GOLD NANOPARTICLE HPV GENOTYPING SYSTEM AND ASSAY

Information

  • Patent Application
  • 20100304360
  • Publication Number
    20100304360
  • Date Filed
    December 18, 2009
    15 years ago
  • Date Published
    December 02, 2010
    14 years ago
Abstract
The invention provides oligonucleotides, kits and methods for genotyping HPV.
Description
BACKGROUND

Cervical cancer is the second most common cancer in women worldwide and the seventh most common cause of cancer deaths in women in Europe. In low- and medium-resourced countries in Asia, Africa and Latin America, cervical cancer is the major cause of mortality and premature death among women in their most productive years. Cervical cytology screening has reduced cervical cancer morbidity and mortality but has significant shortcomings in terms of sensitivity and specificity. Infection with distinct types of human papillomavirus (HPV) is the primary etiologic factor in cervical carcinogenesis. This causal relationship has been exploited for the development of molecular technologies for viral detection to overcome limitations linked to cytologic cervical screening. HPV testing for high-risk types of HPV has been suggested for primary screening, triage of equivocal Pap smears or low-grade lesions and follow-up after treatment for cervical intraepithelial neoplasia (CIN). Determination of HPV genotype, viral load, integration status and RNA expression could further improve the effectiveness of HPV-based screening and triage strategies.


HPV testing detects almost all high-grade CINs identified by cytology (Cuzick et al., 2006; Cuzick et al., 2008). As a result, almost the same sensitivity is obtained with HPV testing alone as with both cytology and HPV testing together as primary screening tests if only HPV-positive or also HPV-negative women with abnormal cytology are referred to colposcopy. However, with the combined strategy, referrals to colposcopy are much more frequent and the probability that test-positive women actually have a high-grade CIN (the Positive Predictive Value, PPV) is substantially lower (Ronco et al., J. Natl. Cancer Inst., 98:765 (2006): Ronco et al., Lancet Oncol., 7:547 (2006)).


Other strategies to improve HPV testing include viral load, genotyping, testing for the RNA of the viral oncogenes E6 and E7 and testing for the over-expression of the p16-INK4A protein (Cuzick et al., Vaccine, 24:S90 (2006)).


SUMMARY OF THE INVENTION

The invention relates to a genotyping assay and kit for diagnosing patients infected with high-risk (HR) human papillomavirus (HPV). Also provided is a method for detecting and genotyping specimen DNA in a manner that incorporates a control for clinical relevance. The invention provides isolated oligonucleotides for specifically amplifying HR-HPV DNA, e.g., by the polymerase chain reaction (PCR), and for detecting subtype-specific HR HPV. A kit of the invention includes at least one subtype-specific capture probe, at least one subtype-specific mediator probe, DNA-modified particles (DNA-P) such as gold nanoparticles (DNA-GNP) or silver nanoparticles (DNA-AgNP), or combinations thereof. Capture probes of the invention include a first nucleic acid sequence capable of hybridization to a first HPV-specific nucleic acid sequence or to a first HPV subtype-specific nucleic acid sequence. Mediator probes of the invention include a second nucleic acid sequence capable of hybridization to a second HPV-specific nucleic acid sequence or to a second HPV subtype-specific nucleic acid sequence, wherein the second nucleic acid sequence of the mediator probe hybridizes to a different HPV nucleic acid sequence relative to the capture probe. DNA-P include oligonucleotides capable of hybridization to a sequence contained in the mediator probe that is not HPV-specific, e.g., polydA or polyT.


In one embodiment, the invention provides a method for detecting high risk HPV in a sample. The method includes providing a substrate having a capture probe bound thereto, wherein at least a portion of the capture probe has a nucleic acid sequence that is complementary to at least a first portion of the genome of a HPV and providing a mediator probe, wherein at least a portion of the mediator probe has a nucleic acid sequence that is complementary to at least a second portion of the HPV genome that is different than the first portion and a nucleotide sequence that is complementary to a non-HPV sequence on oligonucleotides bound to a gold particle, wherein the nucleic acid sequence in the capture probe or the mediator probe, or both, are HPV-subtype specific. A sample suspected of having HPV that is optionally subjected to an amplification reaction with HPV-specific primers, is contacted with the substrate, the mediator probe and gold particles having oligonucleotides with sequences that are complementary to the nucleotide sequence in the mediator probe under conditions that are effective for the hybridization of the nucleic acid sequence in the capture probe and the nucleic acid sequence in the mediator probe to amplified HPV DNA in the sample and for the hybridization of the nucleotide sequence in the mediator probe to the oligonucleotides bound to the gold particle. The substrate is washed to remove non-specifically bound material and it is determined whether gold particles are bound to the substrate. The presence of bound particles is indicative of the presence of a specific subtype of HPV in the sample.


