This application is a national stage filing under 35 U.S.C. 371 of International Application No. PCT/DE03/02145, filed Jun. 27, 2003, which claims priority from German Application No. 102 34 347.0, filed Jul. 26, 2002, and German Application No. 102 57 253.4, filed Dec. 07, 2002, specifications of which are incorporated by reference herein.
The present invention relates to a GMR sensor element according to the main claim, as well as its use.
The giant magneto-resistive effect (GMR effect) may be utilized, in the form of so-called spin-valve structures (“spin-valves”) for angular-position sensing. This is described, for example, in PCT International Publication No. WO 00/79298 or in European Published Patent Application No. 0 905 523 A2.
GMR spin-valves are made up in essence of two ferromagnetic thin films having a resulting magnetization m1 or m2, which are separated from each other by a nonmagnetic thin film lying in between. The electrical resistance R(α) of such a layer system then shows a cosine-type function of the angle α between the direction of magnetization m1 and the direction of magnetization m2 of the form:
R(α)=
In this context, the maximum relative resistance change ΔRGMR/
What is essential for the intended spin-valve function is a rigid, at least approximately not changeable direction of magnetization m1 of the first ferromagnetic layer, of the so-called reference layer (RL), because of a magnetic field, acting from outside on the layer system, that is to be detected particularly with regard to its direction and/or strength, and a direction of magnetization, m2, of the second ferromagnetic layer, of the so-called free layer (FL) or detection layer, that orients itself slightly, at least approximately parallel to the outer magnetic field. In order to achieve both of these, on the one hand, the two ferromagnetic layers are magnetically decoupled by a sufficient thickness of the nonmagnetic intermediate layer, of the so-called nonmagnetic layer (NML), of typically a few nanometers, and the magnetization of the reference layer (RL) is fixed or “pinned”, for instance, by an additional, directly adjacent antiferromagnetic layer, a so-called natural antiferromagnet (AF), and by its mutual magnetic coupling by exchange interaction.
This is shown schematically in
In order to extract the angle-dependent useful signal, in a GMR sensor element according to the related art, four spin-valve resistance elements are connected together to form a Wheatstone's bridge circuit (Wheatstone's full bridge), such as by using an aluminum thin film track conductor. The maximum signal amplitude is obtained by, as in
As a rule, a GMR angle sensor also has a second full bridge of GMR resistors, whose reference directions, as shown in
By arctangent formation or corresponding algorithms (such as the CORDIC algorithm) one then determines, from the two cosine-shaped or sine-shaped bridge signals Usin, Ucos, the angle α, that is single-valued over a full 360° revolution, to the direction of an outer magnetic field B.
The different reference magnetization directions according to
In the case of known GMR angle sensors, reference magnetization MR of the individual bridge resistors is selected to be either parallel or perpendicular to the direction of the strip-shaped structured GMR resistor elements. This is used to hold the influence of the shape anisotropy to a low value. Furthermore, the strip-shaped structured GMR resistor elements are preferably aligned in parallel within a full bridge according to
R(θ)=
If, on the other hand, the GMR resistors are implemented within a half bridge and having orthogonal alignment of their GMR strips, as is the case, for example, in FIG. 10 in PCT International Publication No. WO 00/79298, then the AMR signal contribution is even maximally favored. That acts in a worsening manner on the angular accuracy of the GMR angle sensor.
For the reasons mentioned, therefore, known GMR angle sensors have no rotationally symmetrical positioning of the bridge resistors. Rather, both full bridges are usually positioned laterally next to each other. Therefore, as a result of the lacking rotational symmetry, a heightened sensitivity of known sensors comes about with respect to the directional inhomogeneity of the transducer field, i.e. of the magnetic field acting from the outside, as well as with respect to temperature gradients.
Because, in known GMR angle sensors, the pinning direction or reference direction within a bridge resistor always has a fixed angle to the strip direction, these sensors do not further offer the possibility of compensating for shape anisotropy-conditioned influences on the pinning behavior and such disadvantages on the accuracy of the angular sensing.
