/or excipients and then, if necessary, dividing the product into unit dosages thereof.


The pharmaceutical compositions of the invention can be formulated as a tablet, sachet, slurry, food formulation, troche, capsule, elixir, suspension, syrup, wafer, chewing gum or lozenge. A syrup formulation will generally consist of a suspension or solution of the compounds of the invention described herein or salt in a liquid carrier, for example, ethanol, glycerine or water, with a flavoring or coloring agent. Where the composition is in the form of a tablet, one or more pharmaceutical carriers routinely used for preparing solid formulations can be employed. Examples of such carriers include magnesium stearate, starch, lactose and sucrose. Where the composition is in the form of a capsule, the use of routine encapsulation is generally suitable, for example, using the aforementioned carriers in a hard gelatin capsule shell. Where the composition is in the form of a soft gelatin shell capsule, pharmaceutical carriers routinely used for preparing dispersions or suspensions can be considered, for example, aqueous gums, celluloses, silicates or oils, and are incorporated in a soft gelatin capsule shell.


Though the above description is directed toward routes of oral administration of pharmaceutical compositions consistent with embodiments of the invention, it is understood by those skilled in the art that other modes of administration using vehicles or carriers conventionally employed and which are inert with respect to the compounds of the invention may be utilized for preparing and administering the pharmaceutical compositions. For example, the pharmaceutical compositions of the invention may also be formulated for rectal administration as a suppository or retention enema, e.g., containing conventional suppository bases such as cocoa butter or other glycerides. Also, the pharmaceutical compositions of the invention can be formulated for injection, or for transdermal or transmucosal administration. Illustrative of various modes of administration methods, vehicles and carriers are those described, for example, in Remington's Pharmaceutical Sciences, 18th ed. (1990), the disclosure of which is incorporated herein by reference.


The invention is illustrated by the following examples which are not intended to be limiting in any way.


EXEMPLIFICATION
Example 1
General Methods for the Preparation of Compounds of the Invention

A general method for the synthesis of final compounds is depicted in Scheme 1. A general method for the preparation of the compounds of the invention involves the reaction of the amine of type EVII with the appropriate reagent. The amine type EVII, such as (1R,2R)-2-amino-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-3-(pyrrolidin-1-yl)propan-1-ol, can be prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference), or by using the general synthetic procedures depicted in schemes 2-5. Final amide compounds, EIX can be prepared by reaction of the amine EVII with the corresponding acylating agent using standard reaction conditions for the formation of an amide. The urea compounds, EIIX can be prepared by reaction of the amine EVII with the corresponding isocyanate. The carbamates, EX can be prepared by reaction of the amine EVII with the corresponding chloroformate.




embedded image


Example 1
A Synthesis of the Compounds of the Invention
General Methods for the Preparation of Amide Analogs

Method 1


A mixture of Compound EVII (1 mmol), such as (1R,2R)-2-amino-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-3-(pyrrolidin-1-yl)propan-1-ol, prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference) or using the methods depicted in schemes 2, 3, 4 and 5, an acid (1.2 mmol), DCC (dicyclohexylcarbodiimide, 1.2 mmol) and HOBT (1-hydroxy benzotriazole, 1.2 mmol) was dissolved in CH2Cl2 (5 ml). The mixture was stirred at room temperature and monitored by TLC (thin liquid chromatography) for completion. After completion the mixture was filtered and purified by column chromatography using, for example, a mixture of (CH2Cl2/MeOH/NH4OH).


Method 2


A mixture of Compound EVII (1 mmol), such as (1R,2R)-2-amino-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-3-(pyrrolidin-1-yl)propan-1-ol, prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference) or using the methods depicted in schemes 2, 3, 4 and 5, an acid and DCC (dicyclohexylcarbodiimide, 1.2 mmol) was dissolved in CHCl3 (5 ml). The mixture was placed in the microwave reactor (T=120° C., time=1 min) and it was then filtered and purified by column chromatography using, for example, a mixture of (CH2Cl2/MeOH/NH4OH).


Method 3


A mixture of Compound EVII (1 mmol), such as (1R,2R)-2-amino-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-3-(pyrrolidin-1-yl)propan-1-ol, prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference) or using the methods depicted in schemes 2, 3, 4 and 5, an acid chloride (1.2 mmol) and K2CO3 (2 mmol) was suspended in THF (5 ml). The mixture was stirred at room temperature and monitored by TLC for completion. After completion, the mixture was filtered and purified by column chromatography using, for example, a mixture of (CH2Cl2/MeOH/NH4OH).


Method 4


Compound EVII, such as (1R,2R)-2-amino-1-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-3-pyrrolidin-1-yl-propan-1-ol, prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference) or using the methods depicted in schemes 2, 3, 4 and 5, was coupled with a variety of N-hydroxysuccinamide esters in methylene chloride under an atmosphere of nitrogen, for example, for 18 to 24 hours depending on the ester used.


Preparation of N-hydroxysuccinamide esters

Various mono- and di-keto acids were coupled with N-hydroxysuccinamide in the presence of N,N1-dicyclohexylcarbodiimide in ethyl acetate under an atmosphere of nitrogen for 18 hours. The products were filtered to remove the dicyclohexylurea. The identity of these esters was confirmed by 1H NMR and the crude material was then used in the preparation of amide analogs without further purification.


Example 1B
Alternative Synthetic Method for the Preparation of Intermediate EVII. Synthetic Route 1

An alternative general synthesis of Compound EVII is depicted in Scheme 2. Treatment of (R)-2-(benzyloxycarbonylamino)-3-hydroxypropanoic acid with EDCI and N,O-dimethylhydroxyamine gave the weinreb amide EI in excellent yield. The primary alcohol was protected as the TBDMS ether EII in excellent yield by reaction with TBDMSCl in DMF. Reaction of EII with a grignard at low temperature gave EIII in good to excellent yields. Steroselective reduction of EIII and with L-selectride at −70 C. gave EIV in good to excellent yield and selectivity. Compound EV was obtained in good to excellent yields after deprotection with acetic acid. Reaction with mesylate chloride and a suitable amine produced EVI in good to excellent yield. Finally, deprotection to the primary amine EVII was done in the microwave oven using NaOH aqueous solution in methanol at 150° C. for one to three minutes depending on the specific compound.




embedded image


Example 1B
Alternative Synthetic Method for the Preparation of Intermediate EVII. Synthetic Route 2

An alternative general synthesis of Compound EVII is depicted in Scheme 3. Intermediate AI was obtained with excellent diastereoselectivity (96:4) by reduction of compound A with LiAlH4 followed by reaction with an aldehyde in the presence of CuI and Me2S. Mesylate intermediate AIII was obtained by reaction with Amberlyst 15 followed by reaction with MsCl in pyridine. The final compound EVII was obtained by reaction with pyrrolidine and removal of the CBz by hydrogenation.




embedded image


Example 1B
Alternative Synthetic Method for the Preparation of Intermediate EVII. Synthetic Route 3

A general alternative route for synthesis of compound EVII is depicted in Scheme 4. Intermediate EIV was obtain as shown in Scheme 4 was cycled into oxazolidinone B using sodium hydride in a DMF/THF solution. Deprotection of the primary alcohol by reaction with nBu4NF, followed by formation of the tosylate by reaction with tosyl chloride in pyridine, finally, displacement of the tosylate by an appropriate amine afforded compound B1 in good to excellent yield. Hydrolysis of the oxazolidinone with LiOH in a water ethanol mixture gave compound EVII.




embedded image


Example 1B
Alternative Synthetic Method for the Preparation of Intermediate EVII. Synthetic Route 4

An alternative general synthesis of Compound EVII is depicted in Scheme 5. An aldehyde (2 equiv) is condensed with the chiral morpholinone in toluene with removal of water to provide the fused cycloadduct 2. Treatment of 2 with hydrogen chloride in an alcohol solvent such as methanol provides amino acid 3. Removal of the N-benzyl functionality can be accomplished with hydrogen in the presence of a palladium catalyst to afford 4. Cyclization of 4 with triphosgene and base provides ester 5. The ester functionality can be reduced with sodium borohydride, and the resulting alcohol converted to an appropriate leaving group (i.e. tosylate or iodide). Reaction of 6 with a suitable amine in the presence of excess base (e.g. K2CO3) in a polar solvent (e.g. DMSO or CH3CN) affords 7. Final deprotection under basic conditions affords Compound EVII analogs suitable for conversion to the desired amide final products.




embedded image


Example 1C
Preparation of Compound EVII Using Scheme 2
Preparation of EII: (R)-benzyl 3,8,8,9,9-pentamethyl-4-oxo-2,7-dioxa-3-aza-8-siladecan-5-ylcarbamate

Imidazole (1.8 g, 26.5 mmol) was added to a solution of (R)-benzyl 3-hydroxy-1-(methoxy(methyl)amino)-1-oxopropan-2-ylcarbamate (3 g, 10.6 mmol) in DMF (dimethyl formamide, 15 mL) followed by TBDMSiCl (tert-butyldimethylsilyl chloride, 2.4 g, 15.95 mmol). The reaction stirred for 12 hrs at room temperature under nitrogen atmosphere and was quenched with aqueous ammonium chloride (100 ml). The aqueous layer was extracted with methylene chloride (200 mL) and ethyl acetate (100 mL) and the organic layers were washed with brine and concentrated. The crude product was purified by column chromatography using 10% EtOAc (ethylacetate)-hexanes to give an oil (3 g, 74% yield). 1H NMR (400 MHz, CDCl3) δ=0 (s, 6H), 0.9 (s, 9H), 3.2 (s, 3H), 3.8 (s, 3H), 3.8-3.9 (m, 2H), 4.8 (broad s, 1H), 5.1 (q, 2H), 5.7 (d, 1H), 7.2-7.4 (m, 5H).


Preparation of EIII: (R)-benzyl 3-(tert-butyldimethylsilyloxy)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-oxopropan-2-ylcarbamate

(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)magnesium bromide (26 g, 78 mmol) dissolved in 40 mL of THF (tetrahydrofuran) under a nitrogen atmosphere was cooled down to −70° C. and (R)-benzyl 3,8,8,9,9-pentamethyl-4-oxo-2,7-dioxa-3-aza-8-siladecan-5-ylcarbamate (12.3 g, 31 mmol) dissolved in THF (13 ml) were added dropwise. The reaction mixture was allowed to warm up to −15° C. and left to react for 12 hrs followed by stirring at room temperature for 2 hrs. After cooling the reaction mixture to −40° C. it was quenched using aqueous ammonium chloride and the aqueous layer was extracted with EtOAc dried over magnesium sulfate and concentrated. The crude product was purified by column chromatography using 25% EtOAc-hexanes to give pure product (13 g, 88% yield). 1H NMR (400 MHz, CDCl3) δ=0 (d, 6H), 0.9 (s, 9H), 4.0-4.2 (m, 2H), 4.4 (s, 2H), 4.5 (s, 2H), 5.2 (s, 2H), 5.4 (m, 1H), 6.1 (d, 1H), 7 (d, 1H), 7.4-7.7 (m, 7H).


Preparation of EIV: benzyl (1R,2R)-3-(tert-butyldimethylsilyloxy)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxypropan-2-ylcarbamate

(R)-benzyl 3-(tert-butyldimethylsilyloxy)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-oxopropan-2-ylcarbamate (3.1 g, 6.6 mmol) were dissolved in THF (25 ml) and cooled down to −70° C. under nitrogen atmosphere. L Selectride (13.2 ml of 1M solution in THF, 13 mmol) was added dropwise while keeping the temperature at −70° C. After 1 hour, the reaction was quenched with a 1M aqueous solution of potassium tartrate (13 ml) and extracted with EtOAc. The organic layer was evaporated down and the product was purified by column chromatography using 2.5% EtOAc-2% acetone-methylene chloride. The desired diastereomer was obtained in 80% yield (2.5 g). 1H NMR (400 MHz, CDCl3) δ=0 (d, 6H), 0.9 (s, 9H), 3.5 (broad s, 1H), 3.7-3.9 (m, 2H), 4.2 (s, 4H), 4.9 (broad s, 1H), 5.0 (d, 2H), 5.4 (d, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.2-7.4 (m, 5H).


Preparation of EV: benzyl (1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1,3-dihydroxypropan-2-ylcarbamate

Benzyl (1R,2R)-3-(tert-butyldimethylsilyloxy)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxypropan-2-ylcarbamate (0.5 g) was dissolved in a 4 ml mixture of Acetic acid/THF/water (3/1/1) and left to stir over night. The crude was evaporated down and the product azeotropically dried with EtOAc (10 ml). The crude product was purified by column chromatography using 50% EtOAc-hexane. The pure product was obtained in 74% yield (0.28 g). 1H NMR (400 MHz, CDCl3) δ=3.4-3.8 (m, 4H), 4.1 (broad s, 4H), 4.8 (s, 1H), 4.9 (broad s, 2H), 5.7 (broad s, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.2-7.4 (m, 5H).


General Procedure for Preparation of EVI and EVII

Benzyl (1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1,3-dihydroxypropan-2-ylcarbamate was dissolved in excess pyridine, cooled to −15° C. and one equivalent of methanosulfonyl chloride was added to the mixture. Mixture was stirred about half an hour, and ten equivalents of the amine were added. The reaction mixture was allowed to warm up to room temperature and then heated at 50° C. overnight. The crude was evaporated down and the product was purified by column chromatography using a mixture of methanol/methylene chloride/ammonium hydroxide. The pure compound EVI was then de-protected by hydrolysis in the microwave, using aqueous NaOH (40% in weight)/methanol solution as solvent and heating the mixture to 150° C. for about 15 minutes to give the free amines of the type EVI. The final product was purified by silica-gel column chromatography using a mixture of methanol/methylene chloride/ammonium hydroxide.


Examples of EVII Compounds
i) (1R,2R)-2-amino-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-3-morpholinopropan-1-ol



embedded image



1H NMR (400 MHz, CDCl3) δ=2.3 (dd, 2H), 2.4 (dd, 2H), 2.5-2.6 (m, 2H), 3.2 (m, 1H), 3.6-3.7 (m, 4H), 4.2 (s, 4H), 4.4 (d, 1H), 6.5-6.9 (m, 3H); MS for C15H22N2O4 m/z 294.8 [M+H].


ii) (1R,2R)-2-amino-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-3-(piperidin-1-yl)propan-1-ol



embedded image



1H NMR (400 MHz, CDCl3) δ=1.4 (broad s, 2H), 1.7 (m, 4H), 2.2-2.6 (m, 6H), 3.2 (m, 1H), 4.2 (s, 4H), 4.5 (s, 1H), 6.7-6.9 (m, 3H).


Example 1D
Preparation of Substituted Phenoxy Propionic Acids
Example 1D1
Preparation of 3-(4-methoxyphenoxy)propionic acid
i) 3-(4-methoxyphenoxy)propionitrile

A 740 g (5.96 mol, 1 eq.) sample of 4-methoxyphenol was charged to a 3 necked 5 L flask under nitrogen. Triton B (50 mL of a 30% wt. solution in methanol) was charged to the flask, and stirring initiated via an overhead stirrer. Acrylonitrile (2365 mL, 35.76 mol, 6 eq.) was then charged to the reaction flask in a single portion, and the reaction mixture heated at 78° C. for 36 h. HPLC analysis indicated that the reaction was complete at this point. Solvents were removed via rotary evaporation, and the resulting oil was chased with toluene to remove excess acrylonitrile. The crude material was recrystallized from TBME (tert-butyl methyl ether) 10 volumes relative to the crude weight), and dried in a vacuum oven to give 945 g of 3-(4-methoxyphenoxy)propionitrile as white crystals (Yield: 89.48%). 1H NMR (450 MHz, CDCl3): δ=2.72 (t, 2H; CH2CN); δ=3.83 (s, 3H; OCH3); δ=4.05 (t, 2H; OCH2); δ=6.70 (m, 4H; Ar—H); 13C NMR (112.5 MHz, CDCl3): d=18.843 (CH2CN); 55.902 (OCH3); 63.699 (OCH2); 114.947 (CH3OCCH); 116.183 (CH2OCCH); 117.716 (CN); 151.983 (CH3OC); 154.775 (CH2OC).


ii) 3-(4-methoxyphenoxy)propionic acid

A 945 g (5.34 mol, 1 eq.) sample of 1 (3-(4-methoxyphenoxy)propionitrile was charged to a 22 L round bottom flask equipped with an overhead stirrer under N2. To the stirred solids, 4 L of concentrated HCl was slowly added, followed by 2 L of H2O. The reaction mixture was heated to 100° C. for 3.5 h, at which point the reaction was complete by HPLC analysis. The reaction was cooled to 10° C. by the addition of ice to the reaction mixture, and was filtered. The dried solids gave 920 g of crude 3-(4-methoxyphenoxy)propionic acid. The crude material was dissolved in 5 L of 6 wt. % sodium carbonate (such that pH=9), and 2 L of DCM (dichloromethane) was added to the reaction vessel. After stirring thoroughly, the organic layer was separated and discarded via a separatory funnel, and the aqueous layer charged back into the 22 L flask. The pH of the aqueous layer was carefully adjusted to 4.0, by slow addition of 6M HCl. The precipitated solids were filtered, and dried in a vacuum oven to give 900 g of 3-(4-methoxyphenoxy)propionic acid as a white solid (Yield: 86.04%). 1H NMR (450 MHz, CDCl3); δ=2.78 (t, 2H; CH2COOH); 3.70 (s, 3H; OCH3); 4.18 (t, 2H; OCH2); 6.78 (m, 4H; Ar—H); 13C NMR (112.5 MHz, CDCl3): δ=34.703 (CH2COOH); 55.925 (OCH3); 64.088 (OCH2); 114.855 (CH3OCCH); 115.984 (CH2OCCH); 152.723 (CH3OC); 154.302 (CH2OC); 177.386 (COOH).


Example 1D2
Preparation of 3-(4-(3-oxobutyl)phenoxy)propanoic acid



embedded image


Step 1: a mixture of 4-(p-hydroxyphenol)-2-butanone (1.032 g), triton B (400 μL), acrylonitrile (4 mL) and MeOH (0.8 mL) was heated at 70° C. for 20 hours. The mixture was cooled to room temperature and the solvent was removed to dryness. 3-(4-(3-oxobutyl)phenoxy)propanenitrile was obtained as a white solid (0.572 g) after purification by column chromatography using ethyl acetate/hexane.


Step 2: 3-(4-(3-oxobutyl)phenoxy)propanenitrile (0.478 g) was suspended in HCl (37%, 5 mL) and placed in the microwave reactor (T=110° C., 5 min). The mixture was poured onto iced water (20 g), filtered, and the solid was washed with water (2×5 mL) After column chromatography purification using a mixture of methylene chloride/methanol, 3-(4-(3-oxobutyl)phenoxy)propanoic acid was obtained as a white solid (0.3 g). 1H NMR (CDCl3, 400 mHz, ppm); 2.2 (s, 3H), 2.7 (t, 2H), 2.85 (m, 4H), 4.25 (t, 2H), 6.8 (d, 2H), 7.1 (d, 2H).


Example 1D3
Preparation of 3-(4-(2-methoxyethyl)phenoxy)propanoic acid



embedded image


Step 1: a mixture of 4-(2-methoxy ethyl) phenol (1.547 g, 10.3 mmol), propiolic acid tert-butyl ester (1.367 g, 10.8 mmol) and N-methyl morpholine (1.18 mL, 10.8 mmol) in CH2Cl2 (15 mL) was stirred at room temperature for 24 hours. The mixture was absorbed on SiO2 (20 g) and purified by column chromatography using a mixture of methylene chloride/hexane. The product was obtained as a two to one mixture of (E)/(Z)-tert-butyl 3-(4-(2-methoxyethyl)phenoxy)acrylate isomers (2.0 g).


Step 2: (E)/(Z)-tert-butyl 3-(4-(2-methoxyethyl)phenoxy)acrylate (0.57 g) was suspended in a mixture of THF (5 mL)/HCl (2 M, 5 mL) and placed in the microwave reactor (T=100° C., 15 sec). THF was removed by rotary evaporation and the mixture was extracted with CH2Cl2 (10 mL) (E)/(Z)-3-(4-(2-methoxyethyl)phenoxy)acrylic acid was obtained as a white solid after purification by column chromatography using a mixture of hexane/ethyl acetate.


Step 3: (E)/(Z)-3-(4-(2-methoxyethyl)phenoxy)acrylic acid (0.3 g) was dissolved in EtOH (10 mL) and Pd/C (5%, degussa type E101, 40 mg) was added. The mixture was hydrogenated at atmospheric pressure for 2 hours and then filtered and the solvent removed to dryness. After purification by column chromatography using a mixture of hexane/ethyl acetate, 3-(4-(2-methoxyethyl)phenoxy)propanoic acid was obtained as a white solid (0.236 g). 1H NMR (CDCl3, 400 mHz, ppm); 2.85 (t, 4H), 3.35 (s, 3H), 3.55 (t, 2H), 4.25 (t, 2H), 6.85 (d, 2H), 7.1 (d, 2H).


Example 1D4
Preparation of 3-(4-(3-methylbutanoyl)phenoxy)propanoic acid

Step 1: 3-phenoxypropionic acid (5.0 g, 30 mmol) was dissolved in MeOH (12 mL) and H2SO4 (18 M, 3 drops) was added. The mixture was place in the microwave reactor (T: 140° C., t: 5 min). The solvent was evaporated, the mixture was partitioned in EtOAc (30 mL) and NaOH (2N, 20 mL) The organic phase was dried over MgSO4, filtered, and evaporated to give methyl 3-phenoxypropanoate (5.0 g, 27.7 mmol, 92.5%).


