The following related applications are incorporated herein in their entirety by this reference:
Embodiments described in International Publication Number WO 2011/034614 A2 generate synthetic base station data which preserve the integer nature of carrier phase data. (See for example Part 11 and Parts 2, 7.2, 7.5, 7.8, 8.8, 9.6.4, 12.1, 12.2 and 12.6 of WO 2011/034614 A2.) A set of corrections is computed per satellite (a Melbourne-Wübbena bias, a code leveled clock error and a phase leveled clock error) from global network data. Using these corrections, a rover can use the Melbourne-Wübbena (MW) linear combination to solve widelane ambiguities and use ionospheric-free code/phase observations to solve the narrowlane ambiguities. With fixed ambiguities, the rover can achieve cm-level accuracy positioning in real-time.
An advantage of this approach is that it is insensitive to ionospheric activity, as no ionosphere information is required—all observation combinations used in the network and rover processes are ionospheric-free.
A disadvantage is that the convergence time is longer than desired, typically 10-15 minutes to attain 2-5 cm rover position accuracy, due to the lack of ionosphere information. Another disadvantage of this approach is that the generated synthetic data cannot be used for single-frequency data processing without modifying existing rover data processing software.
Some embodiments of the present invention derive an ionospheric phase bias and an ionospheric differential code bias (DCB) using an absolute ionosphere model, which can for example be estimated from the network data (a described for example in Chinese Patent Publication No. CN 102 331 582 A, published 25 Jan. 2012; German Patent Application No. 10 2011 076 602.2 filed 27 May 2011; U.S. patent application Ser. No. 13/117,092 filed 26 May 2011; and U.S. Provisional Application for Patent No. 61/396,676 filed 30 Sep. 2010) or obtained from an external source such as WAAS (Wide-Area Augmentation System), GAIM (Global Assimilative Ionospheric Model), IONEX (IONosphere map EXchange) or other source.
Fully synthetic reference station data is generated using the ionospheric phase bias (obtained for example by the estimation explained below) and/or the ionospheric differential code bias (obtained for example by the estimation explained below) together with the phase leveled clock (obtained for example as explained in Part 9 of WO 2011/034614 A2) and ionospheric-free code bias (obtained for example as explained in Part 6 of WO 2011/034614 A2) and/or MW bias (obtained for example as explained in Part 7 of WO 2011/034614 A2).
Estimate Ionospheric Differential Code Bias (DCB) and Ionospheric Phase Bias
The ionospheric differential code bias and the ionospheric phase bias are obtained in accordance with some embodiments of the invention by the estimation which will now be explained. GPS L1 and L2 carrier phase observations and code observations can be expressed as:
where
λ1 and λ2 are the wavelengths of the L1 and L2 carriers, respectively,
L1 and L2 are the L1 and L2 carrier phase observations in metric units,
φ1 and φ2 are the L1 and L2 carrier phase observations in cycles,
ρ is the geometric range between antenna phase centers of satellite and receiver,
T is the tropospheric delay,
I1 is the L1 ionospheric delay,
ts and tr are the satellite clock error and receiver clock error, respectively,
b1s and b2s are the satellite L1 phase bias and satellite L2 phase bias, respectively,
b1r and b2r are the receiver L1 phase bias and satellite L2 phase bias, respectively,
N1 and N2 are “true” L1 and L2 integer ambiguities, respectively,
ν1 and ν2 are phase noise plus multipath of L1 and L2, respectively,
P1 and P2 are the L1 and L2 code observations in metric units,
B1s and B2s are the satellite L1 and L2 code bias respectively,
B1r and B2r are the receiver L1 and L2 code bias respectively, and
ε1 and ε2 are the code noise plus multipath of L1 and L2, respectively.
Modeling equations and linear combinations of observations are discussed for example in Part 4 of WO 2011/034614 A2. The ionospheric phase observation LI1 (mapped to frequency L1) can be written as:
where
is the ionospheric ambiguity, and
are respectively the receiver and satellite ionospheric phase biases, and ν1 is the phase noise plus multipath of the ionospheric phase observation. See Eq. 13 below for widelane ambiguity Nw.
The ionospheric code observation can be written as:
where
BIr=B2r−B1r and BIs=B2s−B1s (9)
are the receiver differential code bias and satellite ionospheric differential code bias (DCB) respectively, the ionospheric DCB is the differential code bias in ionospheric code observation as shown in Eq. (8), and εI is the phase noise plus multipath of the ionospheric code observation.