By contrast, for an angular sensor that records over 360°, rotational symmetry in the sensor design is a great advantage, so that one does not obtain additional, direction-dependent angular error contributions, just because of an asymmetry in the positioning of the individual GMR resistor elements.
Therefore, because of the rotationally symmetrical positioning of the GMR resistor elements in the two Wheatstone's bridges, both a reduced sensitivity with respect to field direction inhomogeneities and temperature inhomogeneities is achieved and an undesired AMR signal contribution is suppressed, and, furthermore, the shape anisotropy influence on the pinning behavior and the angle sensing accuracy of the GMR sensor element is reduced. It is also especially advantageous if, besides the rotationally symmetrical positioning of the GMR resistor elements in the two Wheatstone's bridges, an interleaved positioning of the resistors with each other is selected. This leads to a further reduced sensitivity to field direction inhomogeneities and temperature inhomogeneities.
The suppression of the interfering AMR signal contribution is achieved by an additional subdivision of every single GMR bridge resistor element into two equal halves, or partial bridge resistors, having GMR strip directions that are oriented orthogonally to one another. This particularly also leads to an increase in angular measurement accuracy. It is also advantageous, in this connection, that, because the direction of the strip-shaped structured GMR resistor elements (“GMR strip direction”) is selected for respectively one of the two partial bridge resistors to be parallel, and is selected for respectively the other of the partial bridge resistors to be perpendicular to the pinning direction or reference direction, an averaging comes about of the influence of pinning directions parallel and perpendicular to the strip direction within each of the GMR bridge resistor elements. The pinning behavior is then, in turn, identical for all two-part GMR bridge resistor elements (average of two parts, in each case). In this case, the two bridge output signals U1, U2 advantageously also have a 45° phase shift with respect to each other.
If the GMR resistor elements have a pinning direction or a reference direction which has been selected to be at least approximately less than 45° to the direction of the strip-shaped structured GMR resistor elements, this leads advantageously to an identical pinning behavior of the individual GMR resistor elements, i.e. especially to an improved signal stability and long-term stability of the GMR sensor element. In this case, the two bridge output signals U1, U2 also have a 45° phase shift with respect to each other.
Bridge output signals U1, U2, that are phase-shifted by any desired angle ν to each other, ν being preferably 45° or around 45°, may finally, advantageously, be imaged by a coordinate transformation to orthogonal signals having a 90° phase shift. From the latter, the angle α, being sought after, to the direction of outer magnetic field B may be determined, by arctangent formation or a corresponding algorithm, such as the CORDIC algorithm. Beyond this, the coordinate transformation offers the advantage that production-caused fluctuations in the phase difference of the two bridge signals U1, U2 are able to be adjusted during the imaging on the orthogonal signals.
a shows a simplified GMR spin-valve layer construction having two ferromagnetic layers RL and FL that have magnetizations m1 and m2, one nonmagnetic intermediate layer NML and an antiferromagnetic layer AF. The latter is used for fixing (pinning) reference magnetization m1. In addition, a magnetic transducer is provided for generating an outer magnetic field B. The angle α designates the angle between the field direction or magnetization direction of the free ferromagnetic layer (FL), and thus also the direction of the outer magnetic field B in the plane of the GMR sensor element, and the reference magnetization direction.
b shows a GMR spin-valve layer system having a natural antiferromagnet AF and an additional synthetic antiferromagnet SAF, as well as an additional nonmagnetic intermediate layer NML and a ferromagnetic free layer FL.
a shows GMR sensor output signals U1 and U2 having a 45° phase difference according to a pinning direction or reference magnetization direction MR less than 45° to the strip direction, corresponding to
b shows correspondingly transformed GMR sensor signals Ucos and Usin that are orthogonal to each other, having a 90° phase difference. The AMR signal contribution is not shown in
a.) Rotationally Symmetrical Positioning
b.) Imaging on Orthogonal Signals
In the case of a pinning direction or a direction of the reference magnetization less than 45° to the GMR strip direction, according to
In this equation, ν denotes the phase shift of the second bridge signal with respect to the first bridge signal. This phase shift may, in principle, be selected as desired, but preferably a phase shift of 45° is set.