Step 2: aluminum chloride (1.1 g, 8.34 mmol) was added to a cold solution (0° C.) solution of methyl 3-phenoxypropanoate (1.0 g, 5.56 mmol) and tert-butylacetyl chloride (1.25 mL, 8.34 mmol) in CH2Cl2 (9 mL) and the reaction mixture was stirred overnight. The mixture was evaporated and the residue was diluted with EtOAc (30 mL) and then washed with water (2×20 mL). The organic phase was removed and purified with silica chromatography using of a gradient hexanes/EtOAc (100:0→0:100) to give methyl 3-phenoxypropanoate (600 mg, 2.27 mmol, 40%).


Step 3: a solution of methyl 3-phenoxypropanoate (200 mg, 0.76 mmol) in 2 mL of HCl (37%) was placed in a microwave reactor (T: 120° C., t: 5 min). The mixture was poured into iced water (2 g) and washed with EtOH (3×10 mL). The organic phase was combined and evaporated. The crude product was purified with silica gel chromatography using of a gradient hexanes/EtOAc (100:0→0:100) to give 3-(4-(3-methylbutanoyl)phenoxy)propanoic acid (120 mg, 0.48 mmol, 63%).


Example 2
Preparation of Compounds of the Invention

The exemplary compounds shown in Example 2 and Tables 1-3 can be prepared by following scheme 1 described above, Detailed synthetic description of certain compounds also are described below as examples.


Example 2E1
Preparation of Hemi-Hydrate of Compound 163 N-[2-Hydroxy-2-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-pyrrolidin-1-ylmethyl-ethyl]-3-(4-methoxy-phenoxy)-propionamide



embedded image


Compound 163 was prepared by following Scheme 1A above. 3-(4-methoxyphenoxy)propanoic acid (see Example 1D1, 34.47 g, 169 mmol, 96% purity by HPLC), DCC (34.78 g, 169 mmol) and N-hydroxysuccinimide (19.33, 169 mmol) were combined as dry powders and methylene chloride (500 mL) was added. The suspension was mechanically stirred overnight, ambient temperature, under a nitrogen atmosphere. HPLC analysis showed complete conversion of the acid to the NHS ester (N-hydroxy succinyl ester). To the mixture was added (1R,2R)-2-amino-1-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-3-pyrrolidin-1-yl-propan-1-ol (50 g, 169 mmol) and stirring continued for 2.5 hours. HPLC showed conversion to the product and loss of both the NHS ester and step 5 amine. The reaction mixture was vacuum filtered on a Büchner funnel to remove DCC urea. The solid urea was washed with 500 mL of methylene chloride. The organic layers were combined, placed in a separatory funnel, and treated with 500 mL of 1.0M NaOH. The layers were separated, and the cloudy organic layer was recharged into a separatory funnel and treated with a 6% HCl solution (adjusted to pH=0.03-0.34, 100 mL of solution). Two clear layers formed. The resultant biphasic solution was poured into an Erlenmeyer flask and cautiously neutralized to a pH of 7.2-7.4 with a saturated solution of sodium bicarbonate (approx 200 mL of solution). The organic layer was separated from the aqueous layer, dried over sodium sulfate and evaporated to yield 83.6 g of yellow oil (theoretical yield: 77.03 g). The oil was dissolved in isopropyl alcohol (500 mL) with heating and transferred to a 1 L round bottom flask equipped with a mechanical stirrer and heating mantel. The solution was heated to 50° C. and the mechanical stirrer was set to a rate of 53-64 rpm. Tartaric acid (25.33 g, 168 mmol) was dissolved in deionized water (50 mL) and added to the stirred solution at 50° C. Once the solution turned from milky white to clear, seed crystals were added to the mixture and crystallization immediately began (temperature jumped to 56° C.). After 20 minutes, the mixture was set to cool to a temperature of 35° C. (cooling took 1.15 hours). Heating was removed and the solution was allowed to stir for 12 hours. The resulting thick slurry was filtered on a Buchner funnel. Any remaining solid in the flask was washed onto the funnel using ice-cold isopropyl alcohol (100 mL). The material was transferred to a drying tray and heated to 48° C. under vacuum for 3 days (after two days the material weighed 76 g and after three days it weighed 69.3 g). The solid was analyzed by LC and shown to be 98.1% pure (AUC), the residual solvent analysis showed the material to possess 3472 ppm of isopropyl alcohol, and the DSC (differential scanning calorimetery) showed a melting point of 134.89° C. A total of 69.3 g of white solid was collected (65.7% overall yield). 1H NMR (400 MHz, CDCl3) δ=1.8 (M, 4H), 2.4-2.6 (m, 4H), 2.6 (m, 1H), 2.85 (m, 2H), 3.0 (m, 1H), 3.65 (s, 3H), 3.8 (m, 2H), 3.86 (2, 2H), 4.18 (br s, 5H), 4.6 (s, 1H), 6.6-6.8 (m, 7H), 7.8 (d, 1H); MS for C29H40N2O13 m/z 457.3 [M+H] for main peak (free-base).


Example 2E2
Preparation of Compound 247: N-((1R,2R)-1-hydroxy-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-3-(p-tolyloxy)propanamide

Compound 247 was prepared by reaction of (1R,2R)-2-amino-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-1-ol as the amine, prepared according to scheme 3 with 3-(4-methylphenoxy)propionic acid using method 1.


Preparation of A: (R)-benzyl 4-formyl-2,2-dimethyloxazolidine-3-carboxylate



embedded image


N,O-dimethylhydroxylamine hydrochloride (45 g, 0.46 mmol, 1.5 eq) and N-methyl morpholine (84 mL, 0.765 mol, 2.5 eq.) were added slowly to a cold (−15° C.) suspension of d-CBz serine (73.0 g, 0.305 mol) in CH2Cl2 (560 mL) keeping the temperature below −5° C. The mixture was cooled back to ˜−15° C. and EDCI (62 g, 0.323 mol, 1.05 eq) was added. The mixture was stirred for 5 hours keeping the temperature below 5° C. The solvent was removed by rotary evaporation and the mixture was partitioned between HCl (1 M, 300 mL) and EtOAc (500 mL). The organic layer was separated and washed with HCl (1 M, 2×100 mL) and then sat. NaHCO3 (2×150 mL). The mixture was dried over MgSO4, filtered and then the solvent was removed by rotary evaporation. (R)-benzyl 3-hydroxy-1-(methoxy(methyl)amino)-1-oxopropan-2-ylcarbamate was re-dissolved in a mixture of acetone (375 mL) and 2,2-dimethoxy propane (375 mL) and boron trifluoride ethereate (3 mL) was added. The mixture was stirred at room temperature for 5 hours and then triethyl amine (3 mL) was added. The solvent was removed to dryness and (R)-benzyl 4-(methoxy(methyl)carbamoyl)-2,2-dimethyloxazolidine-3-carboxylate was obtained as a white solid (73.0 g, 74% yield from both steps) after purification by column chromatography using a mixture of hexane/EtOAc/acetone.



1H NMR (CDCl3, 400 mHz, ppm); 1.5 (s, 2H), 1.6 (s, 3H), 1.7 (s, 2H), 1.75 (s, 3H), 3.14 (s, 3H), 3.24 (2H), 3.4 (3H), 3.76 (s, 2H), 4.0 (m, 1.7H), 4.16 (m, 1H), 4.2 (m, 1.7), 4.78 (m, 1H), 4.88 (m, 0.6H), 5.06 (q, 2H), 5.18 (q, 1H), 7.4 (m, 8H).


Preparation of AI: (R)-benzyl 4-((R)-hydroxy(4-methoxyphenyl)methyl)-2,2-dimethyloxazolidine-3-carboxylate



embedded image


A solution of LiALH4 (1 M, 20 mL, 20 mmol) was added dropwise to a cold (−15° C.) solution of (R)-benzyl 4-(methoxy(methyl)carbamoyl)-2,2-dimethyloxazolidine-3-carboxylate (12.2 g, 37.9 mmol) in THF (75 mL). The mixture was stirred for 30 min keeping the temperature below 0° C. A saturated solution of KHSO4 (100 mL) was added slowly to the mixture and it was warmed to room temperature. The mixture was filtered and the solvent was removed to dryness. (R)-benzyl 4-formyl-2,2-dimethyloxazolidine-3-carboxylate was obtained as a clear oil (9.161 g, 92% yield) after purification by column chromatography (SiO2, using a mixture of hexane/EtOAc).



1H NMR (CDCl3, 400 mHz, ppm); 1.7 (m, 6H), 4.15 (m, 2H), 4.4 (m, 1H), 5.15, (s, 1H), 5.2 (m, 1H), 7.3 (m, 5H), 9.6 (m, 1H).


1,2-dibromoethane (0.2 mL) was added slowly to a hot (65° C.) solution of magnesium turnings (0.91 g, 37 mmol) in THF (14 mL), followed by the dropwise addition of a solution of 4-bromo anisole (4 mL, 32 mmol) in THF (14 mL). The mixture was refluxed for 2 hours and then cooled to room temperature. The grignard solution was added dropwise to a suspension of CuI (6.8 g, 36 mmol) in a mixture of Me2S (20 mL)/THF (100 mL) at −78° C. The mixture was warmed slowly to −45° C. and stirred for 30 min keeping the temperature between −45 to −35° C. The mixture was cooled back to −78° C., and a solution of the Garner's aldehyde [(R)-benzyl 4-formyl-2,2-dimethyloxazolidine-3-carboxylate] (3.20 g, 12.6 mmol) in THF (15 mL) was added dropwise. The mixture was stirred at low temperature overnight (15 h, T max=10° C.). The reaction mixture was quenched with NH4Cl (sat. 100 mL) and extracted with EtOAc (50 mL). The solvent was removed to dryness and the mixture was purified by column chromatography (SiO2, using a mixture of hexane/EtOAc/acetone) and the product was obtained as a colorless oil (1.697 g, 36% yield).


Preparation of AII: benzyl (1R,2R)-1,3-dihydroxy-1-(4-methoxyphenyl)propan-2-ylcarbamate



embedded image


A mixture of benzyl 4-(hydroxy-(4-methoxyphenyl)methyl)-2,2-dimethyloxazolidine-3-carboxylate (1.679 g, 4.5 mmol) and amberlyst 15 (1.85 g) in MeOH (20 mL) was stirred at room temperature for 2 days. The mixture was centrifuged and the solid was washed with MeOH (2×40 mL). The solvent was removed to dryness and after purification by column chromatography (SiO2 using a mixture of CH2Cl2/EtOAc) the product was obtained as a white solid (1.26 g, 84% yield).


Preparation of AIV: Synthesis of Compound 289: benzyl (1R,2R)-1-hydroxy-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-2-ylcarbamate



embedded image


Mesityl chloride (0.28 mL, 3.6 mmol) was added slowly to a cold (−10° C.) solution of benzyl (1R,2R)-1,3-dihydroxy-1-(4-methoxyphenyl)propan-2-ylcarbamate (1.07 g, 3.23 mmol) in pyridine (1.5 mL). The mixture was stirred for 30 min and then pyrrolidine (2.7 mL, 33 mmol) was added slowly to the mixture. The mixture was heated to 45° C. for 6 hours and then the solvent was removed to dryness. After purification by column chromatography (SiO2, using a mixture of CH2Cl2, MeOH, NH4OH), the product was obtained as a clear oil (0.816 g, 66% yield).


Preparation of EVII: (1R,2R)-2-amino-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-1-ol

as the amine was prepared by the procedures described below:




embedded image


A mixture of benzyl (1R,2R)-1-hydroxy-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-2-ylcarbamate (0.10 g, 0.26 mmol) and Pd/C (5%, 21 mg) in EtOH (1 mL)/HCl (1 M, 50 μL) was degassed and hydrogen gas was added. The mixture was hydrogenated at atmospheric pressure for two hours. The mixture was filtered over celite and the solvent was removed to dryness. The product was obtained as a colorless oil (63.5 mg, 85% yield).




embedded image


Preparation of Compound 247: N-((1R,2R)-1-hydroxy-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-3-(p-tolyloxy)propanamide


1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.3 (s, 3H), 2.65 (br, 6H), 2.85 (m, 2H), 3.75 (s, 3H), 4.1 (m, 2H), 4.25 (m, 1H), 5.05 (sd, 1H), 6.5 (br, 1H), 6.8 (m, 4H), 7.1 (d, 2H), 7.2 (d, 2H). M/Z for C24H32N2O4 [M−H]=413.


Example 2E3
Preparation of Compound 251: N-((1R,2R)-1-hydroxy-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-(trifluoromethyl)phenyl)acetamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.55 (br, 4H), 2.85 (m, 2H), 3.5 (s, 2H), 3.8 (s, 3H), 4.2 (m, 1H), 5.05 (sd, 1H), 5.8 (d, 1H), 6.8 (d, 2H), 7.1 (d, 2H), 7.2 (d, 2H), 7.55 (d, 2H). M/Z for C23H27F3N2O3 [M−H]=437.


Example 2E4
Preparation of Compound 5: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)benzo[b]thiophene-2-carboxamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.7 (br, 4H), 3.0 (m, 2H), 4.25 (s, 4H), 4.45 (m, 1H), 5.05 (sd, 1H), 6.6 (br, 1H), 6.85 (s, 2H), 6.95 (s, 1H), 7.4 (m, 2H), 7.7 (s, 1H), 7.85 (m, 2H). M/Z for C24H26N2O4S [M−H]=439.


Example 2E5
Preparation of Compound 11: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(phenylthio)acetamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.5 (br, 4H), 2.8 (br, 2H), 3.6 (q, 2H), 4.1.5 (m, 1H), 4.2 (s, 4H), 5.9 (sd, 1H), 6.7 (m, 2H), 6.8 (s, 1H), 7.2 (m, 7H). M/Z for C23H28N2O4S [M−H]=429.


Example 2E6
Preparation of Compound 12: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)biphenyl-4-carboxamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.7 (br, 4H), 3.0 (m, 2H), 4.25 (s, 4H), 4.4 (br, 1H), 5.05 (sd, 1H), 6.6 (sd, 1H), 6.85 (m, 2H), 6.95 (s, 1H), 7.45 (m, 3H), 7.6 (m, 4H), 7.75 (m, 2H). M/Z for C28H30N2O4 [M−H]=459.


Example 2E7
Preparation of Compound 19: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)benzo[b]thiophene-5-carboxamide



embedded image



1H NMR (d6-dmso, 400 mHz, ppm); 1.6 (br, 4H), 2.4 (br, 5H), 2.65 (m, 1H), 4.15 (s, 4H), 4.25 (m, 1H), 4.75 (sd, 1H), 5.6 (br, 1H), 6.7 (m, 3H), 7.5 (sd, 1H), 7.7 (sd, 1H), 7.8 (sd, 1H), 7.85 (sd, 1H), 8.0 (sd, 1H), 8.2 (s, 1H). M/Z for C24H26N2O4S [M−H]=439.


Example 2E8
Preparation of Compound 23: 2-(biphenyl-4-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.5 (br, 4H), 2.8 (d, 2H), 3.55 (s, 2H), 4.2 (m, 5H), 4.85 (sd, 1H), 5.95 (br, 1H), 6.6 (m, 1H), 6.75 (m, 2H), 7.2 (sd, 2H), 7.4 (m, 1H), 7.5 (st, 2H), 7.6 (m, 4H). M/Z for C29H32N2O4 [M−H]=473.


Example 2E9
Preparation of Compound 24: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-phenoxyphenyl)acetamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.6 (br, 4H), 2.8 (sd, 2H), 3.45 (s, 2H), 4.15 (m, 1H), 4.25 (s, 4H), 4.85 (sd, 1H), 5.9 (br, 1H), 6.6 (m, 1H), 6.7 (s, 1H), 6.8 (m, 1H), 7.15 (m, 7H), 7.4 (m, 2H). M/Z for C29H32N2O5 [M−H]=489.


Example 2E10
Preparation of Compound 25: (S)—N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-hydroxy-3-phenylpropanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.65 (br, 7H), 3.1 (dd, 2H), 4.2 (m, 6H), 4.8 (sd, 1H), 6.6 (m, 1H), 6.8 (m, 3H), 7.3 (m, 5H). M/Z for C24H30N2O5 [M−H]=427.


Example 2E11
Preparation of Compound 27: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-phenoxypropanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.7 (br, 6H), 2.9 (m, 2H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.45 (m, 1H), 6.75 (s, 1H), 6.85 (m, 3H), 6.95 (t, 1H), 7.2 (m, 3H). M/Z for C24H30N2O5 [M−H]=427.


Example 2E12
Preparation of Compound 31: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-oxo-2-phenylacetamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.8 (br, 4H), 3.0 (m, 2H), 4.2 (s, 4H), 4.3 (m, 1H), 5.05 (sd, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.35 (m, 1H), 7.45 (t, 2H), 7.6 (t, 1H) 8.2 (d, 2H). M/Z for C23H26N2O5 [M−H]=411.


Example 2E13
Preparation of Compound 32: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(phenylthio)propanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.4 (t, 2H), 2.7 (br, 4H), 2.8 (m, 2H), 3.1 (m, 2H), 4.2 (m, 5H), 4.9 (sd, 1H), 5.95 (br, 1H), 6.8 (m, 3H), 7.2 (m, 1H), 7.3 (m, 3H). M/Z for C24H30N2O4S [M−H]=443.


Example 2E14
Preparation of Compound 35: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-o-tolylacetamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.1 (s, 3H), 2.5 (br, 4H), 2.75 (m, 2H), 3.5 (s, 2H), 4.1 (m, 1H), 4.25 (s, 4H), 4.8 (sd, 1H), 5.75 (br, 1H), 6.5 (d, 1H), 6.65 (s, 1H), 6.75 (d, 1H), 7.1 (d, 1H), 7.2 (m, 3H). M/Z for C24H30N2O4 [M−H]=411.


Example 2E15
Preparation of Compound 36: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-m-tolylacetamide



embedded image


1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.35 (s, 3H), 2.5 (br, 4H), 2.75 (m, 2H), 3.45 (s, 2H), 4.1 (m, 1H), 4.25 (s, 4H), 4.85 (sd, 1H), 5.8 (br, 1H), 6.55 (d, 1H), 6.75 (m, 2H), 6.9 (d, 2H), 7.1 (sd, 1H), 7.2 (m, 1H). M/Z for C24H30N2O4 [M−H]=411.


Example 2E16
Preparation of Compound 39: 2-(benzylthio)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.7 (br, 4H), 2.9 (m, 2H), 3.0 (m, 2H), 3.3 (d, 1H), 3.55 (d, 1H), 4.2 (m, 5H), 5.05 (sd, 1H), 6.85 (s, 2H), 6.9 (s, 1H), 7.1 (sd, 2H), 7.3 (m, 3H). M/Z for C24H30N2O4S [M−H]=443.


Example 2E17
Preparation of Compound 47: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-(pyridin-3-yl)phenyl)acetamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.6 (br, 4H), 2.8 (sd, 2H), 3.55 (s, 2H), 4.15 (m, 1H), 4.2 (s, 4H), 4.85 (sd, 1H), 5.85 (br, 1H), 6.6 (d, 1H), 6.75 (m, 2H), 7.25 (d, 3H), 7.4 (m, 1H), 7.6 (sd, 2H), 7.9 (sd, 1H), 8.6 (sd, 1H), 8.85 (s, 1H). M/Z for C28H31N3O4 [M−H]=474.


Example 2E18
Preparation of Compound 48: 2-(4′-chlorobiphenyl-4-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.55 (br, 4H), 2.8 (sd, 2H), 3.55 (s, 2H), 4.15 (m, 1H), 4.2 (s, 4H), 4.85 (sd, 1H), 5.8 (br, 1H), 6.6 (d, 1H), 6.75 (m, 2H), 7.2 (d, 2H), 7.4 (m, 2H), 7.55 (sd, 4H). M/Z for C29H31ClN2O4 [M−H]=508.


Example 2E19
Preparation of Compound 51: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(3-(trifluoromethyl)phenyl)acetamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.55 (br, 4H), 2.8 (sd, 2H), 3.55 (s, 2H), 4.15 (m, 1H), 4.25 (s, 4H), 4.85 (sd, 1H), 5.8 (br, 1H), 6.6 (d, 1H), 6.75 (m, 2H), 7.35 (d, 1H), 7.45 (m, 2H), 7.55 (sd, 1H). M/Z for C24H27F3N2O4 [M−H]=465.


Example 2E20
Preparation of Compound 53: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(3-fluorophenyl)acetamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.55 (br, 4H), 2.8 (sd, 2H), 3.50 (s, 2H), 4.15 (m, 1H), 4.25 (s, 4H), 4.85 (sd, 1H), 5.8 (br, 1H), 6.6 (d, 1H), 6.75 (m, 1H), 6.8 (d, 1H), 6.85 (d, 1H), 6.9 (d, 1H), 7.0 (t, 1H), 7.3 (sq, 1H). M/Z for C23H27FN2O4 [M−H]=415.


Example 2E21
Preparation of Compound 54: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(3-methoxyphenoxy)propanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.65 (br, 6H), 2.85 (m, 2H), 3.80 (s, 3H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.45 (m, 4H), 6.75 (s, 2H), 6.85 (s, 1H), 7.2 (t, 1H). M/Z for C25H32N2O6 [M−H]=457.