With a known ionospheric model, the ionospheric delay I1 can be computed. Together with the fixed ambiguities derived from the network data, by using Eq. (5), the ionospheric phase bias can be estimated with Kalman filter or least square estimation. Optionally, ionospheric DCB can be estimated with Eq. (9). To avoid rank deficiency, one satellite bias can be set to zero, or use a zero mean constraint (the sum of all satellite biases equal to zero). (Note: The rank of an m×n matrix cannot be greater than m nor n. A matrix that has a rank as large as possible is said to have full rank; otherwise, the matrix is rank deficient.)
NOTE: the ambiguities used to derive ionospheric phase bias must be the same as the ones used to derive phase leveled clock error. Otherwise, the difference of the ambiguities must be applied to the calculated ionospheric phase bias.
Phase and Code Leveled Satellite Clock Error, and MW Bias
Phase leveled clock and code leveled clock are explained for example in Part 9 and Part 6 of WO 2011/034614 A2. Phase and code leveled clock are computed with ionospheric-free phase and code observations.
Ionospheric free phase observation can be written as:
LIF=ρ+T+c·(tr−ts)+bcr−bcs+Nc+νc (10)
where
is the ionospheric-free ambiguity,
are the receiver and satellite ionospheric-free satellite phase bias, and
Nw=N1−N2 (13)
is the widelane ambiguity, and vc is the phase noise plus multipath of the ionospheric-free phase observation.
And the ionospheric-free code observation can be expressed as:
PIF=ρ+T+c·(tr−ts)+Bcr−Bcs+εc (14)
where:
are the receiver and satellite ionospheric-free code bias respectively and εc is the phase noise plus multipath of the ionospheric-free code observation.
With resolved network ambiguities, the phase leveled satellite clock error can be written as:
tφs=c·ts+bcs (16)
As only double difference ambiguity is unique and the undifferenced ambiguity is not unique, the phase leveled clock error expressed in Eq. (16) is not unique; it can be offset by a combination of integer L1, L2 ambiguities.
tφs=c·ts+bcs+ΔNC (16a)
where ΔNC is a combination of L1, L2 ambiguities
And code leveled satellite clock error is:
tPs=c·ts+Bcs (17)
Discussion of the MW bias is found for example in Part 7 of WO 2011/034614 A2. The MW bias is a combination of phase, code leveled clock error, ionospheric phase bias and ionospheric DCB.
Generate Fully Synthetic Code and Phase Observation
There are several ways to generate synthetic base station data:
Variants 2) and 3) allow to process single-frequency data with fixed ambiguities. Theoretically, Variant 4) allows to process single frequency with fixed ambiguity, but due to the accuracy of MW bias and ionospheric DCB, practically, Variant 4) is not used to fix ambiguity for single frequency data.
Fully synthetic base station data can be processed with rover observations in any real-time-kinematic (RTK) engine that can process single-frequency or multi-frequency data. Many RTK systems are multi-frequency, but there are single-frequency RTK systems that can work over very short baseline distance between base receiver and rover receiver. A main difference with single-frequency processing is in the handling of ionosphere—it is assumed that the baseline is short enough to almost cancel ionospheric effects. Multi-frequency RTK processing allows use of ionospheric-free combinations for position determination.
RTK performance is dependent on accuracy of the ionospheric information used to generate the synthetic base station data, e.g., the quality of the ionospheric model. Any model works, but a good model gives better results. A good model means that the ionospheric delay derived from the model is more accurate and can significantly decrease the convergence time of RTK solution.
In worst case, a multi-frequency system can ignore the ionospheric information and fall back to processing variant 1). Processing variants 2)-4) can be viewed as an augmentation of variant 1).
In some embodiments the ionospheric phase bias is transmitted from the network processor to the rover (such as by adding the ionspheric phase bias to the correction message described in U.S. Provisional Application for Patent 61/277,184 filed 19 Sep. 2009, and in International Publication Number WO 2011/034614 A2, published 24 Mar. 2011).
In some embodiments the ionospheric phase bias is not transmitted from the network processor to the rover, and instead an ionospheric model (such as WAAS transmission) is obtained separately for processing of the rover observations. This approach is fully compatible with variant 1).
In some embodiments the ionospheric DCBs are transmitted to the rover instead of (or in addition to) the MW biases.
