Claims
- 1. A glycol chiller comprising an elongate vertical sheet metal tank with spaced apart front and rear walls, laterally spaced vertical end walls, vertically spaced top and bottom walls and a horizontal central wall spaced vertically between the top and bottom walls and defining a lower glycol chiller chamber and an upper replenishment glycol reservoir within the tank, a filler opening in the top wall and a lid removably closing the filler opening, a flow transfer port in the central wall conducting replenishment glycol from the reservoir into the chiller chamber, a plurality of spaced apart partitions in the chiller chamber defining an elongate zig zag glycol flow passage with upstream and downstream ends within the chamber, glycol inlet and outlet fittings communicating with the upstream and downstream ends of the flow passage and projecting freely from the tank to connect with glycol return and glycol delivery lines extending from a heat exchanging device served by the glycol chiller; a motor driven pump positioned downstream from the inlet fitting and operating to continuously recirculate glycol downstream through the glycol chiller and the heat exchange device served thereby; an electric powered freon charged refrigeration machine including an elongate zig zag formed evaporator coil positioned within the chiller chamber and extending longitudinally through the flow passage; and, a thermal insulating jacket structure about the exterior of the tank.
- 2. The glycol chiller set forth in claim 1 that further includes a power supply to the refrigeration machine and a temperature responsive power on and power off switching device with a temperature sensing part in the flow passage and operating to turn the power on to the refrigeration machine when the temperature of glycol in the flow passage power off to the refrigeration machine when the temperature of glycol in the flow passage is below a set operating temperature.
- 3. The glycol chiller set forth in claim 2 wherein the temperature sensing part is in the upstream end of the flow passage.
- 4. The glycol chiller set forth in claim 1 that further includes a signaling means to a signal when the level of replenishment glycol in the reservoir drops to a predetermined level and that includes a normally open liquid level switching device in the reservoir and an electric powered signal emitting device connected with the switch.
- 5. The glycol chiller set forth in claim 1 that further includes a power supply to the refrigeration machine and a temperature responsive power on and power off switching device with a temperature sensing part in the flow passage and operating to turn the power off to the refrigeration machine when the temperature of glycol in the flow passage is below set operating temperature; a signaling means to emit a signal when the level of replenishment glycol in the reservoir drops to a predetermined level and that includes a normally open liquid level responsive switch in the reservoir and an electric powered signal emitting device connected with the switch.
- 6. The glycol chiller set forth in claim 2 wherein the temperature sensing part is in the upstream end of the flow passage; a signaling means to emit a signal when the level of the replenishment glycol in the reservoir drops to a predetermined level and that includes a normally open liquid level responsive switch in the resivour and an electric powered signal emitting device connected with the switch.
Parent Case Info
This application is a continuation in part of my copending application for U.S. Letter patent Ser. No. 03/419,286, filed Apr. 10, 1995; and, entitled: HEAT EXCHANGER.
US Referenced Citations (6)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
419286 |
Apr 1995 |
|