Example 2E22
Preparation of Compound 55: 3-(2,5-dichlorophenoxy)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)propanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.65 (br, 6H), 2.8 (m, 2H), 4.1 (m, 1H), 4.25 (m, 6H), 4.95 (sd, 1H), 6.3 (br, 1H), 6.75 (s, 2H), 6.8 (s, 1H), 6.9 (m, 2H), 7.25 (m, 1H). M/Z for C24H28Cl2N2O5 [M−H]=496.


Example 2E23
Preparation of Compound 57: 3-(4-chlorophenoxy)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)propanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.65 (br, 6H), 2.8 (m, 2H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.3 (br, 1H), 6.8 (m, 5H), 7.2 (m, 2H). M/Z for C24H29ClN2O5 [M−H]=461.


Example 2E24
Preparation of Compound 58: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-fluorophenoxy)propanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.65 (br, 6H), 2.8 (m, 2H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.4 (br, 1H), 6.8 (m, 5H), 7.0 (m, 2H). M/Z for C24H29FN2O5 [M−H]=445.


Example 2E25
Preparation of Compound 59: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(p-tolyloxy)propanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.3 (s, 3H), 2.65 (br, 6H), 2.8 (m, 2H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.45 (br, 1H), 6.75 (m, 4H), 6.85 (s, 1H), 7.1 (m, 2H). M/Z for C25H32N2O5 [M−H]=441.


Example 2E26
Preparation of Compound 60: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(2-fluorophenoxy)propanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.65 (br, 6H), 2.75 (m, 2H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.35 (br, 1H), 6.7 (s, 2H), 6.85 (s, 1H), 6.95 (m, 2H), 7.05 (m, 2H). M/Z for C24H29FN2O5 [M−H]=445.


Example 2E27
Preparation of Compound 61: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.65 (br, 6H), 2.75 (m, 2H), 3.8 (s, 3H), 4.1 (m, 2H), 4.2 (br, 5H), 4.95 (sd, 1H), 6.45 (br, 1H), 6.8 (m, 7H). M/Z for C25H32N2O6 [M−H]=457.


Example 2E28
Preparation of Compound 188: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-ethylphenoxy)propanamide (2R,3R)-2,3-dihydroxysuccinate



embedded image



1H NMR (D2O, 400 mHz, ppm); 0.93 (t, 3H), 1.75 (br, 2H), 1.86 (br, 2H), 2.35 (q, 2H), 2.4 (br, 2H), 2.9 (br, 2H), 3.25 (m, 2H), 3.4 (br, 2H), 3.9 (br, 6H), 4.3 (br, 3H), 4.6 (br, 1H), 6.6 (m, 5H), 7.0 (d, 2H). M/Z for C26H34N2O5.C4H6O6 [M−H]=454.


Example 2E29
Preparation of Compound 189: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-propionylphenoxy)propanamide (2R,3R)-2,3-dihydroxysuccinate



embedded image



1H NMR (D2O, 400 mHz, ppm); 0.93 (t, 3H), 1.75 (br, 2H), 1.86 (br, 2H), 2.45 (br, 2H), 2.8 (q, 2H), 2.9 (br, 2H), 3.25 (m, 2H), 3.4 (br, 2H), 3.9 (br, 6H), 4.3 (br, 3H), 4.6 (br, 1H), 6.5 (d, 1H), 6.5 (d, 2H), 6.7 (d, 2H), 7.7 (d, 2H). M/Z for C27H34N2O6.C4H6O6 [M−H]=483.


Example 2E30
Preparation of Compound 193: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(3-oxobutyl)phenoxy)propanamide (2R,3R)-2,3-dihydroxysuccinate



embedded image



1H NMR (D2O, 400 mHz, ppm); 1.75 (br, 2H), 1.86 (br, 2H), 1.94 (s, 3H), 2.45 (br, 2H), 2.6 (m, 4H), 2.9 (br, 2H), 3.25 (m, 2H), 3.4 (br, 2H), 3.9 (br, 6H), 4.3 (br, 3H), 4.6 (br, 1H), 6.6 (m, 5H), 7.0 (d, 2H). M/Z for C28H36N2O6.C4H6O6 [M-N]=497.


Example 2E31
Preparation of Compound 202: N-((1R, R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(2-methoxyethyl)phenoxy)propanamide (2R,R)-2,3-dihydroxysuccinate



embedded image



1H NMR (D2O, 400 mHz, ppm); 1.75 (br, 2H), 1.86 (br, 2H), 2.45 (br, 2H), 2.62 (t, 2H), 2.9 (br, 2H), 3.1 (s, 3H), 3.25 (m, 2H), 3.4 (br, 4H), 3.9 (br, 6H), 4.3 (br, 3H), 4.6 (br, 1H), 6.6 (m, 5H), 7.0 (d, 2H). M/Z for C27H36N2O6.C4H6O6 [M−H]=485.


Example 2E32
Preparation of Compound 63: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(3′-methoxybiphenyl-4-yl)acetamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.5 (br, 4H), 2.75 (m, 2H), 3.5 (br, 2H), 3.9 (sd, 3H), 4.2 (m, 5H), 4.95 (sd, 1H), 5.9 (br, 1H), 6.5-7.6 (m, 11H). M/Z for C30H34N2O5 [M−H]=503.


Example 2E33
Preparation of Compound 127: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-4-(4-ethoxyphenyl)-4-oxobutanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.4 (t, 3H), 1.8 (br, 4H), 2.7 (br, 6H), 3.2 (m, 2H), 4.05 (q, 2H), 4.2 (m, 2H), 4.25 (m, 5H), 4.95 (sd, 1H), 6.05 (br, 1H), 6.9 (m, 5H), 7.95 (d, 2H). M/Z for C27H34N2O6 [M−H]=483.


Example 2E34
Preparation of Compound 154: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-4-(4-methoxyphenyl)-4-oxobutanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.7 (br, 6H), 3.2 (m, 1H), 3.45 (s, 3H), 3.9 (s, 3H), 4.2 (m, 5H), 4.95 (sd, 1H), 6.05 (br, 1H), 6.9 (m, 5H), 7.95 (d, 2H). M/Z for C26H32N2O6 [M−H]=469.


Example 2E35
Preparation of Compound 181: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-isopropoxyphenyl)-6-oxohexanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm); 1.4 (d, 6H), 1.8 (br, 8H), 2.15 (br, 2H), 2.8 (br, 10H), 4.25 (m, 5H), 4.65 (m, 1H), 4.95 (sd, 1H), 6.05 (br, 1H), 6.9 (m, 5H), 7.95 (d, 2H). M/Z for C30H40N2O6 [M−H]=525.


Example 2E36
Preparation of Compound 191: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(4-methoxyphenyl)-5-oxopentanamide (2R,3R)-2,3-dihydroxysuccinate



embedded image



1H NMR (D2O, 400 mHz, ppm); 1.40 (br, 1H), 1.53 (br, 1H), 1.75 (br, 2H), 1.91 (br, 2H), 1.98 (m, 1H), 2.15 (m, 1H) 2.45 (m, 2H), 2.95 (m, 2H), 3.35 (dd, 2H), 3.4 (m, 2H), 3.68 (br, 5H), 3.77 (br, 2H), 4.3 (br, 3H), 4.68 (br, 1H), 6.47 (d, 1H), 6.65 (d, 2H), 6.85 (d, 2H), 7.63 (d, 2H). M/Z for C27H34N2O6.C4H6O6 [M−H]=483.


Example 2E37
Preparation of Compound 265: N-((1R,2R)-1-(benzo[β][1,3]dioxol-5-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(4-isopropoxyphenyl)-5-oxopentanamide (2S,3S)-2,3-dihydroxysuccinate



embedded image



1H NMR (400 MHz, CD3OD) δ 1.30 (sd, 6H), 1.70-1.85 (m, 2H), 2.04 (br, 4H), 2.09-2.26 (m, 2H), 2.64-2.82 (m, 2H), 3.31-3.48 (m, 5H), 4.37 (s, 2H), 4.43 (br, 1H), 4.68 (m, 1H), 4.71 (sd, 1H), 5.76 (s, 2H), 6.66 (d, 1H), 6.82-6.95 (m, 4H), 7.84 (d, 2H); MS for C28H36N2O6.C4H6O6: [M−H] 645.


Example 2E38
Preparation of Compound 267: N-((1R,2R)-1-(benzo[δ][1,3]dioxol-5-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide (2S,3S)-2,3-dihydroxysuccinate



embedded image



1H NMR (400 MHz, CD3OD) δ 1.49 (br, 4H), 2.03 (br, 4H), 2.89 (t, 2H), 3.33-3.46 (m, 6H), 3.84 (s, 3H), 4.37 (s, 2H), 4.43 (d, 1H), 4.76 (br, 1H), 5.81 (s, 2H), 6.68 (d, 1H), 6.81 (d, 1H), 6.88 (s, 1H), 6.96 (d, 2H), 7.92 (d, 2H); MS for C27H34N2O6.C4H6O6: [M−H] 633.


Example 2E39
Preparation of Compound 268: N-((1R,2R)-1-(benzo[δ][1,3]dioxol-5-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-7-(4-isopropoxyphenyl)-7-oxoheptanamide (2S,3S)-2,3-dihydroxysuccinate



embedded image



1H NMR (400 MHz, CD3OD) δ 1.15-1.18 (m, 2H), 1.30 (d, 6H), 1.40-1.45 (m, 2H), 1.57-1.65 (m, 2H), 2.03 (br, 4H), 2.12-2.17 (m, 2H), 2.88 (t, 2H), 3.33-3.48 (m, 5H), 4.38 (s, 2H), 4.42 (d, 1H), 4.67 (m, 1H), 4.78 (d, 1H), 5.83 (d, 2H), 6.71 (d, 1H), 6.82 (d, 1H), 6.89 (s, 1H), 6.92 (d, 2H), 7.90 (d, 2H); MS for C30H40N2O6.C4H6O6: [M−H] 675.


Example 2E40
Preparation of Compound 197: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-4-(4-methoxyphenoxy)butanamide (2S,3S)-2,3-dihydroxysuccinate



embedded image



1H NMR (400 MHz, CD3OD) δ 1.78-1.91 (m, 2H), 2.00 (br, 4H), 2.32 (t, 2H), 3.33-3.47 (m, 6H), 3.69 (s, 3H), 3.72 (t, 2H), 4.11 (br, 4H), 4.37 (s, 2H), 4.41 (d, 1H), 4.72 (d, 1H), 6.69-6.86 (m, 7H); MS for C26H34N2O6.C4H6O6: [M−H] 621.


Example 2E41
Preparation of Compound 187: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(3-methylbutanoyl)phenoxy)propanamide (2S,3S)-2,3-dihydroxysuccinate



embedded image



1H NMR (400 MHz, CD3OD) δ 0.95 (d, 6H), 2.00 (br, 4H), 2.17 (m, 2H), 2.66 (t, 2H), 2.78 (d, 2H), 3.34-3.44 (m, 5H), 4.12-4.17 (m, 6H), 4.40 (s, 2H), 4.45 (d, 1H), 4.73 (sd, 1H), 6.67 (d, 1H), 6.79 (d, 1H), 6.86 (s, 1H), 6.93 (d, 2H), 7.91 (d, 2H); MS for C29H38N2O6.C4H6O6: [M−H] 661.


Example 2E42
Preparation of Compound 83: 2-(4-chlorophenoxy)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.76 (br, 4H), 2.63 (br, 4H), 2.78 (dd, 1H), 2.89 (dd, 1H), 4.24 (s, 4H), 4.27 (br, 1H), 4.36 (q, 2H), 4.94 (d, 1H), 6.71 (d, 1H), 6.77-6.82 (m, 4H), 6.86 (d, 1H), 7.24 (s, 1H); MS for C23H27ClN2O5: [M−H] 447.


Example 2E43
Preparation of Compound 87: 2-(3,4-dichlorophenoxy)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.78 (br, 4H), 2.67 (br, 4H), 2.79 (dd, 1H), 2.92 (dd, 1H), 4.25 (br, s, 5H), 4.35 (q, 2H), 4.95 (d, 1H), 6.71-6.84 (m, 5H), 7.01 (d, 1H), 7.34 (d, 1H); MS for C23H26Cl2N2O5: [M−H] 482.


Example 2E44
Preparation of Compound 86: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(3-phenoxyphenyl)acetamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.72 (br, 4H), 2.57 (br, 4H), 2.75-2.80 (m, 2H), 3.45 (s, 2H), 4.11-4.13 (m, 1H), 4.23 (s, 4H), 4.84 (d, 1H), 5.86 (d, 1H), 6.55 (dd, 1H), 6.71 (d, 1H), 6.74 (d, 1H), 6.80 (br, 1H), 6.85 (dd, 1H), 6.92 (dd, 1H), 6.98 (d, 1H), 7.14 (t, 1H), 7.28-7.36 (m, 2H); MS for C29H32N2O5: [M−H] 489.


Example 2E45
Preparation of Compound 280: 2-(3,4-difluorophenyl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.80 (br, 4H, 2.68 (br, 4H), 2.84 (d, 2H), 3.45 (s, 2H), 4.17 (m, 1H), 4.25 (s, 4H), 4.88 (d, 1H), 5.88 (d, 1H), 6.65 (d, 1H), 6.79 (d, 1H), 6.95 (m, 1H), 6.95 (t, 1H), 7.13 (q, 1H); MS for C23H26F2N2O4: [M−H] 434.


Example 2E46
Preparation of Compound 103: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-(trifluoromethoxy)phenyl)acetamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.65 (br, 4H), 2.48 (br, 4H), 2.69 (d, 2H), 3.40 (s, 2H), 4.08 (m, 1H), 4.17 (s, 4H), 4.80 (s, 1H), 5.84 (t, 1H), 6.55 (d, 1H), 6.66 (s, 1H), 6.70 (d, 1H), 7.10 (t, 3H); MS for C24H27F3N2O5: [M−H] 481.


Example 2E47
Preparation of Compound 90: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(thiophen-2-yl)isoxazole-3-carboxamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.82 (br, 4H), 2.73-2.81 (m, 4H), 2.89-2.93 (m, 1H), 3.02-3.07 (m, 1H), 4.23 (s, 4H), 4.41 (br, 1H), 5.07 (s, 1H), 5.30 (d, 1H), 6.74 (s, 1H), 6.83 (t, 2H), 6.90 (s, 1H), 7.12-7.14 (m, 2H), 7.47 (d, 1H), 7.52 (d, 1H); MS for C23H25N3O5S: [M−H] 456.


Example 2E48
Preparation of Compound 92: 3-(3-chloro-4-methoxyphenyl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)propanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.77 (br, 4H), 2.38 (t, 2H), 2.60 (br, 4H), 2.8 (m, 4H), 3.86 (s, 3H), 4.20 (br, 1H), 4.24 (s, 4H), 4.87 (s, 1H), 5.80 (d, 1H), 6.66 (d, 1H), 6.8 (m, 3H), 7.00 (d, 1H), 7.18 (s, 1H); MS for C25H31ClN2O5: [M−H] 475.


Example 2E49
Preparation of Compound 96: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(trifluoromethyl)phenyl)propanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.73 (br, 4H), 2.4 (m, 2H), 2.53 (m, 4H), 2.7 (m, 2H), 2.90-2.97 (m, 2H), 4.17 (br, 1H), 4.23 (s, 4H), 4.89 (s, 1H), 5.83 (br, 1H), 6.68 (d, 1H), 6.79 (d, 2H), 7.24 (d, 2H), 7.50 (d, 2H); MS for C25H29F3N2O5: [M−H] 479.


Example 2E50
Preparation of Compound 101: 4-(benzo[d]thiazol-2-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)butanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.77 (br, 4H), 2.10-2.15 (m, 2H), 2.24-2.27 (m, 2H), 2.64-2.67 (m, 4H), 2.79-2.83 (m, 2H), 3.02 (t, 2H), 4.18 (s, 4H), 4.26 (br, 1H), 4.92 (d, 1H), 6.12 (br, 1H), 6.75-6.81 (m, 2H), 6.86 (s, 1H), 7.37 (t, 1H), 7.45 (t, 1H), 7.85 (d, 1H), 7.92 (d, 1H); MS for C26H31N3O4S: [M−H] 482.


Example 2E51
Preparation of Compound 102: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(2,3-dihydrobenzo[β][1,4]dioxine-6-sulfonamido)hexanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.15-1.20 (m, 2H), 1.38-1.50 (m, 4H), 1.77 (br, 4H), 2.08 (q, 2H), 2.63-2.66 (m, 4H), 2.79 (d, 2H), 2.87 (t, 2H), 4.2 (m, 9H), 4.91 (br, 1H), 5.93 (br, 1H), 6.77 (q, 2H), 6.84 (s, 1H), 6.93 (d, 1H), 7.31 (d, 1H), 7.37 (s, 1H); MS for C29H39N3O8S: [M−H] 590.


Example 2E52
Preparation of Compound 104: N-(5((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-ylamino)-5-oxopentyl)benzamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.47-1.52 (m, 2H), 1.59-1.69 (m, 2H), 1.77 (br, 4H), 2.15-2.21 (m, 2H), 2.62-2.65 (m, 4H), 2.81 (br, 2H), 3.30-3.42 (m, 2H), 4.19-4.23 (m, 5H), 4.94 (br, 1H), 5.98 (br, 1H), 6.76 (br, 1H), 6.78-6.86 (m, 3H), 7.40-7.50 (m, 3H), 7.80 (d, 2H); MS for C27H35N3O5: [M−H] 482.


Example 2E53
Preparation of Compound 281: N1-(1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-N5-(thiazol-2-yl)glutaramide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.74 (br, 4H), 1.97-2.03 (m, 2H), 2.20-2.26 (m, 2H), 2.40-2.45 (m, 2H), 2.64-2.68 (m, 5H), 2.88 (m 1H), 4.20 (s, 4H), 4.26-4.29 (m, 1H), 4.83 (d, 1H), 6.12 (br, 1H), 6.74-6.79 (m, 2H), 6.85 (s, 1H), 6.95 (d, 1H), 7.41 (d, 1H); MS for C23H30N4O5S: [M−H] 475.


Example 2E54
Preparation of Compound 282: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(3,4-dimethoxyphenyl)-5-oxopentanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.76 (br, 4H), 1.92-2.00 (m, 2H), 2.21-2.26 (m, 2H), 2.60-2.65 (m, 4H), 2.70-2.95 (m, 4H), 3.93 (d, 6H), 4.17-4.23 (m, 5H), 4.90 (d, 1H), 5.96 (br, 1H), 6.75-6.79 (m, 2H), 6.85 (s, 1H), 6.87 (d, 1H), 7.50 (s, 1H), 7.55 (d, 1H); MS for C28H36N2O7: [M−H] 513.


Example 2E55
Preparation of Compound 283: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-oxo-5-p-tolylpentanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.77 (br, 4H), 1.96-2.02 (m, 2H), 2.21-2.26 (m, 2H), 2.40 (s, 3H), 2.63-2.80 (m, 4H), 2.82-2.95 (m, 4H), 4.18-4.23 (m, 5H), 4.91 (d, 1H), 5.94 (br, 1H), 6.74-6.77 (m, 2H), 6.85 (s, 1H), 7.26 (d, 2H), 7.81 (d, 2H); MS for C27H34N2O5: [M−H]467.


Example 2E56
Preparation of Compound 113: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-oxo-5-phenylpentanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.76 (br, 4H), 1.95-2.01 (m, 2H), 2.22-2.25 (m, 2H), 2.62-2.63 (m, 4H), 2.78-2.95 (m, 4H), 4.17-4.22 (m, 5H), 4.91 (sd, 1H), 5.99 (br, 1H), 6.77 (st, 2H), 6.85 (s, 1H), 7.44-7.58 (m, 3H), 7.92 (d, 2H); MS for C26H32N2O5: [M−H] 453.


Example 2E57
Preparation of Compound 284: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(4-isopropoxyphenyl)-5-oxopentanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.36 (d, 6H), 1.75 (br, 4H), 1.90-2.02 (m, 2H), 2.20-2.25 (m, 2H), 2.60-2.66 (m, 4H), 2.70-2.86 (m, 4H), 4.17 (s, 4H), 4.22 (br, 1H), 4.62-4.65 (m, 1H), 4.89 (sd, 1H), 6.07 (d, 1H), 6.77 (s, 2H), 6.85 (s, 1H), 6.87 (d, 2H), 7.86 (d, 2H); MS for C29H38N2O6: [M−H] 511.


Example 2E58
Preparation of Compound 140: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxy-3,5-dimethylphenyl)-6-oxohexanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.61-1.63 (m, 4H), 1.77 (br, 4H), 2.16 (t, 2H), 2.32 (s, 6H), 2.61-2.67 (m, 4H), 2.74-2.89 (m, 2H), 2.91 (t, 2H), 3.75 (s, 3H), 4.21 (br, 5H), 4.90 (sd, 1H), 5.93 (br, 1H), 6.75-6.82 (m, 2H), 6.85 (sd, 1H), 7.61 (s, 2H); MS for C30H40N2O6: [M−H] 525.