Variant 1) has (per satellite):
In principle, ionospheric phase bias is needed, but linear dependence allows any of one of the five items 1.-5. to be derived from the other four. However, it is more accurate to have the ionospheric phase bias because it is derived from carrier fixed ambiguities with carrier phase data, thus keeps integer nature of carrier phase observations.
The ionospheric DCB is derived from pseudorange observation (or carrier-phase-smoothed (averaged over time) code observation) so is missing the fixed ambiguity nature. In some embodiments, items 1.-5. are used at the rover along with the ionospheric model used at the network processor. Items 1.-3. are used to generate ionospheric-free code and phase. The MW bias is used to generate narrowlane code.
Variant 1) uses three corrections, maintaining integer nature of ambiguity without ionospheric information. Adding items 4. and 5. allows to generate non-ionospheric-free synthetic observations for code and phase which can be broadcast (e.g., to a rover) and an ionospheric model added (e.g., at the rover).
Practically, it is preferable to use 2., 3., 4. and either 1. or 5, though in general any four of these five items will work:
Option 1: Using 1., 2., 3.+add 4.+ionospheric model
Option 2: Using 2., 3., 4., 5.+ionospheric model
Moreover it is possible to derive synthetic observation data without the ionospheric phase bias (4.):
Option 3: Using 1., 2., 3.,+add 5.+ionospheric model
The current IONEX model describes VTEC (Vertical Total Electron Content) in a map produced every 2 hours with an accuracy of 1˜2 TECU (Total Electron Content Units). A real-time ionospheric model can be used instead.
GNSS data collected at the reference stations is transmitted via communications channels 135 to a network processor 140. Network processor 140 uses the GNSS data from the reference stations with other information to generate a correction message containing correction information as described herein. The correction message is transmitted for use by any number of GNSS rover receivers. The correction message is transmitted as shown in
Correction data 230 for the GNSS satellites are received, such as via a correction message 235 broadcast by a communications satellite 240 or by other means, and decoded by a message decoder 245. An SBS data module 250 receives the correction data 230 and also receives information which it can use as a virtual base location, such as an approximate rover position 255 with time tag 260 generated by an optional navigation processor 265. The approximate rover position is optionally obtained from other sources as described for example in Part 11 of International Publication Number WO 2011/034614 A2.
SBS data module 250 uses the correction data 230 and the approximate rover position 255 with time tag 260 to synthesize base station data 270 for the virtual base location. The SBS data module 250 is triggered by an event or arrival of information which indicates that a new epoch of synthesized base station data is to be generated, as described for example in Part 11 of International Publication Number WO 2011/034614 A2.
In some embodiments a differential processor 275, such as a typical RTK positioning engine of an integrated GNSS receiver system 400, receives the correction data 230, the synthesized base station data 270, and the GNSS data 225 of rover receiver 205, and uses these to determine a precise rover position 280. Synthesized base station data 270 is substituted for base station data in such processing.
In some embodiments the correction data 920 comprise (i) an ionospheric phase bias per satellite, (ii) information from which a code-leveled clock error per satellite and a phase-leveled clock error per satellite is derivable, and at least one of (iii) a MW bias per satellite and (iv) an ionospheric differential code bias per satellite.
In some embodiments the correction data comprise (i) a MW bias per satellite, (ii) information from which a code leveled clock error per satellite and a phase leveled clock error per satellite are derivable, (iv) an ionospheric differential code bias per satellite, and (iv) information defining the ionospheric model.
Summary of Inventive Concepts
Those of ordinary skill in the art will realize that the detailed description of embodiments of the present invention is illustrative only and is not intended to be in any way limiting. The scope of the invention is intended to be defined by the claims given below.
In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with application- and business-related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.
Global Navigation Satellite Systems (GNSS) include the Global Positioning System (GPS), the Glonass system, the Galileo system, the proposed Compass system, and others. Each GPS satellite transmits continuously using at least two radio frequencies in the L-band, referred to as L1 and L2. Some GPS satellites also transmit on one or more further radio frequencies in the L-band. Each GNSS likewise has satellites which transmit multiple signals on multiple carrier frequencies. Embodiments of the present invention are not limited to any specific GNSS, or to L1 and L2 frequencies.