From the cosine-shaped and sine-shaped signals obtained with the aid of this transformation, according to
The implementation of this coordinate transformation further offers the important advantage that production-conditioned fluctuations in the phase shift of the two bridge signals U1, U2 are able to be detected specifically as to the sensor during imaging to the orthogonal signal (90° phase shift) and compensated for. To do this, for example in an offset adjustment or amplitude adjustment of the signals U1, U2 at the end of a production line, this phase shift ν is also determined, for example, using Fourier analysis of the two bridge signals U1, U2, and is stored in the sensor evaluation electronic system.
c.) Rotationally Symmetrical Positioning Having Suppression of the AMR Signal Contribution
The resistor positioning shown in
In this equation, α denotes the angle between field direction and magnetization direction of the free ferromagnetic layer (FL) and the reference magnetization direction; θ denotes the angle between the field direction or magnetization direction of the free layer (FL) and the GMR strip direction of the first partial resistor. The strip direction of the second partial resistor is rotated by −90° with respect to the first partial resistor.
d.) Pinning Behavior
Alternatively, one may also set a pinning direction or a direction of reference magnetization MR which is oriented respectively parallel to the strip direction for one of the two partial resistors and respectively perpendicular to the strip direction for the other of the two partial resistors. It is true that thereby one achieves a different pinning behavior in the case of the individual partial resistors, however, overall again an identical pinning behavior is achieved in the case of each of the bridge resistor elements in the form of a series connection of the two partial resistors.
Compared to known sensors, this selection of the pinning direction or reference magnetization direction yields the advantage that, inside each bridge resistor element, via the different pinning behavior of parallel and perpendicular alignment of the pinning direction or the reference magnetization direction to the GMR strip direction, an average value comes about.
The 360° GMR angle sensor described is especially suitable for the detection of the absolute position of the camshaft or the crankshaft in a motor vehicle, particularly in the case of a camshaft-free engine having electrical or electrohydraulic valve timing, of a motor position of an electrically commutated motor, or of detection of a windshield wiper position, or in the steering angle sensor system in motor vehicles.
| Number | Date | Country | Kind |
|---|---|---|---|
| 102 34 347 | Jul 2002 | DE | national |
| 102 57 253 | Dec 2002 | DE | national |
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/DE03/02145 | 6/27/2003 | WO | 00 | 10/6/2005 |
| Publishing Document | Publishing Date | Country | Kind |
|---|---|---|---|
| WO2004/017086 | 2/26/2004 | WO | A |
| Number | Name | Date | Kind |
|---|---|---|---|
| 5602471 | Muth et al. | Feb 1997 | A |
| 6100686 | Van Delden et al. | Aug 2000 | A |
| 6373247 | Marx et al. | Apr 2002 | B1 |
| 6519549 | Lin et al. | Feb 2003 | B1 |
| 6559638 | Adelerhof | May 2003 | B1 |
| 6566867 | Schroeder et al. | May 2003 | B1 |
| 6578437 | Moerbe | Jun 2003 | B1 |
| 20020006017 | Adelerhof | Jan 2002 | A1 |
| 20020118013 | Kowalski et al. | Aug 2002 | A1 |
| 20020149358 | Doescher | Oct 2002 | A1 |
| 20030056583 | Schodlbauer et al. | Mar 2003 | A1 |
| 20030231098 | Wan | Dec 2003 | A1 |
| Number | Date | Country |
|---|---|---|
| 43 17 512 | Dec 1994 | DE |
| 197 22 834 | Dec 1998 | DE |
| 0 905 523 | Mar 1999 | EP |
| 0079298 | Dec 2000 | WO |
| Number | Date | Country | |
|---|---|---|---|
| 20060103381 A1 | May 2006 | US |