Example 2E59
Preparation of Compound 141: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.62-1.64 (m, 4H), 1.76 (br, 4H), 2.17 (t, 2H), 2.61-2.65 (m, 4H), 2.72-2.79 (m, 2H), 2.89 (t, 2H), 3.86 (s, 3H), 4.20 (br, 5H), 4.89 (d, 1H), 6.01 (br, 1H), 6.77 (q, 2H), 6.85 (s, 1H), 6.91 (d, 2H), 7.90 (d, 2H); MS for C28H36N2O6: [M−H]497.


Example 2E60
Preparation of Compound 155: 6-(4-tert-butylphenyl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-oxohexanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.34 (s, 9H), 1.63-1.65 (m, 4H), 1.77 (br, 4H), 2.17 (t, 2H), 2.64-2.66 (br, 4H), 2.75 (dd, 1H), 2.2.81 (dd, 1H), 2.91 (t, 2H), 4.20 (br, 5H), 4.90 (d, 1H), 6.02 (br, 1H), 6.77-6.82 (q, 2H), 6.85 (d, 1H), 7.46 (d, 2H), 7.86 (d, 2H); MS for C31H42N2O5: [M−H] 523.


Example 2E61
Preparation of Compound 156: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-7-(4-methoxyphenyl)-7-oxoheptanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.25-1.30 (m, 2H), 1.55-1.70 (m, 4H), 1.77 (br, 4H), 2.13 (t, 2H), 2.61-2.66 (m, 4H), 2.74-2.82 (m, 2H), 2.88 (t, 2H), 3.86 (s, 3H), 4.20 (br, 5H), 4.90 (d, 1H), 5.93 (br, 1H), 6.78 (q, 2H), 6.85 (s, 1H), 6.91 (d, 2H), 7.92 (d, 2H); MS for C29H38N2O6: [M−H]511.


Example 2E62
Preparation of Compound 144: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-8-(4-methoxyphenyl)-8-oxooctanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.25-1.33 (m, 4H), 1.54 (m, 2H), 1.68 (t, 2H), 1.78 (br, 4H), 2.11 (br, 2H), 2.65 (br, 4H), 2.76-2.11 (m, 4H), 3.86 (s, 3H), 4.21 (br, 5H), 4.90 (br, 1H), 6.02 (d, 1H), 6.78-6.84 (m, 3H), 6.91 (d, 2H), 7.92 (d, 2H); MS for C30H40N2O6: [M−H] 525.


Example 2E63
Preparation of Compound 159: 7-(4-chlorophenyl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-7-oxoheptanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.26-1.37 (m, 2H), 1.57 (m, 2H), 1.68 (m, 2H), 1.77 (br, 4H), 2.13 (t, 2H), 2.62-2.65 (m, 4H), 2.76-2.82 (m, 2H), 2.90 (t, 2H), 4.20 (br, 5H), 4.90 (d, 1H), 5.93 (d, 1H), 6.78 (q, 2H), 6.85 (s, 1H), 7.42 (d, 2H), 7.87 (d, 2H); MS for C28H35ClN2O5: [M−H]515.


Example 2E64
Preparation of Compound 160: 7-(4-tert-butylphenyl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-7-oxoheptanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.27-1.34 (m, 11H), 1.56-1.71 (m, 4H), 1.77 (br, 4H), 2.13 (t, 2H), 2.63-2.66 (m, 4H), 2.76-2.819 (m, 2H), 2.91 (t, 2H), 4.20 (br, 5H), 4.90 (sd, 1H), 5.90 (d, 1H), 6.81 (q, 2H), 6.85 (s, 1H), 7.46 (d, 2H), 7.88 (d, 2H); MS for C32H44N2O5: [M−H]537.


Example 2E65
Preparation of Compound 168: N-((1R,2R)-1-(2,3-dihydrobenzol[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-7-(4-methoxyphenyl)-7-oxoheptanamide (2S,3S)-2,3-dihydroxysuccinate



embedded image



1H NMR (400 MHz, CD3OD) δ 1.15-1.19 (m, 2H), 1.40-1.47 (m, 2H), 1.60 (m, 2H), 2.02 (br, 4H), 2.09-2.21 (m, 2H), 2.90 (t, 2H), 3.35-3.49 (m, 5H), 3.83 (s, 3H), 4.12 (br, 4H), 4.38 (s, 2H), 4.43 (m, 1H), 4.74 (sd, 1H), 6.71 (d, 1H), 6.79 (dq, 1H), 6.86 (sd, 1H), 6.96 (d, 2H), 7.92 (d, 2H); MS for C29H38N2O6.C4H6O6: [M−H] 661.


Example 2E66
Preparation of Compound 162: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-4-(4-isopropoxyphenyl)-4-oxobutanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.35 (d, 6H), 1.77 (br, 4H), 2.52-2.56 (m, 2H), 2.64-2.83 (m, 6H), 3.09-3.36 (m, 2H), 4.22 (br, 5H), 4.63-4.66 (m, 1H), 4.89 (sd, 1H), 6.13 (d, 1H), 6.78 (s, 2H), 6.88 (t, 3H), 7.90 (d, 2H); MS for C28H36N2O6: [M−H]497.


Example 2E67
Preparation of Compound 176: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-4-oxo-4-(4-(trifluoromethyl)phenyl)butanamide (2S,3S)-2,3-dihydroxysuccinate



embedded image



1H NMR (400 MHz, CD3OD) δ 2.08 (br, 4H), 2.54-2.72 (m, 2H), 3.24-3.48 (m, 6H), 4.19 (s, 4H), 4.29 (m, 4H), 4.74 (sd, 1H), 6.76 (d, 1H), 6.86 (d, 1H), 6.92 (s, 1H), 7.81 (d, 2H), 8.13 (d, 2H); MS for C26H29F3N2O5. C4H6O6: [M−H] 657.


Example 2E68
Preparation of Compound 65 (Genz-528152-1): 2-(3′-chlorobiphenyl-4-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide



embedded image



1H NMR (400 MHz, CDCl3) δ 1.70 (br, 4H), 2.54 (br, 4H), 2.72-2.81 (m, 2H), 3.53 (s, 2H), 4.12-4.23 (m, 5H), 4.85 (d, 1H), 5.82 (d, 1H), 6.58 (dd, 1H), 6.70 (sd, 1H), 6.73 (d, 111), 7.19 (d, 1H), 7.32-7.34 (m, 1H), 7.38 (t, 1H), 7.46-7.49 (m, 1H), 7.52 (d, 2H), 7.59 (d, 1H); C29H31ClN2O4: [M−H] 507.


Example 2E69
Preparation of Compound 262: N-[2-Hydroxy-2-(4-methoxy-phenyl)-1-pyrrolidin-1-ylmethyl-ethyl]-3-(4-methoxy-phenoxy)-propionamide



embedded image



1H NMR (CDCl3 400 mHz, ppm); 1.75 (m, 4H), 2.55 (m, 2H), 2.65 (m, 4H), 2.85 (m, 2H), 3.8 (s, 6H), 4.1 (m, 2H), 4.25 (m, 1H), 5.0 (d, 1H), 6.5 (br. d, 1H), 6.8 (m, 4H), 7.25 (m, 4H). M/Z for C24H32N2O5 [M−H]+ 429.


Example 2E70
Preparation of Compound 270: 5-(4-Isopropoxy-phenyl)-5-oxo-pentanoic acid[2-hydroxy-2-(4-methoxy-phenyl)-1-pyrrolidin-1-ylmethyl-ethyl]amide



embedded image



1H NMR (CDCl3 400 mHz, ppm); 1.4 (d, 6H), 1.8 (m, 4H), 2.0 (m, 2H), 2.2 (m, 2H), 2.6 (m, 4H), 2.8 (m, 4H), 3.75 (s, 3H), 4.25 (m, 1H), 4.65 (m, 1H), 5.0 (d, 1H), 5.95 (br. d, 1H), 6.85 (m, 4H), 7.25 (m, 2H), 7.9 (m, 2H). M/Z for C24H32N2O5 [M−H]+ 483.3.


Example 2E71
Preparation of Compound 285: 7-(4-Methoxy-phenyl)-7-oxo-heptanoic acid[2-hydroxy-2-(4-methoxy-phenyl)-1-pyrrolidin-1-ylmethyl-ethyl]-amide



embedded image



1H NMR (CDCl3 400 mHz, ppm); 1.25 (m, 2H), 1.6 (m, 4H), 1.8 (m, 4H), 2.15 (m, 2H), 2.65 (m, 4H), 2.85 (m, 4H), 3.75 (s, 3H), 3.9 (s, 3H), 4.2 (m, 1H), 5.0 (d, 1H), 5.9 (br. d, 1H), 6.85 (d, 2H), 6.95 (d, 2H), 7.2 (d, 2H), 7.95 (d, 2H). M/Z for C24H32N2O5 [M−H]+ 483.3


Example 2E72
Preparation of Compound 262: N-[2-Hydroxy-2-(4-methoxy-phenyl)-1-pyrrolidin-1-ylmethyl-ethyl]-3-(4-methoxy-phenoxy)-propionamide



embedded image



1H NMR (CDCl3 400 mHz, ppm); 1.75 (m, 4H), 2.55 (m, 2H), 2.65 (m, 4H), 2.85 (m, 2H), 3.8 (s, 6H), 4.1 (m, 2H), 4.25 (m, 1H), 5.0 (d, 1H), 6.5 (br. d, 1H), 6.8 (m, 4H), 7.25 (m, 4H). M/Z for C24H32N2O5 [M−H]+ 429.


Example 2E73
Preparation of Compound 270: 5-(4-Isopropoxy-phenyl)-5-oxo-pentanoic acid[2-hydroxy-2-(4-methoxy-phenyl)-1-pyrrolidin-1-ylmethyl-ethyl]amide



embedded image



1H NMR (CDCl3 400 mHz, ppm); 1.4 (d, 6H), 1.8 (m, 4H), 2.0 (m, 2H), 2.2 (m, 2H), 2.6 (m, 4H), 2.8 (m, 4H), 3.75 (s, 3H), 4.25 (m, 1H), 4.65 (m, 1H), 5.0 (d, 1H), 5.95 (br. d, 1H), 6.85 (m, 4H), 7.25 (m, 2H), 7.9 (m, 2H). M/Z for C24H32N2O5 [M−H]+ 483.3.


Example 2E74
Preparation of Compound 305



embedded image



1H NMR (CDCl3 400 mHz, ppm); 1.25 (m, 14H), 1.6 (m, 4H), 1.8 (m, 4H), 2.1 (t, 2H), 2.6 (t, 2H), 2.8 (m, 6H), 4.2 (m, 5H), 4.9 (d, 1H), 6.0 (br d, 1H), 6.8 (m, 3H), 7.2 (m, 1H), 7.5 (m, 1H), 8.4 (m, 2H). M/Z for C24H32N2O5 [M−H]+ 538.


Example 2E75
Preparation of Compound 320: Octanoic acid[2-hydroxy-2(4-methoxy-phenyl)-1-Pyrrolidin1-ylmethyl-ethyl]-amide



embedded image



1H NMR (CDCl3 400 mHz, ppm); 0.9 (t, 3H), 1.2 (m, 8H), 1.5 (m, 2H), 1.8 (m, 4H), 2.1 (t, 2H), 2.65 (m, 4H), 2.8 (d, 2H), 3.8 (s, 3H), 4.2 (m, 1H), 4.95 (d, 1H), 5.9 (br d, 1H), 6.9 (2 s, 2H), 7.25 (m, 2H). M/Z for C22H36N2O3 [M−H] 377.4.


Example 2E76
Preparation of Cyclic Amide Analogs



embedded image


Cyclic amide analogs were prepared according to Scheme 6. 2-Amino-1-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-3-pyrrolidin-1-yl-propan-1-ol was prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 B2. This amine was coupled with various nitriles in potassium carbonate and glycerol, under an atmosphere of nitrogen, for example, at 115° C. for 18 hours. Compound 323 characterized by the following structural formula was prepared by following Scheme 6. Compound 323 was purified by column chromatography using a mixture of methanol and methylene chloride.




embedded image



1H NMR (CDCl3 400 mHz, ppm); 0.95 (t, 3H), 1.35 (m, 2H), 1.6 (m, 2H), 1.8 (m, 4H), 2.7 (m, 6H), 2.8 (m, 2H), 4.2 (m, 5H), 5.4 (d, 1H), 6.85 (m, 3H), 7.2 (m, 2H), 7.9 (d, 2H). M/Z for C24H32N2O5 [M−H]+ 421.54.


Example 2E77
Preparation of N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(4-(2-methoxyethoxy)phenyl)-5-oxopentanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 1.25 (t, 3H), 1.8 (br, 4H), 1.95 (m, 2H), 2.05 (t, 3H), 2.25 (m, 2H), 3.65 (m, 4H), 2.90 (m, 4H), 3.4 (s, 4H), 3.8 (m, 2H), 4.15 (m, 9H), 4.95 (br, 1H), 5.95 (br, 1H), 6.88-6.95 (m, 5H), 7.9 (m, 2H). M/Z for C29H38N2O7 [M+H]=527.


Example 2E78
Preparation of N-((1R,2R)-1-(4-chlorophenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 1.76 (br, 4H), 2.52-2.57 (sq, 2H), 2.60-2.73 (br, 4H), 2.88-2.96 (st, 2H), 3.8 (s, 3H), 3.96-4.0 (m, 1H), 4.06-4.11 (1H), 4.21-4.24 (m, 1H), 5.07 (d, 1H), 6.57 (bd, 1H), 6.77-6.87 (sq, 4H), 7.20-7.27 (sd, 6H). M/Z for C23H29ClN2O4 [M+H]=433.


Example 2E79
Preparation of N-((1R,2R)-1-(4-chlorophenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 1.54-1.62 (br, 4H), 1.79 (br, 4H), 2.14 (t, 2H), 2.63-2.69 (br, 4H), 2.83-2.89 (m, 4H), 3.88 (s, 3H), 4.24 (br, 1H), 5.03 (d, 1H), 5.93 (d, 1H), 6.93 (d, 2H), 7.26-7.32 (m, 4H), 7.93 (d, 2H). M/Z for C26H33ClN2O4 [M+H]=473.


Example 2E80
Preparation of N-((1R,2R)-1-hydroxy-1-(4-methoxy-3-methylphenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 1.77 (br, 4H), 1.91-2.0 (m, 2H), 2.18 (s, 3H), 2.2-2.25 (m, 2H), 2.62-2.69 (m, 4H), 2.77-2.89 (m, 4H), 3.75 (s, 3H), 3.88 (s, 3H), 4.23 (m, 1H), 4.96 (sd, 1H), 5.93 (br, 1H), 6.75 (br, 1H), 6.94 (d, 2H), 7.1 (br, 2H), 7.88 (m, 2H). M/Z for C28H38N2O5 [M+H]=483.


Example 2E81
Preparation of N-((1R,2R)-1-hydroxy-1-(4-methoxy-3-methylphenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-(trifluoromethoxy)phenyl)acetamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 1.73 (br, 4H), 2.20 (s, 3H), 2.55 (br, 4H), 2.81 (st, 2H), 3.46 (s, 2H), 3.82 (s, 3H), 4.15 (m, 1H), 4.92 (sd, 1H), 5.85 (br, 1H), 672 (d, 1H), 6.95 (sd, 1H), 7.00 (br, 1H), 7.2 (m, 4H). M/Z for C24H29F3N2O4 [M+H]=467.


Example 2E82
Preparation of N-((1R,2R)-1-hydroxy-3-(pyrrolidin-1-yl)-1-(2,2,3,3-tetrafluoro-2,3-dihydrobenzo[b][1,4]dioxin-6-yl)propan-2-yl)octanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 0.9 (t, 3H), 1.2 (rm, 11H), 1.5 (bm, 8H), 1.8 (br, 4H), 2.1 (m, 2H), 2.65 (m, 4H), 2.90 (m, 2H), 4.2 (m, 1H), 5.05 (d, 1H), 5.85 (br, 1H), 7.2 (m, 3H). M/Z for C23H32F4N2O4 [M+H]=477.


Example 2E83
Preparation of N-((1R,2R)-1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-(trifluoromethoxy)phenyl)acetamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 1.75 (br, 4H), 2.55 (br, 4H), 2.85 (m, 2H), 3.45 (s, 2H), 4.1 (m, 1H), 5.0 (d, 1H), 5.85 (br, 1H), 6.8-6.95 (3H), 7.1-7.20 (4H). M/Z for C23H23F5N2O5 [M+H]=503.


Example 2E84
Preparation of N-((1R,2R)-1-hydroxy-1-(4-(2-phenoxyethoxy)phenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 1.6 (m, 4H), 1.8 (m, 4H), 2.15 (t, 2H), 2.7 (m, 4H), 2.85 (m, 4H), 3.8 (s, 3H), 4.25 (m, 1H), 4.3 (s, 3H), 5.0 (d, 1H), 5.95 (br, 1H), 6.9 (m, 7H), 7.2 (m, 4H), 7.95 (m, 2H). M/Z for C34H42N2O6 [M+H]=575.


Example 2E85
Preparation of N-((1R,2R)-1-(4-(cyclobutylmethoxy)phenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 1.6 (br, 4H), 1.9 (m, 9H), 2.05 (m, 5H), 2.75-3.0 (m, 9H), 3.8 (m, 5H), 4.3 (m, 1H), 5.0 (m, 1H), 6.2 (br, 1H), 6.9 (m, 4H), 7.25 (m, 2H), 7.9 (m, 2H). M/Z for C31H42N2O5 [M+H]=523.


Example 2E86
Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 1.6 (m, 8H), 1.8 (m, 10H), 2.15 (t, 2H), 2.65 (m, 4H), 2.8 (d, 2H), 2.9 (m, 5H), 2.95 (s, 3H), 4.0 (t, 2H), 4.15 (m, 1H), 4.45 (t, 1H), 4.55 (t, 1H), 4.95 (br, 2H), 5.9 (br, 1H), 6.90 (m, 4H), 7.20 (m, 2H), 7.95 (m, 2H), 8.05 (br, 1H). M/Z for C30H41FN2O5 [M+H]=529.


Example 2E87
Preparation of N-((1R,2R)-1-hydroxy-3-(pyrrolidin-1-yl)-1-(4-(3-(p-tolyloxy)propoxy)phenyl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 1.65 (m, 4H), 1.8 (m, 4H), 2.15 (t, 2H), 2.25 (t, 2H), 2.3 (s, 3H), 2.65 (m, 4H), 2.8 (m, 2H), 2.9 (t, 2H), 3.85 (s, 3H), 4.15 (m, 4H), 4.25 (m, 1H), 4.95 (br, 1H), 6.85 (br, 1H), 6.8-6.95 (m, 6H), 7.05 (m, 2H), 7.2 (m, 2H), 7.95 (2H). M/Z for C36H46N2O6 [M+H]=603.


Example 2E88
Preparation of N-((1R,2R)-1-(4-butoxyphenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 1.0 (t, 3H), 1.5 (m, 2H), 1.65 (m, 4H), 1.8 (m, 6H), 2.15 (t, 2H), 2.65 (m, 4H, 2.8 (m, 2H), 2.9 (t, 2H), 3.85 (s, 3H), 3.9 (t, 2H), 4.15 (m, 1H), 4.95 (br, 1H), 5.90 (br, 1H), 6.8-6.95 (m, 4H), 7.2 (br, 2H), 7.90 (br, 2H). M/Z for C30H42N2O5 [M+H]=511.


Example 2E89
Preparation of N-((1R,2R)-1-(4-(hexyloxy)phenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(4-(2-methoxyethoxy)phenyl)-5-oxopentanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 0.95 (t, 3H), 1.35 (m, 4H), 1.45 (m, 2H), 1.7 (m, 6H), 1.95 (m, 2H), 2.20 (m, 2H), 2.65 (m, 4H), 2.85 (m, 4H), 3.45 (s, 3H), 3.75 (m, 2H), 3.90 (t, 2H), 4.15 (m, 2H), 4.25 (m, 1H), 4.95 (m, 1H), 6.0 (br, 1H), 6.8 (m, 2H), 6.9 (m, 2H), 7.2 (m, 2H), 7.90 (m, 2H). M/Z for C33H48N2O6 [M+H]=569.


Example 2E90
Preparation of N-((1R,2R)-1-(4-(hexyloxy)phenyl)-1-hydroxy-3-((S)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 0.95 (t, 3H), 1.35 (m, 4H), 1.45 (m, 2H), 1.75 (m, 3H), 2.1 (m, 1H), 2.4 (m, 1H), 2.55 (t, 2H), 2.75 (m, 3H), 2.85 (m, 1H), 3.0 (m, 1H), 3.75 (s, 3H), 3.90 (t, 2H), 4.05 (m, 2H), 4.1 (m, 1H), 4.15 (m, 1H), 5.0 (br, 1H), 6.6 (br, 1H), 6.8 (m, 6H), 7.2 (m, 2H). M/Z for C29H42N2O6 [M+H]=515.


Example 2E91
Preparation of 2-(4′-chlorobiphenyl-4-yl)-N-((1R,2R)-3-(R)-3-fluoropyrrolidin-1-yl)-1-hydroxy-1-(4-isopropoxyphenyl)propan-2-yl)acetamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 1.15 (m, 6H), 2.10 (m, 2H), 2.4 (q, 1H), 2.5-2.75 (m, 4H), 2.95 (m, 2H), 3.55 (d, 2H), 4.15 (m, 1H), 4.45 (m, 1H), 4.85 (br, 1H), 5.10 (m, 1H), 5.9 (br, 1H), 6.75 (m, 2H), 7.05 (br, 2H), 7.20 (m, 2H), 7.4 (m, 2H), 7.5 (m, 4H). M/Z for C30H34ClFN2O3 [M+H]=528.