In accordance with embodiments of the present invention, the components, process steps and/or data structures may be implemented using various types of operating systems (OS), computer platforms, firmware, computer programs, computer languages and/or general-purpose machines. The methods can be run as a programmed process running on processing circuitry. The processing circuitry can take the form of numerous combinations of processors and operating systems, or a stand-alone device. The processes can be implemented as instructions executed by such hardware, by hardware alone, or by any combination thereof. The software may be stored on a program storage device readable by a machine. Computational elements, such as filters and banks of filters, can be readily implemented using an object-oriented programming language such that each required filter is instantiated as needed.
Those of skill in the art will recognize that devices of a less general-purpose nature, such as hardwired devices, field programmable logic devices (FPLDs), including field programmable gate arrays (FPGAs) and complex programmable logic devices (CPLDs), application specific integrated circuits (ASICs), or the like, may also be used without departing from the scope and spirit of the inventive concepts disclosed herein.
In accordance with an embodiment of the present invention, the methods may be implemented on a data processing computer such as a personal computer, workstation computer, mainframe computer, or high-performance server running an OS such as a version of Microsoft® Windows® available from Microsoft Corporation of Redmond, Wash., or various versions of the Unix operating system such as Linux available from a number of vendors. The methods may also be implemented on a multiple-processor system, or in a computing environment including various peripherals such as input devices, output devices, displays, pointing devices, memories, storage devices, media interfaces for transferring data to and from the processor(s), and the like. Such a computer system or computing environment may be networked locally, or over the Internet.
Any of the above-described methods and their embodiments may be implemented by means of a computer program. The computer program may be loaded on an apparatus, a rover, a reference receiver or a network station as described above. Therefore, the invention also relates to a computer program, which, when carried out on an apparatus, a rover, a reference receiver or a network station as described above, carries out any one of the above described methods and their embodiments.
The invention also relates to a computer-readable medium or a computer-program product including the above-mentioned computer program. The computer-readable medium or computer-program product may for instance be a magnetic tape, an optical memory disk, a magnetic disk, a magneto-optical disk, a CD ROM, a DVD, a CD, a flash memory unit or the like, wherein the computer program is permanently or temporarily stored. The invention also relates to a computer-readable medium (or to a computer-program product) having computer-executable instructions for carrying out any one of the methods of the invention.
The invention also relates to a firmware update adapted to be installed on receivers already in the field, i.e. a computer program which is delivered to the field as a computer program product. This applies to each of the above-described methods and apparatuses.
The constituent parts of a unit may be distributed in different software or hardware components or devices for bringing about the intended function. Furthermore, the units may be gathered together for performing their functions by means of a combined, single unit. For instance, a receiver, a filter and a processing element may be combined to form a single unit, to perform the combined functionalities of the units.
Number | Name | Date | Kind |
---|---|---|---|
5311194 | Brown | May 1994 | A |
5323322 | Mueller et al. | Jun 1994 | A |
5828336 | Yunck et al. | Oct 1998 | A |
5893044 | King et al. | Apr 1999 | A |
6295021 | Lichten et al. | Sep 2001 | B1 |