Example 2E92
Preparation of N-((1R,2R)-1-hydroxy-3-((S)-3-hydroxypyrrolidin-1-yl)-1-(4-isopropoxyphenyl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide



embedded image



1H NMR (CDCl3, 400 mHz, ppm): 1.35 (d, 6H), 1.7 (m, 1H), 2.1 (m, 1H), 2.45 (m, 1H), 2.55 (t, 2H), 2.7-2.9 (m, 4H), 3.0 (m, 1H), 3.8 (s, 3H), 4.05 (m, 1H), 4.15 (m, 1H), 4.20 (m, 1H), 4.35 (m, 1H), 4.5 (m, 1H), 4.95 (d, 1H), 6.55 (br, 1H), 6.75-6.85 (m, 6H), 7.2 (m, 2H). M/Z for C26H36N2O6 [M+H]=473.


Example 2E93
Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-5-(4-methoxyphenyl)-5-oxopentanamide



embedded image



1H NMR (400 MHz, CDCl3) δ=1.7-2.2 (m, 12H), 2.4 (dd, 1H), 2.65-2.9 (m, 6H), 3.0 (dd, 1H), 3.90 (s, 3H), 3.91 (dd, 2H), 4.1-4.22 (m, 1H), 4.3-4.4 (m, 1H), 4.4 (dd, 1H), 4.6 (dd, 1H), 4.91 (d, 1H), 6.19 (d, 1H), 6.83 (d, 2H), 6.92 (d, 2H), 7.22 (d, 2H), 7.9 (d, 2H); MS for C29H39FN2O6 m/z 531 [M+H].


Example 2E94
Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-8-methoxyoctanamide



embedded image



1H NMR (400 MHz, CDCl3) δ=1.2-1.34 (m, 6H), 1.45-1.6 (m, 4H), 1.7-1.8 (m, 1H), 1.86-1.95 (m, 4H), 2.0-2.2 (m, 4), 2.4-2.5 (m, 2H), 2.7-2.8 (m, 4H), 2.98 (dd, 1H), 3.3 (s, 3H), 3.53 (dd, 1H), 4.0 (dd, 2H), 4.1-4.2 (m, 1H), 4.3-4.4 (m, 1H), 4.5 (dd, 1H), 4.58 (dd, 1H), 4.9 (d, 1H), 5.9 (d, 1H), 6.85 (d, 2H), 7.22 (d, 2H); MS for C26H43FN2O5 m/z 483 [M+H]


Example 2E95
Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-4-(4-methoxyphenoxy)butanamide



embedded image



1H NMR (400 MHz, CDCl3) δ=1.6-2.2 (m, 9H), 2.3-2.5 (m, 4H), 2.6-2.8 (m, 5), 2.9 (dd, 1H), 3.7 (s, 3H), 3.85 (dd, 2H), 3.95 (dd, 2H), 4.2-4.3 (m, 2H), 4.5 (dd, 1H), 4.6 (dd, 1H), 4.9 (d, 1H), 6.0 (d, 1H), 6.7-7 (m, 6H), 7.1-7.2 (d, 2H); MS for C28H39FN2O6 m/z 519[M+H].


Example 2E96
Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide



embedded image



1H NMR (400 MHz, CDCl3) δ=1.6-1.7 (m, 1H), 1.8-2 (m, 4H), 2.1-2.2 (m, 1), 2.4-2.5 (m, 1H), 2.6 (t, 2H), 2.7-2.85 (m, 4H), 3.0 (dd, 1H), 3.7 (s, 3H), 4.0 (t, 2H), 4.1-4.3 (m, 4H), 4.5 (dd, 1H), 4.6 (dd, 1H) 4.98 (d, 1H), 6.6 (d, 1H), 6.7-6.9 (m, 6H), 7.1-7.22 (d, 2H); MS for C27H37FN2O6 m/z 505[M+H].


Example 2E97
Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-7-(4-methoxyphenyl)-7-oxoheptanamide



embedded image



1H NMR (400 MHz, CDCl3) δ=1.1-1.4 (m, 3H), 1.5-2.0 (m, 12H), 2.1-2.2 (dd, 4H), 2.4-2.90 (m, 10H), 3.0 (dd, 1H), 3.75 (s, 3H), 3.9 (dd, 2H), 4.1-4.2 (m, 1H), 4.3-4.4.5 (m, 2H), 4.57 (dd, 1H), 4.9 (d, 1H), 5.9 (d, 1H), 6.8 (d, 2H), 6.9 (d, 2H), 7.2 (d, 2H), 7.9 (d, 2H); MS for C31H43FN2O6 m/z 559[M+H].


Example 2E98
Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide



embedded image



1H NMR (400 MHz, CD3OD) δ=1.4-1.6 (m, 4H), 1.6-1.8 (m, 5H), 2.0-2.2 (m, 1H), 2.2-2.3 (m, 2H), 2.4-2.6 (m, 3H), 2.7-3.0 (m, 5H), 3.8 (s, 3H), 3.9 (dd, 1H), 4.1-4.25 (m, 1H), 4.3-4.38 (m, 1H), 4.4 (dd, 1H), 4.5 (dd, 1H), 6.8 (d, 2H), 7.1 (d, 2H), 7.2 (d, 2H), 8 (d, 2H); MS for C30H41FN2O6 m/z 545[M+H]


Example 2E99
Preparation of N-((1S,2R)-1-(5-chlorothiophen-2-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide



embedded image



1H NMR (400 MHz, CDCl3) δ=1.7 (broad s, 4H), 2.5-2.7 (m, 7H), 2.8 (dd, 1H), 2.94 (dd, 1H), 3.77 (s, 3H) 4.1-4.2 (m, 2H), 4.3-4.35 (m, 1H), 5.18 (d, 1H), 6.55 (d, 1H), 6.66 (d, 1H), 6.67 (d, 1H), 6.7-6.9 (m, 4H); MS for C21H27ClN2O4S m/z 439[M+H].


Example 2E100
Preparation of N-((1S,2R)-1-hydroxy-1-(3-methylthiophen-2-yl)-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide 2,2,2-trifluoroacetate



embedded image



1H NMR (400 MHz, CD3OD) δ=1.8-2.2 (m, 4H), 2.24 (s, 3H) 2.5-2.8 (m, 2H), 3.0-3.2 (m, 2H), 3.5 (dd, 2H), 3.7 (s, 3H), 3.6-3.8 (m, 2H), 4.0-4.2 (m, 2H), 4.5 (dd, 1H), 5.2 (s, 1H), 6.8 (d, 1H), 6.84 (broad s, 4H), 7.2 (d, 1H); MS for C22H30N2O4S m/z 419[M+H].


Example 2E101
Preparation of Compound 257: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-morpholinopropan-2-yl)-3-(4-methoxyphenoxy)propanamide



embedded image



1H NMR (400 MHz, CDCl3) δ=2.4-2.6 (m, 7H), 2.7 (dd, 1H), 3.5-3.7 (m, 4H), 3.8 (s, 3H), 4-4.2 (m, 2H), 4.2 (s, 4H), 4.2-4.3 (m, 1H), 4.9 (d, 1H), 6.5 (d, 1H), 6.7-6.9 (m, 7H); MS for C25H32N2O7 m/z 473.1 [M+H].


Example 2E102
Preparation of Compound 261: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(piperidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide



embedded image



1H NMR (400 MHz, CDCl3) δ=1.4 (br, 2H), 1.6 (br, 4H), 2.2-2.8 (m, 6H), 3.8 (s, 3H), 4.0-4.2 (m, 2H), 4.2 (s, 4H), 4.2-4.3 (m, 1H), 4.9 (s, 1H), 6.4 (d, 1H), 6.7-6.9 (m, 7H); MS for C25H34N2O6 m/z 471.1 [M+H].


Example 2B1
Preparation of Compound 6: 1-benzyl-3-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.4-2.6 (m, 5H), 2.6-2.7 (dd, 1H), 4.0 (m, 1H), 4.2 (s, 4H), 4.3 (m, 2H), 4.8 (d, 1H), 4.86 (d, 1H), 5.0 (br, 1H), 6.6-6.9 (m, 3H), 7.2-7.4 (m, 5H); MS for C23H29N3O4 m/z 412.2 [M+H].


Example 2B2
Preparation of Compound 17: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-fluorobenzyl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.6 (s, 4H), 2.4-2.6 (m, 6H), 3.9 (m, 1H), 4.0-4.1 (m, 2H), 4.13 (s, 4H), 4.7 (d, 1H), 5.4 (d, 1H), 6.6-7.1 (m, 7H); MS for C23H28FN3O4 m/z 430.2 [M+H].


Example 2B3
Preparation of Compound 40: 1-(4-bromobenzyl)-3-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]-dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.4-2.8 (m, 6H), 4.0 (m, 1H), 4.1-4.2 (m, 2H) 4.2 (s, 4H), 4.8 (d, 1H), 5.3 (d, 1H), 5.6-5.8 (br, 1H), 6.8-7.0 (m, 3H), 7.0 (d, 2H), 7.4 (d, 2H); MS for C23H28BrN3O4 m/z 490 [M], 491 [M+H], 492 [M+2].


Example 2B4
Preparation of Compound 41: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methoxybenzyl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.6 (s, 4H), 2.4-2.6 (m, 6H), 3.7 (s, 3H), 3.9 (m, 1H), 4.1 (d, 2H), 4.2 (s, 4H), 4.7 (d, 1H), 5.2 (d, 1H), 5.5-5.7 (br, 1H), 6.6-6.8 (m, 5H), 7.1 (d, 2H); MS for C24H31N3O5 m/z 442.2 [M+H].


Example 2B5
Preparation of Compound 80: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(3-methoxybenzyl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.4-2.6 (m, 6H), 3.8 (s, 3H), 4.0 (m, 1H), 4.1-4.2 (s, 6H), 4.8 (d, 1H), 5.1 (d, 1H), 5.2-5.4 (br, 1H), 6.6-6.8 (m, 6H), 7.2 (dd, 1H); MS for C24H31N3O5 m/z 442.2 [M+H].


Example 2B6
Preparation of Compound 42: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methylbenzyl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.6 (s, 4H), 2.3 (s, 3H), 2.4-2.6 (m, 6H), 4.0 (m, 1H), 4.2 (d, 2H), 4.21 (s, 4H), 4.7 (d, 1H), 5.2 (d, 1H), 5.4-5.6 (br, 1H), 6.7-7.1 (m, 7H); MS (for C24H31N3O4 m/z 426.2 [M+H].


Example 2B7
Preparation of Compound 43: 1-(4-chlorobenzyl)-3-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.5-2.7 (m, 6H), 4.0 (m, 1H), 4.2 (s, 6H), 4.8 (d, 1H), 5.2 (d, 1H), 5.4-5.5 (br, 1H), 6.7-6.9 (m, 3H), 7.1 (d, 2H), 7.3 (d, 2H); MS for C23H28N3ClO4 m/z 446 [M+H], 447.5 [M+2].


Example 2B8
Preparation of Compound 10: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-((S)-1-phenylethyl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.4 (d, 3H), 1.6 (s, 4H), 2.2-2.5 (m, 4H), 2.5 (dd, 1H), 2.6 (dd, 1H), 3.9 (m, 1H), 4.2 (s, 4H), 4.5 (m, 1H), 4.8 (d, 1H), 5.0 (d, 1H), 5.1-5.3 (br, 1H), 6.6-6.9 (m, 3H), 7.2-7.4 (m, 5H); MS for C24H31N3O4 m/z 426.2 [M+H].


Example 2B9
Preparation of Compound 286: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(®-1-phenylethyl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.3 (d, 3H), 1.7 (s, 4H), 2.2-2.6 (m, 6H), 3.9 (m, 1H), 4.2 (s, 4H), 4.6-4.7 (m, 2H), 5.3 (d, 1H), 5.6-5.7 (br, 1H), 6.6 (d, 1H), 6.7 (d, 1H), 6.8 (s, 1H), 7.2-7.4 (m, 5H); MS for C24H31N3O4 m/z 426.0 [M+H].


Example 2B10
Preparation of Compound 69: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(naphthalen-2-yl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.6 (s, 4H), 2.4-2.8 (m, 6H), 4.1 (s, 5H), 4.8 (s, 1H), 6.0 (d, 1H), 6.7 (s, 2H), 6.9 (s, 1H), 7.1-7.8 (m, 7H); MS for C26H29N3O4 m/z 448.1 [M+H].


Example 2B11
Preparation of Compound 288: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(naphthalen-1-yl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.6 (s, 4H), 2.4 (s, 4H), 2.6 (d, 2H), 4.1 (m, 1H), 4.2 (s, 4H), 4.8 (d, 1H), 5.4 (d, 1H), 6.5 (d, 1H), 6.6 (d, 1H), 6.7 (s, 1H), 7.2-7.6 (m, 3H), 7.7 (d, 1H), 7.8 (d, 1H), 8.0 (d, 1H); MS for C26H29N3O4 m/z 448.1 [M+H].


Example 2B12
Preparation of Compound 71: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-((S)-1-(naphthalen-1-yl)ethyl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.4 (s, 4H), 1.5 (d, 3H), 2.3 (s, 4H), 2.4 (dd, 1H), 2.6 (dd, 1H), 3.9 (br, 1H), 4.2 (s, 4H), 4.7 (s, 1H), 5.0 (d, 1H), 5.3 (br, 1H), 5.5 (br, 1H), 6.6 (m, 3H), 7.4-7.6 (m, 4H), 7.7 (d, 1H), 7.8 (d, 1H), 8.1 (d, 1H); MS for C28H33N3O4 m/z 476.2 [M+H].


Example 2B13
Preparation of Compound 70: 1-(biphenyl-4-yl)-3-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.6-2.8 (m, 6H), 4.1 (br, 1H), 4.2 (s, 4H), 4.9 (br, 1H), 5.9 (d, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.2-7.6 (m, 9H); for C28H31N3O4 m/z 474.1 [M+H].


Example 2B14
Preparation of Compound 81: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(trifluoromethyl)phenyl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.4-2.7 (m, 6H), 4.0 (br, 1H), 4.2 (s, 4H), 4.8 (br, 1H), 5.9 (br, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.3 (d, 2H), 7.5 (d, 2H); MS for C23H26F3N3O4 m/z 465.97 [M+H].


Example 2B15
Preparation of Compound 68: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(3-(trifluoromethyl)phenyl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.5-2.9 (m, 6H), 4.0 (br, 1H), 4.2 (s, 4H), 4.8 (br, 1H), 5.9 (br, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.2-7.6 (m, 4H); MS for C23H26F3N3O4 m/z 466.0 [M+H].


Example 2B16
Preparation of Compound 82: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(trifluoromethoxy)phenyl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.4-2.7 (m, 6H), 4.0 (br, 1H), 4.2 (s, 4H), 4.8 (br, 1H), 5.9 (br, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.0 (d, 2H), 7.2 (d, 2H); MS for C23H26F3N3O5 m/z 481.5 [M], 482.5 [M+H].


Example 2B17
Preparation of Compound 133: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(2-methylthiazol-4-yl)phenyl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.4-2.7 (m, 6H), 2.7 (s, 3H), 4.1 (br, 1H), 4.2 (s, 4H), 4.8 (br, 1H), 5.9 (d, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.2 (s, 1H), 7.3 (d, 2H), 7.7 (d, 2H); MS for C26H30N4O4S m/z 494.9 [M+H].


Example 2B18
Preparation of Compound 7: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-dodecylurea



embedded image



1H NMR (400 MHz, CDCl3) δ=0.9 (t, 3H), 1.3 (br, 18H), 1.4 (m, 2H), 1.8 (s, 4H), 2.5-2.7 (m, 6H), 3.1 (q, 2H), 4.0 (m, 1H), 4.3 (s, 4H), 4.4 (br, 1H), 4.76 (d, 1H), 4.8 (d, 1H), 6.7-6.8 (dd, 2H), 6.9 (s, 1H); MS for C28H47N3O4 m/z 489.7 [M+H], 490.9 [M+2].


Example 2B19
Preparation of Compound 287: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(2-(thiophen-2-yl)ethyl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.5-2.7 (m, 6H), 3.0 (t, 2H), 3.8 (q, 2H), 4.0 (m, 1H), 4.2 (s, 4H), 4.8 (d, 2H), 4.9 (d, 1H), 6.7-6.8 (m, 3H), 6.9 (d, 1H), 6.9 (dd-1H), 7.1 (d, 1H); MS for C22H29N3O4S m/z 432.1 [M+H].


Example 2B20
Preparation of 1-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-3-(4-methoxybenzyl)urea 2,2,2-trifluoroacetate



embedded image



1H NMR (400 MHz, CD3OD) δ=1.8-2.2 (m, 6H), 3.2-3.3 (dd, 2H), 3.4-3.7 (m, 3H), 3.8 (s, 3H), 3.82-4.1 (m, 4H), 4.3 (dd, 2H), 4.4 (dd, 1H), 4.5 (dd, 2H), 4.8 (dd, 1H), 6.8 (d, 2H), 6.9 (d, 2H), 7 (m, 2H), 7.3 (d, 2H); MS for C26H36FN3O5 m/z 491[M+H].


Example 2B21
Preparation of 1-(4-chlorobenzyl)-3-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)urea



embedded image



1H NMR (400 MHz, CDCl3) δ=1.6-1.8 (m, 3H), 1.8-2 (m, 5H), 2-2.2 (m, 2H), 2.2-2.3 (m, 2H), 2.8-2.4 (m, 5H), 2.9 (m, 1H), 3.9-4.0 (m, 3), 4.1-4.4 (m, 3H), 4.5 (t, 1H), 4.6-4.7 (m, 1H), 4.75 (d, 1H), 6.8 (d, 2H), 7.1 (d, 2H), 7.15-7.3 (m, 4H); MS for C25H33ClFN3O4 m/z 494[M+H].


Example 3
GM3 Elisa Assay

B16-FO cells from ATCC (American Tissue Culture Collection) were grown in DMEM media (ATCC) with 10% Fetal Bovine Serum (Hyclone) and Pen/Step/Glutamine (Biowhittaker). 4000 cells per well were plated on collagen coated plates (BD) and allowed to attach for 6 hours in an incubator (37 degrees, 5% CO2). After 6 hours the compounds and controls were added to the wells, the plates mixed and returned to the incubator for 2 days. Day of assay the cells were fixed for 20 minutes with 1% formaldehyde and then washed with Tris Buffered Saline (TBS) 3 times, 150 μl of TBS was left in the wells and 50 μl of goat serum (Invitrogen) was added, the plates mixed and incubated for 1 hour at room temperature. The plates were flicked and the cells incubated with the monoclonal Antibody to GM3 (NeuAc) (Cosmo) for 45 minutes as room temperature. The plates were then washed 3 times with TBS, leaving 150 μl of TBS in the wells and Peroxidase AffinPure F (ab′) 2 frag Gt Anti-mouse IgM, μ Chain Specific (Jackson Immno Research) was added in 50 μl, the plates mixed and incubated for 45 minutes at room temperature. The plates were washed 3 times with TBS, flicked and blotted and 100 μl of Quantablu (Pierce) was added to the wells and incubated for 1 hour then read on a Fluorometer at Ex 325 and Em 420. The data was then analyzed using standard programs.


The results of the GM3 Elisa assay are summarized in Tables 1-3. In Tables 1-3, IC50 values are indicated as “A,” “B,” C,” “D,” and “E” for those of less than or equal to 0.1 μm; those of greater than 0.1 μm, and less than or equal to 1 μm; those of greater than 1 μm, and less than or equal to 3 μm; those of greater than 3 μm, and less than or equal to 10 μm; those of greater than 10 μm, respectively. As shown in Tables 1-3, numerous compounds of the invention were shown to be inhibitors of GM3.









TABLE 1







IC 50 Values from GM3 Elisa Assay









Z—R*
Compound
IC50_uM_Mean







embedded image


 1
B







embedded image


 2
C







embedded image


 3
C







embedded image


 4
B







embedded image


 5
B







embedded image


 6
B







embedded image


 7
A







embedded image


 8
B







embedded image


 9
B







embedded image


 10
B







embedded image


 11
A







embedded image


 12
B







embedded image


 13
B







embedded image


 14
B







embedded image


 15
B







embedded image


 16
D







embedded image


 17
A







embedded image


 18
B







embedded image


 19
B







embedded image


 20
B







embedded image


 21
A







embedded image


 22
C







embedded image


 23
A







embedded image


 24
B







embedded image


 25
B







embedded image


 26
B







embedded image


 27
A







embedded image


 28
A







embedded image


 29
A







embedded image


 30
B







embedded image


 31
B







embedded image


 32
A







embedded image


 33
A







embedded image


 34
C







embedded image


 35
C







embedded image


 36
B







embedded image


 37
B







embedded image


 38
B







embedded image


 39
A







embedded image


 40
A







embedded image


 41
A







embedded image


 42
A







embedded image


 43
A







embedded image


 44
B







embedded image


 45
B







embedded image


 46
B







embedded image


 47
B







embedded image


 48
A







embedded image


 49
A







embedded image


 50
B







embedded image


 51
B







embedded image


 52
B







embedded image


 53
C







embedded image


 54
A







embedded image


 55
A







embedded image


 56
A







embedded image


 57
A







embedded image


 58
B







embedded image


 59
A







embedded image


 60
A







embedded image


 61
A







embedded image


 62
B







embedded image


 63
A







embedded image


 64
A







embedded image


 65
A







embedded image


 66
A







embedded image


 67
A







embedded image


 68
B







embedded image


 69
B







embedded image


 70
A







embedded image


 71
B







embedded image


 72
B







embedded image


 73
A







embedded image


 74
B







embedded image


 75
B







embedded image


 76
B







embedded image


 77
A







embedded image


 78
B







embedded image


 79
A







embedded image


 80
B







embedded image


 81
B







embedded image


 82
A







embedded image


 83
A







embedded image


 84
C







embedded image


 85
A







embedded image


 86
A







embedded image


 87
A







embedded image


 88
B







embedded image


 89
B







embedded image


 90
B







embedded image


 91
B







embedded image


 92
A







embedded image


 93
A







embedded image


 94
C







embedded image


 95
A







embedded image


 96
A







embedded image


 97
B







embedded image


 98
D







embedded image


 99
B







embedded image


100
A







embedded image


101
A







embedded image


102
C







embedded image


103
A







embedded image


104
B







embedded image


105
B







embedded image


106
B







embedded image


107
D







embedded image


108
B







embedded image


109
A







embedded image


110
A







embedded image


111
B







embedded image


112
B







embedded image


113
B







embedded image


114
B







embedded image


115
A







embedded image


116
B







embedded image


117
B







embedded image


118
B







embedded image


119
A







embedded image


120
B







embedded image


121
D







embedded image


122
D







embedded image


123
C







embedded image


124
C







embedded image


125
B







embedded image


126
D







embedded image


127
B







embedded image


128
C







embedded image


129
B







embedded image


130
C







embedded image


131
A







embedded image


132
D







embedded image


133
D







embedded image


134
C







embedded image


135
C







embedded image


136
A







embedded image


137
A







embedded image


138
A







embedded image


139
A







embedded image


140
A







embedded image


141
A







embedded image


142
A







embedded image


143
A







embedded image


144
A







embedded image


145
B







embedded image


146
B







embedded image


147
B







embedded image


148
A







embedded image


149
B







embedded image


150
C







embedded image


151
B







embedded image


152
A







embedded image


153
B







embedded image


154
B







embedded image


155
B







embedded image


156
A







embedded image


157
A







embedded image


158
A







embedded image


159
A







embedded image


160
B







embedded image


161
B







embedded image


162
A







embedded image


163
A







embedded image


164
A







embedded image


165
A







embedded image


166
A







embedded image


167
A







embedded image


168
A







embedded image


169
A







embedded image


170
B







embedded image


171
C







embedded image


172
B







embedded image


173
A







embedded image


174
A







embedded image


175
A







embedded image


176
A







embedded image


177
B







embedded image


178
A







embedded image


179
A







embedded image


180
B







embedded image


181
A







embedded image


182
B







embedded image


183
A







embedded image


184
B







embedded image


185
B







embedded image


186
A







embedded image


187
B







embedded image


188
B







embedded image


189
B







embedded image


190
A







embedded image


191
A







embedded image


192
B







embedded image


193
B







embedded image


194
B







embedded image


195
B







embedded image


196
C







embedded image


197
A







embedded image


198
B







embedded image


199
A







embedded image


200
B







embedded image


201
C







embedded image


202
B







embedded image


203
A







embedded image


204
B







embedded image


205
A







embedded image


206
B







embedded image


207
A







embedded image


208
B







embedded image


209
A







embedded image


210
B







embedded image


211
B







embedded image


212
D







embedded image


213
B







embedded image


214
D







embedded image


215
B







embedded image


216
A







embedded image


217
A







embedded image


218
D







embedded image


219
D







embedded image


220
B







embedded image


221
A







embedded image


222
A







embedded image


223
A







embedded image


224
B







embedded image


225
A







embedded image


226
D







embedded image


227
C







embedded image


228
B







embedded image


229
E







embedded image


230
B







embedded image


231
A







embedded image


232
C







embedded image


233
C







embedded image


234
B







embedded image


235
B







embedded image


236
A







embedded image


237
A







embedded image


238
A







embedded image


239
D







embedded image


240
C







embedded image


241
A







embedded image


291
C







embedded image


292
C







embedded image


293
B







embedded image


294
B







embedded image


295
A







embedded image


296
B







embedded image


297
C







embedded image


298
B







embedded image


299
A







embedded image


300
A







embedded image


301
A







embedded image


302
A







embedded image


303
A







embedded image


304
A







embedded image


305
A







embedded image


306
B







embedded image


307
A







embedded image


308
A







embedded image















TABLE 2







IC 50 Values from GM3 Elisa Assay









Structure
Compound
IC50_uM_Mean







embedded image


242
D







embedded image


243
A







embedded image


244
A







embedded image


245
D







embedded image


246
C







embedded image


247
A







embedded image


248
B







embedded image


249
C







embedded image


250
B







embedded image


251
B







embedded image


252
B







embedded image


253
B







embedded image


254
B







embedded image


255
C







embedded image


256
B







embedded image


257
D







embedded image


258
D







embedded image


259
A







embedded image


260
A







embedded image


261
B







embedded image


262
A







embedded image


263
B







embedded image


264
A







embedded image


265
A







embedded image


266
A







embedded image


267
A







embedded image


268
A







embedded image


269
A







embedded image


270
A







embedded image


271
A







embedded image


272
A







embedded image


273
B







embedded image


274
C







embedded image


275
A







embedded image


276
B







embedded image


277
D







embedded image


278
E







embedded image


279
C







embedded image


282
C







embedded image


283
A







embedded image


284
A







embedded image


285
A







embedded image


286
D







embedded image


287
C







embedded image


289
B







embedded image


309
A







embedded image


310
C







embedded image


311
C







embedded image


312
B







embedded image


313
A







embedded image


314
C







embedded image


315
B







embedded image


316
D







embedded image


317
B







embedded image


318
B







embedded image


319
B







embedded image


320
A







embedded image


321
C







embedded image


322
B
















TABLE 3







IC 50 Values











Structure
IC50_uM_Mean
Compound








embedded image


B
340








embedded image


A
341








embedded image


B
342








embedded image


B
343








embedded image


A
344








embedded image


A
345








embedded image


B
346








embedded image


B
347








embedded image


B
348








embedded image


B
349








embedded image


A
350








embedded image


B
351








embedded image


D
352








embedded image


B
353








embedded image


B
354








embedded image


C
355








embedded image


C
356








embedded image


B
357








embedded image


A
358








embedded image


B
359








embedded image


B
360








embedded image


D
361








embedded image


D
362








embedded image


B
363








embedded image


A
364








embedded image


A
365








embedded image


A
366








embedded image


A
367








embedded image


A
368








embedded image


A
369








embedded image


A
370








embedded image


A
371








embedded image


A
372








embedded image


A
373








embedded image


A
374








embedded image


B
375








embedded image


A
376








embedded image


A
377








embedded image


A
378








embedded image


B
379








embedded image


A
380








embedded image


C
381








embedded image


B
382








embedded image


B
383








embedded image


B
384








embedded image


C
385








embedded image


B
386








embedded image


B
387








embedded image


A
388








embedded image


A
389








embedded image


A
390








embedded image


B
391








embedded image


D
392








embedded image


D
393








embedded image


C
394








embedded image


D
395








embedded image


D
396








embedded image


D
397








embedded image


D
398








embedded image


C
399








embedded image


D
400








embedded image


B
401








embedded image


D
402








embedded image


C
403








embedded image


D
404








embedded image


C
405








embedded image


D
406








embedded image


C
407








embedded image


C
408








embedded image


B
409








embedded image


D
410








embedded image


D
411








embedded image


A
412








embedded image


A
413








embedded image


B
414








embedded image


B
415








embedded image


A
416








embedded image


A
417








embedded image


A
418








embedded image


A
419








embedded image


A
420








embedded image


A
421








embedded image


D
422








embedded image


C
423








embedded image


D
424








embedded image


D
425








embedded image


D
426








embedded image


D
427








embedded image


D
428








embedded image


D
429








embedded image


A
430








embedded image


A
431








embedded image


A
432








embedded image


A
433








embedded image


A
434








embedded image


A
435








embedded image


A
436








embedded image


A
437








embedded image


A
438








embedded image


B
439








embedded image


A
440








embedded image


A
441








embedded image


A
442








embedded image


A
443








embedded image


B
444








embedded image


B
445








embedded image


A
446








embedded image


A
447








embedded image


B
448








embedded image


A
449








embedded image


A
450








embedded image


B
451








embedded image


B
452








embedded image


A
453








embedded image


A
454








embedded image


A
455








embedded image


A
456








embedded image


A
457








embedded image


D
458








embedded image


D
459








embedded image


C
460








embedded image


B
461








embedded image


C
462








embedded image


B
463








embedded image


D
464








embedded image


B
465








embedded image


D
466








embedded image


B
467








embedded image


A
468








embedded image


B
469








embedded image


B
470








embedded image


C
471








embedded image


B
472








embedded image


A
473








embedded image


B
474








embedded image


A
475








embedded image


B
476








embedded image


D
477








embedded image


B
478








embedded image


A
479








embedded image


C
480








embedded image


D
481








embedded image


D
482








embedded image


D
483








embedded image


C
484








embedded image


D
485








embedded image


C
486








embedded image


D
487








embedded image


C
488








embedded image


D
489








embedded image


D
490








embedded image


C
491








embedded image


D
492








embedded image


C
493








embedded image


B
494








embedded image


A
495








embedded image


A
496








embedded image


A
497








embedded image


A
498








embedded image


A
499








embedded image


A
500








embedded image


A
501








embedded image


A
502








embedded image


A
503








embedded image


B
504








embedded image


D
505








embedded image


D
506








embedded image


B
507








embedded image


D
508








embedded image


B
509








embedded image


D
510








embedded image


D
511








embedded image


C
512








embedded image


D
513








embedded image


B
514








embedded image


A
515








embedded image


B
516








embedded image


B
517








embedded image


B
518








embedded image


D
519








embedded image


C
520








embedded image


D
521








embedded image


A
522








embedded image


B
523








embedded image


B
524








embedded image


A
525








embedded image


B
526








embedded image


C
527








embedded image


C
528








embedded image


A
529








embedded image


D
530








embedded image


A
531








embedded image


A
532








embedded image


B
533








embedded image


D
534








embedded image


D
535








embedded image


D
536








embedded image


A
537








embedded image


D
538








embedded image


D
539








embedded image


D
540








embedded image


D
541








embedded image


D
542








embedded image


D
543








embedded image


B
544








embedded image


B
545








embedded image


D
546








embedded image


A
547








embedded image


C
548








embedded image


D
549








embedded image


D
550








embedded image


D
551








embedded image


C
552








embedded image


D
553








embedded image


D
554








embedded image


B
555








embedded image


D
556








embedded image


D
557








embedded image


C
558








embedded image


B
559








embedded image


B
560








embedded image


D
561








embedded image


B
562








embedded image


D
563








embedded image


B
564








embedded image


A
565








embedded image


A
566








embedded image


B
567








embedded image


B
568








embedded image


D
569








embedded image


D
570








embedded image


D
571








embedded image


B
572








embedded image


B
573








embedded image


B
574








embedded image


B
575








embedded image


B
576








embedded image


B
577








embedded image


A
578








embedded image


D
579








embedded image


D
580








embedded image


B
581








embedded image


D
582








embedded image


D
583








embedded image


B
584








embedded image


B
585








embedded image


A
586








embedded image


B
587








embedded image


D
588








embedded image


C
589








embedded image


D
590








embedded image


D
591








embedded image


A
592








embedded image


B
593








embedded image


C
594








embedded image


D
595








embedded image


D
596








embedded image


D
597








embedded image


D
598








embedded image


C
599








embedded image


C
600








embedded image


D
601








embedded image


D
602








embedded image


B
603








embedded image


D
604








embedded image


D
605








embedded image


D
606








embedded image


C
607








embedded image


D
608








embedded image


B
609








embedded image


D
610








embedded image


D
611








embedded image


D
612








embedded image


D
613








embedded image


D
614








embedded image


B
615








embedded image


D
616








embedded image


C
617








embedded image


D
618








embedded image


C
619








embedded image


B
620








embedded image


C
621








embedded image


D
622








embedded image


D
623








embedded image


D
624








embedded image


D
625








embedded image


B
626








embedded image


D
627








embedded image


A
628








embedded image


B
629








embedded image


B
630








embedded image


D
631








embedded image


D
632








embedded image


B
633








embedded image


B
634








embedded image


D
635








embedded image


D
636








embedded image


B
637








embedded image


D
638








embedded image


B
639








embedded image


B
640








embedded image


A
641








embedded image


B
642








embedded image


C
643








embedded image


C
644








embedded image


D
645








embedded image


D
646








embedded image


B
647








embedded image


C
648








embedded image


D
649








embedded image


B
650








embedded image


C
651








embedded image


D
652








embedded image


A
653








embedded image


C
654








embedded image


B
655








embedded image


A
656








embedded image


B
657








embedded image


B
658








embedded image


B
659








embedded image


B
660








embedded image


C
661








embedded image


B
662








embedded image


B
663








embedded image


C
664








embedded image


D
665








embedded image


B
666








embedded image


B
667








embedded image


C
668








embedded image


D
669








embedded image


D
670








embedded image


D
671








embedded image


D
672








embedded image


D
673








embedded image


D
674








embedded image


D
675








embedded image


D
676








embedded image


D
677








embedded image


D
678








embedded image


D
679








embedded image


A
680








embedded image


C
681








embedded image


D
682








embedded image


D
683








embedded image


B
684








embedded image


D
685








embedded image


D
686








embedded image


D
687








embedded image


D
688








embedded image


D
689








embedded image


A
690








embedded image


D
691








embedded image


B
692








embedded image


A
693








embedded image


B
694








embedded image


B
695








embedded image


C
696








embedded image


B
697








embedded image


B
698








embedded image


A
699








embedded image


B
700








embedded image


C
701








embedded image


A
702








embedded image


A
703








embedded image


A
704








embedded image


A
705








embedded image


A
706








embedded image


A
707








embedded image


A
708








embedded image


A
709








embedded image


A
710








embedded image


A
711








embedded image


B
712








embedded image


B
713








embedded image


D
714








embedded image


D
715








embedded image


D
716








embedded image


D
717








embedded image


D
718








embedded image


D
719








embedded image


D
720








embedded image


D
721








embedded image


A
722








embedded image


A
723








embedded image


B
724








embedded image


B
725








embedded image


B
726








embedded image


A
727








embedded image


A
728








embedded image


A
729








embedded image


A
730








embedded image


A
731








embedded image


B
732








embedded image


A
733








embedded image


A
734








embedded image


A
735








embedded image


A
736








embedded image


B
737








embedded image


A
738








embedded image


A
739








embedded image


A
740








embedded image


A
741









Example 4
Glucosylceramide Levels in Kidneys of Mouse Model of Collapsing Glomerulopathy

A transgenic mouse model Tg26 of collapsing glomerulopathy (CG) was assessed for changes in kidney and serum glucosylceramide levels. Production of the transgenic mice is described in Dickie et al., “HIV-Associated Nephropathy in Transgenic Mice Expressing HIV-1 Genes,” Virology, 185:109-119, 1991, the entire teachings of which are incorporated herein by reference. Tg26 mice progressively develop CG due to expression of HIV proteins present in the transgene, which results in progressively increasing proteinuria. Kidneys from these animals were collected. Animals were selected based on the level of proteinuria. Mice showing low but measurable urinary proteins (+ reading) were designated early disease, while animals showing high levels of urinary protein (+++ reading) were designated late disease. Non-transgenic littermates, used as controls, demonstrated no proteinuria (non/trace readings).


Hematoxylin and eosin stained kidney sections from early disease animals demonstrate many normal glomeruli (arrow in FIG. 1A) in addition to injured glomeruli (arrowhead in FIG. 1A). However, no microcyst formation was evident at this stage of disease. At late stages of disease, injured glomeruli predominate and microcysts are obvious (* in FIG. 1A).


Kidney and serum glucosylceramide (GlcCer) levels were measured from control, early, and late stage disease samples. Kidneys were homogenized in distilled water prior to glycosphingolipid extraction. Briefly, tissues were homogenized in water using a Mini Beadbeater (Biospec Products, Bartlesville, Okla.) following vendor's protocol. The tissue density was adjusted to 100 mg/mL prior to homogenization. The homogenate was immediately stored at −80° C. until ready for analysis.


Glycosphingolipids were extracted from kidney homogenates or serum samples with methanol/acetone and analyzed by reverse-phase HPLC/mass spectroscopy to determine relative GlcCer levels. First, sphingolipids were extracted with a modified Folch method (Folch, Lees and Stanley, J. Biol. Chem., 226:497-509, 1957, the entire teachings of which are incorporated herein by reference). Briefly, an aliquot of 140 μL tissue homogenate was mixed with 0.33 mL of deionized water, 1.7 mL methanol and 1.7 mL chloroform in a glass tube. The mixture was shaken overnight at room temperature. The supernatant was dried under a stream of nitrogen.


The dried sphingolipid extract was reconstituted in methanol/chloroform/water mixture. The solution was then diluted 5-fold in volume in the vial by a solution consisting of 3:1 methanol/choloroform, 0.2% (vol/vol) formic acid (FA) and 5 mM of ammonium formate (AmF). Separation of the sphingolipids was achieved with an Agilent 1100 HPLC system (Agilent, Palo Alto, Calif.) equipped with a Waters Xbridge Phenyl 3.0×100 mm 3.5 um column. The mobile phases were composed of 0.2% (v/v) FA and 5 mM AmF in water (A) and 0.2% FA (v/v) and 5 mM AmF in 1:1 methanol/acetonitrile (B). The flow rate was 0.6 mL/min. The gradient was as follows: 70% B to 100% B in 5 min, hold at 100% B for 3 min, reset. The column was heated to 60° C. The volume of injection was 5 μL. All solvents were purchased from Sigma and were analytical grade. Sphingolipid standards were purchased from Matreya (Pleasant Gap, Pa.).


The eluent from the HPLC was analyzed by electrospray ionization (ESI) mass spectrometry using an API-4000 mass spectrometer (Applied Biosystems, Forster City, Calif.). Measurements took place in positive ion mode. Typical ESI-MS conditions were: needle voltage, 3.5 kV; curtain gas, 20; GS1, 35; GS2, 35; drying gas temperature, 400° C., collision gas density (CAD), 7. DP and CE were optimized for individual multiple-reaction-monitoring (MRM) transitions for various glucosylceramide (GL1) isoforms as follows: C16:0, 700.6/264.2, DP=71, CE=47; C18:0, 728.7/264.2, DP=81, CE=51, C22:0, 784.7/264.2, DP=66, CE=50; C23:0, 798.7/264.2; DP=66, CE=50; C24:1, 810.7/264.2, DP=76, CE=57; C24:0, 812.7/264.2, DP=76, CE=57. The dwell time for all transitions was set to 75 ms. All MRM transitions included m/z 264.2 as the product ions. The data was processed with Analyst 1.4.2.


Total phosphate in the kidney extracts was measured by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) for normalization. Total phosphate analysis was based on the method developed by Jankowski (Jankowski, Microchem. J., 70:41-49, 2001, the entire teachings of which are incorporated herein by reference). The sphingolipid extract was subject to digestion in 15% nitric acid in a microwave oven (CEM Corp., MARS-5, Mathews, N.C.) using Food 1 program. The digest was then analyzed using ICP-OES (Varian Instruments, Walnut Creek, Calif.). The readout wavelength was selected at 213.618 nm.


Total phosphotidylcholine analysis was performed as follows. Briefly, reconstituted sphingolipid extract was diluted by 100-fold with mobile phase A (see below). Separation of the various isoforms of phosphatidylcholine (PC) was achieved with an Agilent 1100 HPLC system (Agilent, Palo Alto, Calif.) equipped with a Phenomenex Luna 3 um HILIC 100×2.0 mm 3 um column (Phenomenex, Torrance, Calif.). The mobile phases were composed of 1% (v/v) AA and 5 mM AmA in a mixture of methanol/acetonitrile/water in a volume ratio of 2:97:1 (A), and in methanol containing 1% AA, 5 mM AmA and 1% water (B). The flow rate was 0.25 mL/min. The gradient was as follows: 0% B from 0 to 0.5 min., 0% B to 50% B from 0.5 min to 3 min, 100 B % at 3.01 min, hold at 100% B for 1 min., reset. The column was heated to 45° C. The volume of injection was 3 μL. All solvents were purchased from Sigma and were analytical grade. Sphingolipid standards were purchased from Matreya (Pleasant Gap, Pa.). The eluent from the HPLC was analyzed by ESI-MS using an API3000 mass spectrometer (Applied Biosystems, Forster City, Calif.). Measurements took place in positive ion mode. Precursor ion scan (PIS) was used in order to capture all isoforms, with the product ion m/z set to 184.2. Typical ESI-MS conditions were: needle voltage, 4.0 kV; curtain gas, 8; Neb, 12; GS1, 35; GS2, 35; drying gas temperature, 400° C., collision gas density (CAD), 7; DP, 40; and CE at 55. The data was processed with Analyst 1.4.2.


It was found that serum levels were similar in control, early-state and late state disease animals. Kidney GlcCer is elevated even at early stages of disease, only slightly increasing later in the disease process. This increase precedes extreme proteinuria and microcyst formation.