6324473 | Eschenbach | Nov 2001 | B1 |
6662107 | Gronemeyer | Dec 2003 | B2 |
7117417 | Sharpe et al. | Oct 2006 | B2 |
7292185 | Whitehead et al. | Nov 2007 | B2 |
7312747 | Vollath et al. | Dec 2007 | B2 |
7432853 | Vollath | Oct 2008 | B2 |
7498979 | Liu et al. | Mar 2009 | B2 |
7538721 | Vollath et al. | May 2009 | B2 |
7541975 | Sever et al. | Jun 2009 | B2 |
7576690 | Vollath | Aug 2009 | B2 |
7589668 | Vollath et al. | Sep 2009 | B2 |
7692578 | Vollath et al. | Apr 2010 | B2 |
7746272 | Vollath | Jun 2010 | B2 |
7755542 | Chen et al. | Jul 2010 | B2 |
7768449 | Gaal et al. | Aug 2010 | B2 |
7868820 | Kolb | Jan 2011 | B2 |
7961143 | Dai et al. | Jun 2011 | B2 |
7982667 | Vollath et al. | Jul 2011 | B2 |
8018377 | Collins | Sep 2011 | B2 |
8035552 | Dai et al. | Oct 2011 | B2 |
8130143 | Liu et al. | Mar 2012 | B2 |
8237609 | Talbot et al. | Aug 2012 | B2 |
8242953 | Dai et al. | Aug 2012 | B2 |
8260551 | Janky et al. | Sep 2012 | B2 |
8334807 | Gaal et al. | Dec 2012 | B2 |
8368590 | Vollath et al. | Feb 2013 | B2 |
8368591 | Talbot et al. | Feb 2013 | B2 |
8400351 | Talbot et al. | Mar 2013 | B2 |
8542146 | Vollath | Sep 2013 | B2 |
8558736 | Talbot et al. | Oct 2013 | B2 |
8587475 | Leandro | Nov 2013 | B2 |
8614642 | Talbot et al. | Dec 2013 | B2 |
8694250 | Talbot et al. | Apr 2014 | B2 |
8704708 | Vollath | Apr 2014 | B2 |
8704709 | Vollath et al. | Apr 2014 | B2 |
20030016147 | Evans | Jan 2003 | A1 |
20030048218 | Milnes et al. | Mar 2003 | A1 |
20050055160 | King | Mar 2005 | A1 |
20050064878 | O'Meagher | Mar 2005 | A1 |
20050101248 | Vollath | May 2005 | A1 |
20070063894 | Yu | Mar 2007 | A1 |
20070200753 | Fuchs et al. | Aug 2007 | A1 |
20080036654 | Hansen et al. | Feb 2008 | A1 |
20080192242 | Nichols | Aug 2008 | A1 |
20080204312 | Euler | Aug 2008 | A1 |
20080238768 | Nosworthy | Oct 2008 | A1 |
20080258966 | Sugimoto et al. | Oct 2008 | A1 |
20090027264 | Chen et al. | Jan 2009 | A1 |
20090098880 | Lindquist | Apr 2009 | A1 |
20090109090 | Vollath | Apr 2009 | A1 |
20090135057 | Vollath et al. | May 2009 | A1 |
20090140914 | Talbot et al. | Jun 2009 | A1 |
20090179792 | Remondi | Jul 2009 | A1 |
20090179793 | Remondi | Jul 2009 | A1 |
20090184869 | Talbot et al. | Jul 2009 | A1 |
20090224969 | Kolb | Sep 2009 | A1 |
20090237298 | Vollath et al. | Sep 2009 | A1 |
20090322600 | Whitehead et al. | Dec 2009 | A1 |
20100033370 | Lopez et al. | Feb 2010 | A1 |
20100141515 | Doucet et al. | Jun 2010 | A1 |
20100156709 | Zhang et al. | Jun 2010 | A1 |
20100177806 | Normark et al. | Jul 2010 | A1 |
20100214162 | Talbot et al. | Aug 2010 | A1 |
20100245168 | Rollet et al. | Sep 2010 | A1 |
20100253575 | Vollath | Oct 2010 | A1 |
20110140959 | Vollath | Jun 2011 | A1 |
20110148698 | Vollath | Jun 2011 | A1 |
20110156949 | Vollath et al. | Jun 2011 | A1 |
20110187590 | Leandro | Aug 2011 | A1 |
20110267228 | Talbot et al. | Nov 2011 | A1 |
20110279314 | Talbot et al. | Nov 2011 | A1 |
20110285587 | Vollath et al. | Nov 2011 | A1 |
20120026038 | Vollath | Feb 2012 | A1 |
20120092213 | Chen | Apr 2012 | A1 |
20120119944 | Chen | May 2012 | A1 |
20120154210 | Landau et al. | Jun 2012 | A1 |
20120154214 | Leandro | Jun 2012 | A1 |
20120154215 | Vollath et al. | Jun 2012 | A1 |
20120162007 | Leandro et al. | Jun 2012 | A1 |
20120163419 | Seeger | Jun 2012 | A1 |
20120229332 | Vollath et al. | Sep 2012 | A1 |
20120286991 | Chen et al. | Nov 2012 | A1 |
20120293367 | Chen et al. | Nov 2012 | A1 |
20120306694 | Chen et al. | Dec 2012 | A1 |
20130044026 | Chen et al. | Feb 2013 | A1 |
20130335266 | Vollath et al. | Dec 2013 | A1 |
20140002300 | Leandro et al. | Jan 2014 | A1 |
20140015712 | Leandro et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
101943749 | Jan 2011 | CN |
1 862 809 | Dec 2007 | EP |
2 037 291 | Mar 2009 | EP |
03038464 | May 2003 | WO |
2005043186 | May 2005 | WO |
2007082038 | Jul 2007 | WO |
2010096159 | Aug 2010 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority mailed May 31, 2011 in International Application No. PCT/US2010/002565 (six pages). |