Claims
  • 1. A method of treating a glomerular disease selected from the group consisting of mesangial proliferative glomerulonephritis, collapsing glomerulopathy, proliferative lupus nephritis, crescentic glomerulonephritis and membranous nephropathy in a subject, comprising administering to the subject an effective amount of a glucosylceramide synthase inhibitor represented by the following structural formula:
  • 2. The method of claim 1,
  • 3. The method of claim 2, wherein: R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2,
  • 4. The method of claim 3, wherein: —N(R2R3) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl, azepinyl or morpholinyl group or
  • 5. The method of claim 4, wherein R4 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, Ar3, —OR50, —O(haloalkyl), —SR50, —NO2, —CN, —N(R51)2, —NR51C(O)R50, —C(O)R50, —C(O)O R50, —OC(O)R50, —C(O)N(R51)2, —V4—Ar3, —V—OR50, —V4—O (haloalkyl), —V4—SR50, —V4—NO2, —V4—CN, —V4—N(R51)2, —V4—NR51C(O)R50, —V4—C(O)R50, —V4—CO2R50, —V4—OC(O)R50, —V4—C(O)N(R51)2—, —O—V4—Ar3, —O—V5—N(R51)2, —S—V4—Ar3, —S—V5—N(R51)2, —N(R51)—V4—Ar3, —N(R51)—V5—N(R51)2, —NR51C(O)—V4—N(R51)2, —NR51C(O)—V4—Ar3, —C(O)—V4—N(R51)2, —C(O)—V4—Ar3, —C(O)O—V5—N(R51)2, —C(O)O—V4—Ar3, —O—C(O)—V5—N(R51)2, —O—C(O)—V4—Ar3, —C(O)N(R51)—V5—N(R51)2, —C(O)N(R51)—V4—Ar3, —O—[CH2]p′—O— and —[CH2]q′—.
  • 6. The method of claim 5, wherein R4 is selected from the group consisting of:
  • 7. The method of claim 6, wherein: —N(R2R3) is a pyrrolidinyl, piperidinyl, or azepinyl group, or
  • 8. The method of claim 7, wherein: the phenyl group represented by R1 is optionally substituted with one or more substituents selected from the group consisting of —OH, C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 alkoxy(C1-C6)alkoxy, C1-C6 haloalkoxy(C1-C6)alkoxy, C1-C6 hydroxyalkoxy and —O—[CH2]pO—; andeach of rings A-U is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, —OR50, —Ar3, —V4—Ar3, —V—OR50, —O(C1-C10 haloalkyl), —V4—O(C1-C10 haloalkyl), —O—V4—Ar3, —O—[CH2]p′—O— and —[CH2]q′—.
  • 9. The method of claim 8, wherein: —N(R2R3) is pyrrolidinyl,
  • 10. The method of claim 6, wherein R4 is
  • 11. The method of claim 1,
  • 12. The method of claim 11, wherein R4 is a straight chained C1-C20 alkyl group optionally substituted with hydroxy.
  • 13. The method of claim 12, wherein: R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2,
  • 14. The method of claim 13, wherein: —N(R2R3) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl, azepinyl or morpholinyl group or
  • 15. The method of claim 14, wherein: —N(R2R3) is a pyrrolidinyl, piperidinyl, or azepinyl group, or
  • 16. The method of claim 15, wherein: the phenyl group represented by R1 is optionally substituted with one or more substituents selected from the group consisting of —OH, C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 alkoxy(C1-C6)alkoxy, C1-C6 haloalkoxy(C1-C6)alkoxy, C1-C6 hydroxyalkoxy and —O—[CH2]p—O—.
  • 17. The method of claim 16, wherein: —N(R2R3) is pyrrolidinyl,
  • 18. The method of claim 12, wherein R4 is a straight chained C6-C8 alkyl group.
  • 19. The method of claim 1, wherein the glomerular disease is mesangial proliferative glomerulonephritis.
  • 20. The method of claim 1, wherein the glomerular disease is collapsing glomerulopathy.
  • 21. The method of claim 1, wherein the glomerular disease is proliferative lupus nephritis.
  • 22. The method of claim 1, wherein the glomerular disease is crescentic glomerulonephritis.
  • 23. The method of claim 1, wherein the glomerular disease is membranous nephropathy.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/762,102, filed Feb. 7, 2013, now U.S. Pat. No. 8,729,075, issued May 20, 2014, which is a continuation of U.S. application Ser. No. 13/055,036, filed Mar. 17, 2011, now U.S. Pat. No. 8,389,517, issued Mar. 6, 2013, which is the U.S. National Stage of International Application No. PCT/US2009/051864, filed Jul. 27, 2009, published in English, which claims the benefit of U.S. Provisional Application No. 61/137,214, filed Jul. 28, 2008. The entire teachings of the above applications are incorporated herein by reference.

US Referenced Citations (82)
Number Name Date Kind
4065562 Ohata et al. Dec 1977 A
4182767 Murai et al. Jan 1980 A
4533668 Matsumura et al. Aug 1985 A
4639436 Junge et al. Jan 1987 A
5041441 Radin et al. Aug 1991 A
5302609 Shayman et al. Apr 1994 A
5472969 Platt et al. Dec 1995 A
5525616 Platt et al. Jun 1996 A
5631394 Wei et al. May 1997 A
5707649 Inokuchi et al. Jan 1998 A
5763438 Inokuchi et al. Jun 1998 A
5849326 Inokuchi et al. Dec 1998 A
5907039 Jinbo et al. May 1999 A
5916911 Shayman et al. Jun 1999 A
5945442 Shayman et al. Aug 1999 A
5952370 Shayman et al. Sep 1999 A
5972928 Chatterjee Oct 1999 A
6030995 Shayman et al. Feb 2000 A
6040332 Shayman et al. Mar 2000 A
6051598 Shayman et al. Apr 2000 A
6228889 Chatterjee May 2001 B1
6255336 Shayman et al. Jul 2001 B1
6335444 Jimbo et al. Jan 2002 B1
6407064 Masuda et al. Jun 2002 B2
6511979 Chatterjee Jan 2003 B1
6569889 Shayman et al. May 2003 B2
6610703 Jacob et al. Aug 2003 B1
6660749 Butters et al. Dec 2003 B2
6835831 Hirth Dec 2004 B2
6855830 Hirth et al. Feb 2005 B2
6890949 Shayman et al. May 2005 B1
6916802 Shayman et al. Jul 2005 B2
7148251 Shayman Dec 2006 B2
7196205 Siegel et al. Mar 2007 B2
7253185 Shayman et al. Aug 2007 B2
7265228 Hirth et al. Sep 2007 B2
7335681 Shayman et al. Feb 2008 B2
7615573 Siegel et al. Nov 2009 B2
7763738 Hirth et al. Jul 2010 B2
8003617 Cheng et al. Aug 2011 B2
8304447 Siegel et al. Nov 2012 B2
8309593 Siegel et al. Nov 2012 B2
8389517 Ibraghimov-Beskrovnaya et al. Mar 2013 B2
8716327 Zhao et al. May 2014 B2
8729075 Ibraghimov-Beskrovnaya et al. May 2014 B2
8912177 Ibraghimov-Beskrovnaya et al. Dec 2014 B2
8940776 Siegel et al. Jan 2015 B2
9272996 Siegel et al. Mar 2016 B2
20010003741 Masuda et al. Jun 2001 A1
20020156107 Shayman et al. Oct 2002 A1
20020198240 Shayman et al. Dec 2002 A1
20030050299 Hirth et al. Mar 2003 A1
20030073680 Shayman et al. Apr 2003 A1
20040260099 Shayman Dec 2004 A1
20050009872 Hirth et al. Jan 2005 A1
20050049235 Shayman et al. Mar 2005 A1
20050222244 Siegel et al. Oct 2005 A1
20050239862 Shayman et al. Oct 2005 A1
20050267094 Shayman et al. Dec 2005 A1
20060058349 Ali et al. Mar 2006 A1
20060074107 Butters et al. Apr 2006 A1
20060217560 Shayman Sep 2006 A1
20070025965 Lobb Feb 2007 A1
20070066581 Aerts Mar 2007 A1
20070072916 Shayman Mar 2007 A1
20070112028 Orchard May 2007 A1
20070203223 Siegel et al. Aug 2007 A1
20080146533 Shayman et al. Jun 2008 A1
20080171874 Berger et al. Jul 2008 A1
20090312392 Shayman et al. Dec 2009 A1
20100256216 Siegel et al. Oct 2010 A1
20100298317 Natoli et al. Nov 2010 A1
20110166134 Ibraghimov-Beskrovnaya et al. Jul 2011 A1
20110184021 Siegel et al. Jul 2011 A1
20120022126 Cheng et al. Jan 2012 A1
20120322786 Siegel et al. Dec 2012 A1
20120322787 Siegel et al. Dec 2012 A1
20130225573 Ibraghimov-Beskrovnaya et al. Aug 2013 A1
20150051261 Zhao et al. Feb 2015 A1
20150190373 Cheng et al. Jul 2015 A1
20150216872 Natoli et al. Aug 2015 A1
20150225393 Siegel et al. Aug 2015 A1
Foreign Referenced Citations (54)
Number Date Country
007395 Oct 2006 EA
126974 Dec 1984 EP
0 144 290 Jun 1985 EP
0765865 Apr 1997 EP
1 384 719 Jan 2004 EP
1 528056 May 2005 EP
1 576 894 Sep 2005 EP
2054371 Feb 1981 GB
35-5798 May 1960 JP
S60136595 Jul 1985 JP
9-169664 Jun 1997 JP
9216856 Aug 1997 JP
10-324671 Dec 1998 JP
10338636 Dec 1998 JP
2001-226362 Aug 2001 JP
2003-238410 Aug 2003 JP
2005102 Dec 1993 RU
WO 9710817 Mar 1997 WO
WO 9852553 Nov 1998 WO
WO 0104108 Jan 2001 WO
WO 0154654 Aug 2001 WO
WO 0180852 Nov 2001 WO
WO 0250019 Jun 2002 WO
WO 02055498 Jul 2002 WO
WO 02062777 Aug 2002 WO
WO 03008399 Jan 2003 WO
WO 03057874 Jul 2003 WO
WO 03068255 Aug 2003 WO
WO 2004007453 Jan 2004 WO
WO 2004056748 Jul 2004 WO
WO 2004078193 Sep 2004 WO
WO 2005039578 May 2005 WO
WO 2005040118 May 2005 WO
WO 2005063275 Jul 2005 WO
WO 2005068426 Jul 2005 WO
WO 2005087023 Sep 2005 WO
WO 2005108600 Nov 2005 WO
WO 2005123055 Dec 2005 WO
WO 2006023827 Mar 2006 WO
WO 2006053043 May 2006 WO
WO 2006053043 May 2006 WO
WO 2006081276 Aug 2006 WO
WO 2007022518 Feb 2007 WO
WO 2007134086 Nov 2007 WO
WO 2007134086 Nov 2007 WO
WO 2008011478 Jan 2008 WO
WO 2008011487 Jan 2008 WO
WO 2008012555 Jan 2008 WO
WO 2008024337 Feb 2008 WO
WO 2008097673 Aug 2008 WO
WO 2008150486 Dec 2008 WO
WO 2009045503 Apr 2009 WO
WO 2009117150 Sep 2009 WO
WO 2010039256 Apr 2010 WO
Non-Patent Literature Citations (173)
Entry
Final Office Action for U.S. Appl. No. 12/227,076, ; titled: “Methods of Treating Fatty Liver Disease” dated Mar. 20, 2012.
Non-Final Office Action for U.S. Appl. No. 12/227,076, ; titled: “Methods of Treating Fatty Liver Disease”, mailed on Nov. 23, 2011.
Non-Final Office Action for U.S. Appl. No. 12/681,291 dated Dec. 10, 2012, “Method of Treating Polycystic Kidney Diseases with Ceramide Derivatives”.
Non-Final Office Action for U.S. Appl. No. 13/122,135, titled “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors” mailed on Apr. 27, 2012.
Non-Final Office for U.S. Appl. No. 12/681,291, titled “Method of Treating Polycystic Kidney Diseases with Ceramide Derivatives”, dated: Oct. 18, 2013.
Non-Final Office for U.S. Appl. No. 13/193,990, titled “Method of Treating Diabetes Mellitus”, dated: Feb. 20, 2014.
Non-Final Office for U.S. Appl. No. 13/595,349, titled “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors”, dated: Dec. 19, 2013.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 11/667,224, titled: “Method of Treating Diabetes Mellitus” Date Mailed: Apr. 22, 2011.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/227,076; titled: “Methods of Treating Fatty Liver Disease” Date Mailed: Oct. 9, 2012.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/227,076; titled: “Methods of Treating Fatty Liver Disease” Date Mailed: Jun. 4, 2013.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/227,076; titled: “Methods of Treating Fatty Liver Disease” Date Mailed: Dec. 23, 2013.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/601,871; “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors” Date Mailed: Aug. 9, 2012.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/055,036; titled: “Glucosylceramide Synthase Inhibition for the Treatment of Collapsing Glomerulopathy and Other Glomerular Disease” Date Mailed: Oct. 31, 2012.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/122,135; “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors” Date Mailed: Aug. 1, 2012.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/762,102; titled: “Glucosylceramide Synthase Inhibition for the Treatment of Collapsing Glomerulopathy and Other Glomerular Disease” Date Mailed: Jan. 9, 2014.
Office Action dated Mar. 29, 2012 for U.S. Appl. No. 12/601,871, titled: “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors”.
Office Action dated May 28, 2013 for U.S. Appl. No. 13/762,102; titled: “Glucosylceramide Synthase Inhibition for the Treatment of Collapsing Glomerulopathy and Other Glomerular Disease”.
Office Action for U.S. Appl. No. 12/601,871, titled: “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors” dated Septemer 21, 2011.
Abdel-Magid, A., et al., “Metal-Assisted Aldol Condensation of Chiral a-Halogenated Imide Enolates: A Stereocontrolled Chiral Epoxide Synthesis1,” J. Am. Chem Soc., 108: 4595-4602 (1986).
Abe, A., et al., “Improved Inhibitors of Glucosylceramide Synthase1,” J. Biochem., 111: 191-196 (1992).
Abe, A., et al., “Induction of glucosylceramide synthase by synthase inhibitors and ceramide,” Biochimics Biophysica Acta, 1299: 333-341 (1996).
Abe, A., et al., “Metabolic effects of short-chain ceramide and glucosylceramide on sphingolipids and protein kinase C,” Eur. J. Biochem, 210: 765-773 (1992).
Abe, A., et al., “Reduction of Globotriasylceramide in Fabry Disease mice by substrate deprivation”, J. Clin Invest. 105(11): 1563-1571, Jun. 2000.
Abe, A., et al., “Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth,” J. Lipid Research, 36: 611-621 (1995).
Abe, A., et al., “Use of Sulfobutyl Ether β-Cyclodextrin as a Vehicle for d-threo-1-Phenyl-2-decanoylamino-3-morpholinopropanol-Related Glucosylceramide Synthase Inhibitors”, Analytical Biochemistry, vol. 287, pp. 344-347 (2000).
Adams, L.A., et al. “Nonalcoholic fatty liver disease”, CMAJ, 172(7):899-905 (2005).
Alberti, C., et al., “Chloramphenicol. XII and XIII. Chloramphenicol analogs. p-Nitrophenyldiaminopropanols”, Chemical Abstracts Service, XP002495477 retrieved from CAPLUS Database accession No. 1957:17088 (abstract).
Alker, D., et al., “Application of Enantiopure Templated Azomethine Ylids to β-Hydroxy-a-amino Acid Synthesis,” Tetrahedron: Asymmetry, 54: 6089-6098 (1998).
Alon, R., et al., “Glycolipid Ligands for Selectins Support Leukocyte Tethering and Rolling Under Physiologic Flow Conditions,” J. Immunol., 154: 5356-5366 (1995).
Ames, Bruce N., “Assay of Inorganic Phosphate, Total Phosphate and Phosphatases,” Methods Enzymol., 8: 115-118 (1996).
Asano, N., “Glycosidase Inhibitors: update and perspectives on practical use”, Glycobiology, 13(10):93R-104R (2003).
Belikov., V.G., “Pharmaceutical Chemistry, Moscow”, Vysshaya Shkola Publishers, pp. 43-47 (1993).
Bielawska, A., et al.., “Ceramide-mediated Biology: Determination of Structural and Stereospecific Requirements Through the Use of N-Acyl-Phenylaminoalcohol Analogs,” J. Biol. Chem., 267: 18493-18497 (1992).
Bielawska, et al., “Modulation of cell growth and differentiation by ceramide,” FEBS Letters, 307(2): 211-214 (1992).
Blobe, G.C., et al., “Regulation of protein kinase C and its role in cancer biology,” Cancer Metastasis Rev., 13: 411-431 (1994).
Brenkert, A., et al., “Synthesis of Galactosyl Ceramide and Glucosyl Ceramide by Rat Brain: Assay Procedures and Changes with Age,” Brain Res., 36: 183-193 (1972).
CAPLUS Listing of Accession No: 1985:221199, Keith McCullagh, et al., “Carboxyalkyl peptide derivatives.”
Carson, K.G., et al., “Studies on Morpholinosphingolipids: Potent Inhibitors of Glucosylceramide Synthase,” Tetrahedron Letters, 35(17): 2659-2662 (1994).
Chatterjee, S., et al.,“Oxidized low density lipoprotein stimulates aortic smooth muscle cell proliferation”, Glycobiology, 6(3): 303-311, 1996.
Chatterjee, S., et al.,“Role of lactosylceramide and MAP kinase in the proliferation of proximal tubular cells in human polycystic kidney disease”, Journal of Lipid Research, 37(6): 1334-1344 (1996).
Clark, J.M., et al., “Nonalcoholic Fatty Liver Disease: An Underrecognized Cause of Cryptogenic Cirrhosis”, JAMA 289(22): 3000-3004 (2003).
Comuzzie, A.G., et al., “The Baboon as a Nonhuman Primate Model for the Study of the Genetics of Obesity”, Obesity Research, 11(1):75-80 (2003).
Dellaria, Jr., J.F., et al., “Enantioselective Synthesis of a-Amino Acid Derivatives via the Stereoselective Alkylation of a Homochiral Glycine Enolate Synthon1,” J. Org. Chem., 54: 3916-3926 (1989).
Dickie, P., et al., “HIV-Associated Nephropathy in Transgenic Mice Expressing HIV-1 Genes,” Virology, 185:109-119, 1991.
Dittert, L.W., et al., “Acetaminophen Prodrugs I-Synthesis, Physicochemical Properties and Analgesic Activity”, J. Pharm. Sci. 57(5), pp. 774-780 (1968).
Elbein, A.D., “Glycosidase inhibitors• inhibitors of N-linked oligosaccharide processing” The FASEB Journal, 5: 3055-3063 (1991).
European Search Report for EP Patent Application No. 12007327.5, “Method of Treating Polycystic Kidney Diseases With Ceramide Derivatives” dated Apr. 11, 2013.
European Search Report, European Application No. 09003291.3, titled: “Synthesis of UDP-Glucose: N-Acylsphingosine Glucosyl-Transferase Inhibitors” Apr. 29, 2009.
European Search Report, European Application No. 13154949.5, “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors” dated Jul. 12, 2013.
European Search Report, European Application No. 13154955.2, “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors” dated Jul. 10, 2013.
European Search Report, European Application No. 13154967.7, “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors” dated Jul. 18, 2013.
European Search Report, European Application No. 13154970.1, “2-Acylaminopropoanol-Type Glucosylceramide Synthesis Inhibitors” dated Jul. 10, 2013.
Evans, D.A., et al., “Stereoselective Aldol Condensations via Boron Enolates1,” J. Am. Chem. Soc., 103: 3099-3111 (1981).
Fan, J-G., et al., “Preventie Effects of Metformin on Rats with nonalcoholic steatohepatitis”, Hepatology, 34(4)(1), p. 501A (2003).
Felding-Habermann, B., et al., “A Ceramide Analog Inhibits T Cell Proliferative Response through Inhibition of Glycosphingolipid Synthesis and Enhancement of N,N-Dimethylsphingosine Synthesis,” Biochemistry, 29: 6314-6322 (1990).
Folch, J., et al., “A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues”, J. Biol. Chem., 226:497-509, 1956.
Freireich, E., et al.,“ Quantitative Comparison of Toxicity of Anticancer Agents in Mouse, Rat, Hampster, Dog, Monkey, and Man”, Cancer Chemother. Reports 50(4):219 (1996).
Gatt, S., et al., “Assay of Enzymes of Lipid Metabolism with Colored and Fluorescent Derivatives of Natural Lipids,” Meth. Enzymol., 72: 351-375 (1981).
Gill-Randall, R.J., et al., “Is human Type 2 diabetes maternally inherited? Insights from an animal model”, Diabet. Med. 21(7): 759 (2004).
Hakomori, S. “New Directions in Cancer Therapy Based on Aberrant Expression of Glycosphingolipids: Anti-adhesion and Ortho-Signaling Therapy,” Cancer Cells 3(12): 461-470 (1991).
Hammett, L.P. Physical Organic Chemistry, (NY: McGraw), (1940).
Harwood, L.M., et al., “Asymmetric Cycloadditions of Aldehydes to Stabilised Azomethine Ylids: Enantiocontrolled Construction of β-Hydroxy-a-amino acid Derivitives,” Tetrahedron: Asymmetry, 3(9): 1127-1130 (1992).
Harwood, L.M., et al., “Double diastereocontrol in the synthesis of enantiomerically pure polyoxamic acid,” Chem. Commun., 2641-2642 (1998).
Högberg, T., et al., “Theoretical and Experimental Methods in Drug Design Applied on Antipsychotic Dopamine Antagonists.” In Textbook of Drug Design and Development, pp. 55-91 (1991).
Hospattankar, A.V., et al.,“Changes in Liver Lipids After Administration of 2-Decanoylamino-3-Morpholinopropiophenone and Chlorpromazine,” Lipids, 17(8): 538-543 (1982).
Husain, A., and Ganem, B., “syn-Selective additions to Garner aldehyde: synthesis of a potent glucosylceramide synthase inhibitor”, Tetrahedron Letters, 43: 8621-8623 (2002).
Inokuchi, et al., “Amino Alcohol Esters as Ceramide Analogs and Pharmaceuticals Containing Them for Treatment of Nerve Diseases,” Abstract of CAPLUS Accession No. 1998: 786189, JP 10324671 (1998).
Inokuchi, et al., (1996): SNT International HCAPLUS database, Columbus (OH), accession No. 1996: 214749.
Inokuchi, et al., “Aminoalcohol derivatives for treatment of abnormal proliferative diseases”, Chemical Abstracts Service, XP002495476 retrieved from CAPLUS Database accession No. 1998:816280 (abstract).
Inokuchi, J. et al., “Antitumor Activity via Inhibition of Glycosphingolipid Biosynthesis,” Cancer Lett., 38:23-30(1987).
Inokuchi, J., et al., “Preparation of the Active Isomer of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, Inhibitor of Murinc Clucocerebroside Synthetase,” Journal of Lipid Research, 28: 565-571 (1987).
Inokuchi, J., et al., “Inhibition of Experimental Metastasis of Murine Lewis Lung Carcinoma by an Inhibitor of Glucosylceramide Synthase and Its Possible Mechanism of Action”, Cancer Research, 50: 6731-6737 (Oct. 15, 1990).
International Preliminary Examination Report for International Application No. PCT/US2002/022659 dated Jul. 24, 2003, titled: “Synthesis of UDP-Glucose: N-Acylsphingosine Glucosyltransferase Inhibitors”.
International Preliminary Examination Report on Patentability, issue in International Application PCT/US2000/18935 (WO 01-04108) dated Jul. 20, 2001, titled: “Amino Ceramide-Like Compounds and Therapeutic Methods of Use”.
International Preliminary Report on Patentability for International Application No. PCT/US2008/006906, dated Dec. 10, 2009, titled: “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors”.
International Preliminary Report on Patentability for International Application No. PCT/US2002/022659 dated Jul. 24, 2003, titled: “Synthesis of UDP-Glucose: N-Acylsphingosine Glucosyltransferase Inhibitors”.
International Preliminary Report on Patentability for International Application No. PCT/US2007/068521 dated Nov. 11, 2008, titled: “Methods of Treating Fatty Liver Disease”.
International Preliminary Report on Patentability for International Application No. PCT/US2008/011450 dated Apr. 7, 2010, titled: “Method of Treating Polycystic Kidney Diseases With Ceramide Derivatives”.
International Preliminary Report on Patentability for International Application No. PCT/US2009/001773 dated Sep. 21, 2010, titled: “Method of Treating Lupus With Ceramide Derivatives”.
International Preliminary Report on Patentability for International Application No. PCT/US2009/051864 dated Feb. 1, 2011, titled: “Glucosylceramide Synthase Inhibition for the Treatment of Collapsing Glomerulopathy and Other Glomerular Diseases”.
International Preliminary Report on Patentability, issued in International Application PCT/US2005/040596, dated May 15, 2007, titled: “Methods of Treating Diabetes Mellitus” (14 pages).
International Preliminary Report on Patentability, issued in International Application PCT/US2002/00808, dated Jan. 10, 2003, titled: “Amino Ceramide-Like Compounds and Therapeutic Methods of Use”.
International Report on Patentability for International Application PCT/US2007/068521 dated Nov. 11, 2008 with Written Opinion, titled: “Methods of Treating Fatty Liver Disease”.
International Search Report for International Application No. PCT/US2000/18935 dated Nov. 28, 2000, titled: “Amino Ceramide-Like Compounds and Therapeutic Methods of Use”.
International Search Report for PCT/US2002/00808 dated Oct. 1, 2002, titled: “Amino Ceramide-Like Compounds and Therapeutic Methods of Use”.
International Search Report for PCT/US2002/022659 dated Nov. 5, 2002, titled: “Synthesis of UDP-Glucose: N-Acylsphingosine Glucosyltransferase Inhibitors”.
Jaffrézou, Jr., et al., “Inhibition of lysosomal acid sphingomyelinase by agents which reverse multidrug resistance,” Biochim. Biophys. Acta, 1266: 1-8 (1995).
Jankowski, K., “Microdetermination of phosphorus in organic materials from polymer industry by microwave-induced plasma atomic emission spectrometry after microwave digestion”, Microchem. J., 70:41-49, 2001.
Jimbo, M., et al., “Development of a New Inhibitor of Glucosylceramide Synthase”, J. Biochem, 127: 485-491 (2000).
Kabayama, K., et al., “TNFa-induced insulin resistance in adipocytes as a membrane microdomain disorder: involvement in ganglioside GM3”, Glycobiology, 15(1): 21-29 (2005).
Kalén, A., et al., “Elevated Ceramide Levels in GH4C1 Cells Treated with Retinoic Acid,” Biochimica et Biophysica Acta, 1125: 90-96 (1992).
Kharkevich, D.A., “Pharmacology”, M., Medicament, 47-48 (1987).
Koga, K., and Yamada, S., “Stereochemical Studies. X. Effects of Neighboring Functional Groups on 1,2-Asymmetric Induction in the Reduction of Propiophenone Derivatives with Sodium Borohydride”, Chemical and Pharmaceutical Bulletin, 20(3): 526-538 (1972).
Kopaczyk, K., C., et al., “In Vivo Conversions of Cerebroside and Ceramide in Rat Brain,” J. Lipid Res., 6: 140-145 (1965).
Kurosawa, M., et al., “C-Labeling of novel Atypical β-Adrenoceptor Agonist, SM-11044,” Journal of Labelled Compounds and Radiopharmaceuticals, 38(3): 285-297 (1996).
Lee, L., et al. “Improved inhibitors of glucosylceramide synthase”, J. Bio Chem., 274(21): 14662-14669, 1999.
Levery, S.B., et al., “Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc:ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth”, FEBS Letters, vol. 525, pp. 59-64 (2002).
Masson, E., et al. “a-Series Gangliosides Mediate the Effects of Advanced Glycation End Products on Pericyte and Mesangial Cell Proliferation: A Common Mediator for Retinol and Renal Microangiopathy?” Diabetes, 54: 220-227 (2005).
Mitchell, S., et al., “Glycosyltransferase Inhibitors: Synthesis of D-threo-PDMP, L-threo-PDMP, and Other Brain Glucosylceramide Synthase Inhibitors from D- or L-Serine,” J. Org. Chem., 63: 8837-8842 (1998).
Miura, T., et al., “Synthesis and Evaluation of Morpholino and Pyrrolidinosphingolipids as Inhibitors of Glucosylceramide Synthase”, Bioorganic and Medicinal Chemistry, (6) 1481-1489 (1998).
Nakamura, K., et al., “Coomassic Brilliant Blue Staining of Lipids on Thin-Layer Plates,” Anal. Biochem., 142: 406-410 (1984).
Natoli, T.A., et al., “Inhibition of glucosylceramide accumulation results in effective blockade of polysystic kidney disease in mouse models” and supplemental information, Nature Medicine, 16(7): 788-792 (Jul. 2010).
Nicolaou, K., et al., “A Practical and Enantioselective Synthesis of Glycosphingolipids and Related Compounds. Total Synthesis of Globotriasylceramide (Gb3),” J. Am. Chem., Soc., 110: 7910-7912 (1988).
Nicolaus, B.J.R., “Symbiotic Approach to Drug Design”, Decision Making in Drug Research, XP-001111439, p. 1-14 (1983).
Nishida, A., et al., “Practical Synthesis of threo-(1S, 2S)- and erythro-(1R, 2S)-1-Phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) from L-Serine,” Synlett, 389-390(1998).
Nojiri, H., et al., “Ganglioside GM3: An acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monoctyoid leukemic cell lines HL-60 and U937”, Proc. Natl. Acad. Sci., 83: 782-786 (1986).
Notification Concerning Transmittal of International Preliminary Report on Patentability for International Application No. PCT/US2009/005435 dated Apr. 14, 2011, titled: “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors”.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority from counterpart International Application No. PCT/US2008/006906, dated Dec. 4, 2008, titled: “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors”.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration of International Application No. PCT/US2008/011450, dated Jan. 21, 2009, titled: “Method of Treating Polycystic Kidney Diseases With Ceramide Derivatives”.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration from counterpart International Application No. PCT/US2009/001773, dated Nov. 11, 2009, titled: “Method of Treating Lupus With Ceramide Derivatives”.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration from counterpart International Application No. PCT/US2009/051864, dated Nov. 3, 2009, titled: “Glucosylceramide Synthase Inhibition for the Treatment of Collapsing Glomerulopathy and Other Glomerular Diseases”.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration from counterpart International Application No. PCT/US2009/005435, dated Feb. 12, 2010, titled: “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors”.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2007/068521 dated Nov. 21, 2007, titled: “Methods of Treating Fatty Liver Disease”.
Ogawa, S., et al., “Synthesis and Biological Evaluation of Four Stereoisomers of PDMP-Analogue, N-(2-Decylamino-3-Hydroxy-3-Phenylprop-1-YL)-β-Valienamine, and Related Compounds,” Bioorganic & Medicinal Chemistry Letters, 7(14): 1915-1920 (1997).
Ong, et al., “Nonalcoholic Fatty Liver Disease and the epidemic of Obesity”, Cleveland Clinic Journal of Medicine, 7 1(8): 657-664 (Aug. 2004).
Overkleeft, H.S., et al., “Generation of Specific Deoxynojirimycin-type Inhibitors of the Non-lysosomal Glucosylceramidase,” The Journal of Biological Chemistry, 273(41):26522-26527 (1998).
Preiss, J., et al., “Quantitative Measurement of sn-1,2-Diacylglycerols Present in Platelets, Hepatocytes, and ras-and sis-Transformed Normal Rat Kidney Cells,” J. Biol.Chem., 261(19): 8597-8600 (1986).
Qian, Q., et al., “Treatment prospects for autosomal-dominant polysystic kidney disease”, Kidney International, vol. 59, pp. 2005-2002 (2001).
Radin, N.S., “Killing Cancer Cells by Poly-drug elevation of ceramide levels, a hypothesis whose time has come?,” Eur. J. Biochem. (268(2): 193-204 (2001).
Radin, N.S., et al., “Metabolic Effects of Inhibiting Glucosylceramide Synthesis with PDMP and Other Substances.” Advances in Lipid Research: Sphingolipids, Part B., R.M. Bell et al., Eds. (San Diego: Academic Press), 26: 183-213 (1993).
Radin, N.S., et al., “Ultrasonic Baths as Substitutes for Shaking Incubator Baths,” Enzyme, 45: 567-70(1991).
Radin, N.S., et al., “Use of an Inhibitor of Glucosylceramide Synthesis, D-1-Phenyl-2-decanoylamino-3-morpholino-1-propanol,” In NeuroProtocols: A Companion to Methods in Neurosciences, S.K. Fisher, et al., Eds., (San Diego: Academic Press) 3: 145-155 (1993).
Rosenwald, A.G., et al., “Effects of a Sphingolipid Synthesis Inhibitor on Membrane Transport Through the Secretory Pathway,” Biochemistry, 31: 3581-3590 (1992).
Rosenwald, A.G., et al., “Effects of the glucosphingolipid synthesis inhibitor, PDMP, on lysosomes in cultured cells,” J. Lipid Res., 35: 1232-1240 (1994).
Rubino, MD., F., et al., “Letter to the Editor”, Annals of Surgery, 240(2):389-390 (2004).
Sandhoff, K., et al., “Biosynthesis and degradation of mammalian glycosphingolipids” Phil. Trans. R. Soc. Lond, B 358 :847-861 (2003).
Sasaki, A., et al., “Overexpression of Plasma Membrane-associated Sialidase Attentuates Insulin Signaling in Transgenic Mice”, The Journal of Biological Chemistry, 278(30):27896-27902 (2003).
Schwimmer, J.B., et al., “Obesity, Insulin Resistance, and and Other Clinicopathological Correlates of Pediatric Nonalcoholic Fatty Liver Disease”, Journal of Pediatrics, 143(4): 500-505 (2003).
Shayman, J.A., et al., “Glucosphingolipid Dependence of Hormone-Stimulated Inositol Trisphophate Formation,” J. Biol. Chem., 265(21): 12135-12138 (1990).
Shayman, J.A., et al., “Modulation of Renal Epithelial Cell Growth by Glucosylceramide,” The Journal of Biological Chemistry, 266(34):22968-22974 (1991).
Shukla, A., et al .,“Metabolism of D-[3H]threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthesis and the synergistic action of an inhibitor of microsomal monooxygenase,” J. of Lipid Research, 32: 713-722 (1991).
Shukla, G., et al., “Rapid kidney changes resulting from glycosphingolipid depletion by treatment with a glucosyltransferase inhibitor,” Biochimica et Biophysica Acta, 1083: 101-108 (1991).
Shukla, G.S., et al., “Glucosylceramide Synthase of Mouse Kidney: Further Characterization with an Improved Assay Method,” Arch. Biochem. Biophys., 283(2): 372-378 (1990).
Skehan, P., et al., “New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening,” J. Natl. Cancer Inst., 82(13): 1107-1112 (1990).
Strum, J.C., et al .,“1-β-D-Arabinofuranosylcytosine Stimulates Ceramide and Diglyceride Formation in HL-60-Cells,” J. Biol. Chem., 269(22): 15493-15497 (1994).
Svensson, M., et al., “Epithelial Glucosphingolipid Express as a Determinant of Bacterial Adherence and Cytokine Production”, Infection and Immunity, 62(10): 4404-4410 (1994).
Tagami, S., et al., “Ganglioside GM3 Participates in the Pathological Conditions of Insulin Resistance”, The Journal of Biological Chemistry, 227(5): 3085-3092 (2002).
Tang, W., et al., “Phorbol Ester Inhibits 13-Cis-Retinoic Acid-Induced Hydrolysis of Phosphatidylinositol 4,5-Biophosphate in Cultured Murine Keratinocytes: A Possible Negative Feedback via Protein Kinase C-Activation,” Cell Bioch. Funct., 9: 183-191 (1991).
Tay-Sachs, URL: http:--www.ninds.nih.gov-disorders-taysachs-taysachs.htm. National Institute of Health of Neurological Disorders and Stroke. Accessed online Sep. 9, 2011.
Uemura, K., et al., “Effect of an Inhibitor of Glucosylceramide Synthesis on Cultured Rabbit Skin Fibroblasts,” J. Biochem., (Tokyo) 108(4): 525-530 (1990).
Vunnum, R.,R., et al., “Analogs of Ceramide That Inhibit Glucocerebroside Synthetase in Mouse Brain,” Chemistry and Physics of Lipids, LD. Bergelson, et al., Eds. (Elsevier-North-Holland Scientific Publishers Ltd.), 26: 265-278 (1980).
Wermuth, C.G., et al.., “Designing Prodrug and Bioprecursors I: Carrier Prodrug”, The Practice of Medicinal Chemistry, C.G., Wermuth, Ed.(CA: Academic Press Limited), pp. 671-696 (1996).
Wong, C-H., et al., “Synthesis and Evaluation of Homoazasugars as Glycosidase Inhibitors,” J. Org. Chem., 60: 1492-1501, (1995).
Yamashita, T., et al., “Enhanced insulin sensitivity in mice lacking ganglioside GM3”, Proc. Natl. Acad. Scl., 100(6): 3445-3449 (2003).
Yew, N.S., et al., “Increased Hepatic Insulin Action in Diet-Induced Obese Mice Following Inhibition of Glucosylceramide Synthase” PLoS one, 5(6): 1-9 (Jun. 2010).
Zador, I., et al. “A Role for Glycosphingolipid Accumulation in the Renal Hypertrophy of Streptozotocin-induced Diabetes Mellitus”, J. Clin. Invest., 91: 797-803 (1993).
Zhao, H., et al., “Inhibiting Glycosphingolipid Synthesis Ameliorates Hepatic Steatosis in Obese Mice” Hepatology, pp. 85-93 (Jul. 2009)).
Zhao, H., et al., “Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes.” Diabetes, 56(5): 1210-1218 (2007).
Ziche, M. et al., “Angiogenesis Can Be Stimulated or Repressed In Vivo by a Change in GM3 :GD3 Ganglioside Ratio,” Lab. Invest., 67:711-715 (1992).
Final Office Action for U.S. Appl. No. 14/595,251, titled: “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors” Date Mailed: May 5, 2015.
Non-Final Office Action for U.S. Appl. No. 14/532,432, titled: “Method of Treating Polycystic Kidney Diseases With Ceramide Derivates” Date Mailed: Jan. 5, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/595,349; titled: “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors” Date Mailed: Sep. 10, 2014.
Deshmukh, G.D., et al., “Abnormalities of glycosphingolipid, sulfatide, and ceramide in the Polycystic (cpk/cpk) mouse”, Journal of Lipid Research, 35: 1611-1618 1994).
Final Office Action for U.S. Appl. No. 14/595,251, titled: “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors” Datd Mailed: May 5, 2015.
Non-Final Office Action for U.S. Appl. No. 14/464,432, titled: “Method of Treating Diabetes Mellitus” Date Mailed: Sep. 9, 2015.
Non-Final Office Action for U.S. Appl. No. 13/595,251, titled: “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors” Date Mailed: Nov. 19, 2014.
Non-Final Office Action for U.S. Appl. No. 14/247,732, titled: “Methods of Treating Fatty Liver Disease” Date Mailed: Jan. 25, 2016.
Non-Final Office Action for U.S. Appl. No. 14/532,432, titled: “Method of Treating Polycystic Kidney Diseases With Ceramide Derivatives” Date Mailed: Jan. 5, 2016.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/681,291; titled: “Method of Treating Polycystic Kidney Diseases With Ceramide Derivatives” Date Mailed: Aug. 4, 2014.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/595,349; titled: 2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors Date Mailed: Sep. 10, 2014.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/595,251; titled: “2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors” Date Mailed: Oct. 21, 2015.
Notice of Allowance for U.S. Appl. No. 14/464,432, “Method of Lowering Blood Glucose”, dated May 16, 2016.
Cellitti, Susan E., et al., “In vivo incorporation of Unnatural Amino Acids to Probe Structure, Dynamics, and Ligand Binding in a Large Protein by Nuclear Magnetic Resonance Spectroscopy”, J. Am. Chem. 130: 9266-9281 (2008).
Deshmukh, G.D., et al., “Abnormalities of glycosphingolipid, sulfatide, and ceramide in the Polycystic (cpk/cpk) mouse”, Journal of Lipid Research, 35: 1611-1618 (1994).
Extended European Search Report for European Application No. EP 15 16 2842, “Methods of Treating Fatty Liver Disease”, Date of completion: Jul. 24, 2015.
Gennaro, et al., Remington, The Science and Practice of Pharmacy, Chapter 38, 20th Edition, 2000, pp. 703-712.
Grcevska, L., et al., “Treatment with Steroids and Cyclophoshamide in Collapsing Glomerulopathy and Focal Segmental Glomerulosclerosis-Comparative Study” Nephrology Dialysis Transplantation, Oxford University Press, GB, 15(9): A89, XP008047905, ISSN: 0931-0509.
Huynh-Do, U., “Membranuous nephropathy: Pathogenesis, diagnostics and current treatment”, Der Nephrologe; Zeitschrift Für Nephrologie Und Hypertensiologie, Springer, Berlin, De, 2(1): 20-26 (Jan. 1, 2007).
Klein, M., et al., “Cyclosporine Treatment of Glomerular Diseases”, Annu. Rev. Med, 17 pgs. (Feb. 1, 1999).
Mok, C., et al., “Long-term Outcome of Diffuse Proliferative Lupus Glomerulonephritis Treated with Cyclophosphamide”, American Journal of Medicine, 119(4):355e.25-355e33 (Apr. 1, 2006).
Nilsson, O., et al., “The Occurrence of Psychosing and Other Glycolipids in Spleen and Liver From the Three Major Types of Gaucher's Disease”, Biochimica et Biophysica Acta, 712 (1982) 453-463.
van Meer, G., et al., “The fate and function of glycosphingolipid glucosylceramide”, Phil. Trans. R. Soc. Lond. B (2003) 358, 869-873.
Yatsu, F..M., “Sphingolipidoses”, California Medicine, The Western Journal of Medicine, pp. 1-6 (Apr. 1971).
Related Publications (1)
Number Date Country
20140336174 A1 Nov 2014 US
Provisional Applications (1)
Number Date Country
61137214 Jul 2008 US
Continuations (2)
Number Date Country
Parent 13762102 Feb 2013 US
Child 14255634 US
Parent 13055036 US
Child 13762102 US