International Search Report and Written Opinion of the International Searching Authority mailed May 31, 2011 in International Application No. PCT/US2010/002564 (seven pages). |
International Search Report and Written Opinion of the International Searching Authority mailed May 30, 2011 in International Application No. PCT/US2010/002563 (six pages). |
International Search Report and Written Opinion of the International Searching Authority mailed May 26, 2011 in International Application No. PCT/US2010/002562 (six pages). |
International Search Report and Written Opinion of the International Searching Authority mailed May 31, 2011 in International Application No. PCT/US2010/002581 (six pages). |
International Search Report and Written Opinion of the International Searching Authority mailed Sep. 27, 2011 in International Application No. PCT/US2011/024733 (ten pages). |
International Search Report and Written Opinion of the International Searching Authority mailed Oct. 6, 2011 in International Application No. PCT/US2011/024743 (ten pages). |
International Search Report and Written Opinion of the International Searching Authority mailed Sep. 26, 2011 in International Application No. PCT/US2011/024763 (ten pages). |
International Search Report and Written Opinion of the International Searching Authority mailed Oct. 12, 2012 in International Application No. PCT/US2012/029694 (fourteen pages). |
International Search Report and Written Opinion of the International Searching Authority mailed Oct. 16, 2012 in International Application No. PCT/US2012/028670 (eight pages). |
International Search Report and Written Opinion of the International Searching Authority mailed Sep. 5, 2012 in International Application No. PCT/US2012/028671 (eight pages). |
S. Banville et al., “Satellite and Receiver Phase Bias Calibration for Undifferenced Ambiguity Resolution,” Proceedings of the 2008 National Technical Meeting of the Institute of Navigation, San Diego, CA, Jan. 2008, pp. 711-719. |
Y. Bar-Sever et al., “A new model for GPS yaw attitude,” Journal of Geodesy, vol. 70, No. 11, Nov. 1996, pp. 714-723 (abstract only). |
G. Bierman, Factorization Methods for Discrete Sequential Estimation, Academic Press, Inc., 1977, 129 pp. |
S. Bisnath et al., “Precise Orbit Determination of Low Earth Orbiters with GPS Point Positioning,” Proceedings of the 2001 National Technical Meeting of the Institute of Navigation, Long Beach, CA, Jan. 2001, pp. 725-733. |
P. Collins, “Isolating and Estimating Undifferenced GPS Integer Ambiguities,” Proceedings of the 2008 National Technical Meeting of the Institute of Navigation, San Diego, CA, Jan. 2008, pp. 720-732. |
P. Collins et al., “Precise Point Positioning with Ambiguity Resolution using the Decoupled Clock Model,” Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008), Savannah, GA, Sep. 2008, pp. 1315-1322. |
P. Collins et al., “Accessing and Processing Real-Time GPS Corrections for Precise Point Positioning . . . Some User Considerations,” Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005), Long Beach, CA, Sep. 2005, pp. 1483-1491. |
Y. Gao et al., “A New Method for Carrier-Phase-Based Precise Point Positioning”, Navigation, Journal of the Institute of Navigation, vol. 49, No. 2, Summer 2002, pp. 109-116. |
“GNSS Solutions: Precise Point Positioning and Its Challenges, Aided-GNSS and Signal Tracking,” Inside GNSS, Nov./Dec. 2006, pp. 16-21. |
M. Gabor et al., “Satellite-Satellite Single-Difference Phase Bias Calibration as Applied to Ambiguity Resolution”, Navigation, Journal of the Institute of Navigation, vol. 49, No. 4, Winter 2002-2003, pp. 223-247. |
M. Ge et al., “Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations,” Journal of Geodesy, Jul. 2008, vol. 82, Issue 7, pp. 389-399. |
A. Hauschild et al., “Real-time Clock Estimation for Precise Orbit Determination of LEO-Satellites,” Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008), Savannah, GA, Sep. 2008, pp. 581-589. |
P. Heroux et al., “GPS Precise Point Positioning Using IGS Orbit Products,” Phys. Chem. Earth (A), vol. 26, No. 6-8. pp. 573-578, 2001. |
P. Heroux et al., “GPS Precise Point Positioning with a Difference,” presented at Geomeatics '95, Ottawa, Ontario, Canada, Jun. 13-15, 1995, 11 pp. |
S. Hutsell, “Relating the hadamard variance to MCS Kalman filter clock estimation,” in Proceedings of the 27th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, p. 293, San Diego, Calif, USA, Dec. 1995. |
IERS Conventions (2003), International Earth Rotation and Reference Systems Service, IERS Technical Note No. 32, 127 pp. |
“IGS Product Table—updated for 2009,” from http://igsch.jpl.nasa.gov/components/prods.html on Aug. 19, 2009, three pages. |
J. Kouba, “A simplified yaw-attitude model for eclipsing GPS satellites,” GPS Solutions, Jan. 2009, vol. 13, Issue 1, pp. 1-12. |
J. Kouba, “A guide to using International GPS Service (IGS) Products,” International GPS Service, Feb. 2003, 31 pp. |
J. Kouba et al., “Precise Point Positioning Using IGS Orbit and Clock Products,” GPS Solutions, Oct. 2001, vol. 5, Issue 2, pp. 12-28. |
D. Lapucha et al., “Comparison of the Two Alternate Methods of Wide Area Carrier Phase Positioning,” Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004), Long Beach, CA, Sep. 2004, pp. 1864-1871. |
D. Laurichesse et al., “Real Time Zero-difference Ambiguities Fixing and Absolute RTK,” Proceedings of the 2008 National Technical Meeting of the Institute of Navigation, San Diego, CA, Jan. 2008, pp. 747-755. |
D. Laurichesse et al., “Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and its Application to PPP,” Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2007), Fort Worth, TX, Sep. 2007, pp. 839-848. |
R. Leandro et al., “Wide Area Based Precise Point Positioning,” Proceedings of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2006), Fort Worth, TX, Sep. 2006, pp. 2272-2278. |
R. Leandro et al., “UNB Neutral Atmosphere Models: Development and Performance,” Proceedings of the 2006 National Technical Meeting of the Institute of Navigation, Monterey, CA, Jan. 2006, pp. 564-573. |
S. Lo et al., “GNSS Album: Images and Spectral Signature of the New GNSS Signals,” Inside GNSS, May/Jun. 2006, pp. 46-56. |
L. Mervart et al., “Precise Point Positioning with Ambiguity Resolution in Real-Time,” Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008), Savannah, GA, Sep. 2008, pp. 397-405. |
Y. Mireault et al., “Online Precise Point Positioning,” GPS World, Sep. 2008, pp. 59-64. |
A. Niell, “Global mapping functions for the atmosphere delay at radio wavelengths,” Journal of Geophysical Research, vol. 101, No. B2, pp. 3227-3246, Feb. 10, 1996. |
S. Schaer, [IGSMAIL-287]: Monitoring (P1-C1) code biases, IGS Electronic Mail Message No. 2827,May 9, 2000, two pages. |
G. Seeber, Satellite Geodesy, 2d. Ed., 2003, p. 31. |
P. Tetrault et al., “CSRS-PPP: An Internet Service for GPS User Access to the Canadian Spatial Reference Frame,” Geomatica, vol. 59, No. 1, 2005, pp. 17-28. |
A. Van Dierendonck et al., “Relationship Between Allan Variances and Kalman Filter Parameters,” Proceedings of the 16th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, NASA Goddard Space Flight Center, Nov. 1984, pp. 273-293. |
S. Verhagen, “The GNSS integer ambiguities: estimation and validation” PhD dissertation, Delft University of Technology, Publications on Geodesy, vol. 58, Netherlands Geodetic Commission, Delft, 2005, 196 pp. |
G. Wubbena, “Software Developments for Geodetic Positioning with GPS Using TI 4100 Code and Carrier Measurements,” in Goad C.C. (ed), Proc. of First Int. Sym. on Precise Position. with GPS Rockville, Maryland, pp. 403-412, (1985). |
J. Zumberge et al., “Precise point positioning for the efficient and robust analysis of GPS data from large networks,” Journal of Geophysical Research: Solid Earth, vol. 102, Issue B3, pp. 5005-5017, Mar. 10, 1997. |
W. Melbourne, “The case for ranging in GPS-based geodetic systems,” Proceedings 1st International Symposium on Precise Positioning with the Global Positioning system, (1985) U.S. Department of Commerce, Rockville, Maryland, vol. 1, pp. 373-386. |
Number | Date | Country | |
---|---|---|---|
20130044026 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
61442680 | Feb 2011 | US |