In one embodiment, a capture probe has about 25 to 55 nucleotides of HPV-specific sequence. In one embodiment, a capture probe includes a nucleotide sequence corresponding to one of SEQ ID No. 8-22, 38-50, 63-70, 83-94, 103-111, 119-130, 144-154, 168-175, 186-195, 207-225, 239-248, 259-264, or 276-299, a sequence with at least 80% sequence identity thereto, or the complement thereof. In one embodiment, a capture probe includes a nucleotide sequence corresponding to one of SEQ ID No. 8-22, 38-50, 63-70, 83-94, 103-111, 119-130, 144-154, 168-175, 186-195, 207-225, 239-248, 259-264, or 276-299, a sequence with at least 90% sequence identity thereto, or the complement thereof. In one embodiment, a capture probe includes a sequence corresponding one of SEQ ID No. 23-31, 51-55, 71-78, 95-98, 112-115, 131-135, 155-161, 176-181, 195-199, 226-230, 249-254, 264-267, or 300-313, or a sequence with at least 80% sequence identity thereto, or the complement thereof. In one embodiment, a capture probe includes a sequence corresponding one of SEQ ID No. 23-31, 51-55, 71-78, 95-98, 112-115, 131-135, 155-161, 176-181, 195-199, 226-230, 249-254, 264-267, or 300-313, or a sequence with at least 90% sequence identity thereto, or the complement thereof. A capture probe may include other sequences so long as they do not substantially decrease hybridization efficiency of the probe to a target HPV sequence, e.g., the other sequences are 5′ and/or 3′ to the sequences that specifically hybridize to HPV sequences, for example, the other sequence may be a tag sequence or a barcode sequence.


In one embodiment, a mediator probe has about 25 to 55 nucleotides of HPV-specific sequence. In one embodiment, a mediator probe includes a nucleotide sequence corresponding to one of SEQ ID No. 8-22, 38-50, 63-70, 83-94, 103-111, 119-130, 144-154, 168-175, 186-195, 207-225, 239-248, 259-264, or 276-299, a sequence with at least 80% sequence identity thereto, or the complement thereof. In one embodiment, a mediator probe includes a nucleotide sequence corresponding to one of SEQ ID No. 8-22, 38-50, 63-70, 83-94, 103-111, 119-130, 144-154, 168-175, 186-195, 207-225, 239-248, 259-264, or 276-299, a sequence with at least 90% sequence identity thereto, or the complement thereof. In one embodiment, a mediator probe includes a sequence corresponding one of SEQ ID No. 23-31, 51-55, 71-78, 95-98, 112-115, 131-135, 155-161, 176-181, 195-199, 226-230, 249-254, 264-267, or 300-313, a sequence with at least 80% sequence identity thereto, or the complement thereof. In one embodiment, a mediator probe includes a sequence corresponding one of SEQ ID No. 23-31, 51-55, 71-78, 95-98, 112-115, 131-135, 155-161, 176-181, 195-199, 226-230, 249-254, 264-267, or 300-313, or a sequence with at least 90% sequence identity thereto, or the complement thereof. A mediator probe also includes a sequence complementary to sequences on oligonucleotides attached to a particle, and may include other sequences so long as they do not substantially decrease hybridization efficiency of the probe to a target HPV sequence and the oligonucleotide, e.g., the other sequences 5′ and/or 3′ to the sequences that specifically hybridize to HPV sequences, for example, the other sequence may be a tag sequence or a barcode sequence.


In one embodiment, capture probes and mediator probes useful in the methods of the invention include HPV-specific sequences that do not overlap and do not cross-hybridize, e.g., do not compete for binding to the same target nucleotide sequence. In one embodiment, a selected capture and mediator probe pair hybridize to their respective target sequences under the same stringency conditions. In one embodiment, a selected capture probe and mediator probe that hybridize under different stringency conditions may be employed, e.g., the probe that hybridizes and/or remains hybridized under both hybridization conditions is hybridized to the target first. In one embodiment, a capture probe useful in the methods of the invention has sequences that hybridize to HPV sequences that are about 50 to about 2000 nucleotides apart from sequences to which the mediator probe hybridizes. n one embodiment, a capture probe useful in the methods of the invention has sequences that hybridize to HPV sequences that are about 1 to about 50 nucleotides apart from sequences to which the mediator probe hybridizes. In one embodiment, a capture probe useful in the methods of the invention has sequences that hybridize to HPV sequences that are about 500 to about 1000 nucleotides apart from sequences to which the mediator probe hybridizes.


The invention also provides a kit. For example, in one embodiment, the kit may include at least one HPV subtype-specific capture probe and optionally at least one HPV subtype-specific mediator probe, and/or DNA-P. In one embodiment the kit may include at least one subtype-specific mediator probe and optionally at least one subtype-specific capture probe, and/or DNA-P. In one embodiment, the kit includes a DNA control that may be co-amplified with a clinical sample in order to provide a clinically relevant cutoff point for detection of the HR-HPV virus. In one embodiment, the kit also includes at least one primer pair for HPV subtype-specific amplification of viral DNA in a sample.


Also provided are isolated oligonucleotides which include one of SEQ ID Nos. 1-313, a sequence with at least 80% sequence identity thereto, or the complement thereof, or a fragment thereof with at least 10, e.g., at least 15 or 20, contiguous nucleotides, of one of SEQ ID Nos. 1-313, a sequence with at least 80% sequence identity thereto, or the complement thereof. The HPV-specific sequences in the isolated oligonucleotides may be useful as primers, e.g., amplification primers, or probes.





BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1A-F. Verigene gold nanoparticle slide data (in duplicate) of multiplexed PCR samples with varying input copy number of plasmids. The capture probes are spotted in triplicate and highlighted by colored circles. The average median of the intensities is shown above the slide data.



FIG. 2. Verigene gold nanoparticle slide data of multiplexed PCR clinical samples with 250 input copies of control plasmid. The capture probes are spotted in triplicate and highlighted by colored circles. The average median of the intensities is shown above the slide data.



FIGS. 3A-Z and 3AA. Graphs showing the specificity of capture and mediator probes of the invention in detecting subtypes of HPV.





DETAILED DESCRIPTION OF THE INVENTION
Definitions

A “nucleotide” is a subunit of a nucleic acid comprising a purine or pyrimidine base group, a 5-carbon sugar and a phosphate group. The 5-carbon sugar found in RNA is ribose. In DNA, the 5-carbon sugar is 2′-deoxyribose. The term also includes analogs of such subunits, such as a methoxy group (MeO) at the 2′ position of ribose.


A “biological sample” can be obtained from an organism, e.g., it can be a physiological fluid or tissue sample, such as one from a human patient, a laboratory mammal such as a mouse, rat, pig, monkey or other member of the primate family.


“Tm” refers to the temperature at which 50% of the duplex is converted from the hybridized to the unhybridized form.


One skilled in the art will understand that the oligonucleotides useful in the methods can vary in sequence. For instance, amplification primers useful to amplify either HPV-specific nucleic acid sequences, e.g., sequences that are not specific for one or are specific for a few different HPV subtypes, or HPV subtype-specific nucleic acid sequences, may have less than 100% sequence identity to the HPV genomic sequences in the biological sample due to the presence of at least one mismatch. In one embodiment, an amplification primer useful to amplify either HPV-specific sequences or HPV-subtype specific nucleic acid sequences, may have less than 100% sequence identity to the amplification primers disclosed herein, for instance, SEQ ID No. 1-7, 32-37, 79-82, 96-102, 116-118, 136-143, 162-167, 182-185, 200-206, 231-238, 255-258, or 268-275, or a fragment thereof. In one embodiment, capture probe sequences may include either HPV-specific sequences or HPV-subtype specific nucleic acid sequences, that have less than 100% sequence identity to the HPV genomic sequences in the biological sample (and thus to amplified HPV sequences) due to the presence of at least one mismatch. In one embodiment, capture probe sequences may have less than 100% sequence identity to the capture probe sequences disclosed herein, e.g., one of SEQ ID No. 8-22, 38-50, 63-70, 83-94, 103-111, 119-130, 144-154, 168-175, 186-195, 207-225, 239-248, 259-264, or 276-299, the complement thereof, or a fragment thereof. In one embodiment, mediator probe sequences may include either HPV-specific sequences or HPV-subtype specific nucleic acid sequences, that have less than 100% sequence identity to the HPV genomic sequences in the biological sample (and thus to amplified HPV sequences) due to the presence of at least one mismatch. In one embodiment, mediator probe sequences may have less than 100% sequence identity to the capture probe sequences disclose herein, e.g., one of SEQ ID No. 23-31, 51-55, 71-78, 95-98, 112-115, 131-135, 155-161, 176-181, 195-199, 226-230, 249-254, 264-267, or 300-313, the complement thereof, or a fragment thereof. Thus, the percentage of identical bases or the percentage of perfectly complementary bases between oligonucleotides and sequence the oligonucleotides hybridize to may be less than 100% but in the region of complementarity have at least 80%, 85%, 90%, 95%, 98%, or 99% identity. The oligonucleotides may also contain sequences that have no complementarity, however, the sequences that do not have complementarity do not prevent the hybridization of the complementary sequences.


By “sufficiently complementary” or “substantially complementary” is meant nucleic acids having a sufficient amount of contiguous complementary nucleotides to form a hybrid that is stable.


“RNA and DNA equivalents” refer to RNA and DNA molecules having the same complementary base pair hybridization properties. RNA and DNA equivalents have different sugar groups (i.e., ribose versus deoxyribose), and may differ by the presence of uracil in RNA and thymine in DNA. The difference between RNA and DNA equivalents do not contribute to differences in substantially corresponding nucleic acid sequences because the equivalents have the same degree of complementarity to a particular sequence.


Methods and Kits

The invention provides a method for detecting and genotyping HR-HPV from a sample containing HPV DNA while also optionally determining if the HPV infection is clinically relevant. In one embodiment, the assay is based around first isolating the HPV DNA from a clinical sample and then amplifying the HPV DNA by a multiple PCR using HPV subtype-specific primers. In one embodiment, the amplified DNA is then hybridized with a HPV subtype-specific capture probe oligonucleotide bound to the solid support, followed by hybridization with a HPV subtype-specific mediator probe that contain 3′-tails comprising a run of about 10 to about 50, e.g., about 20 to about 35, adenosine phosphates (polyA). In one embodiment, this is followed by hybridization with DNA-GNP with attached 20mer dT oligonucleotides. The gold nanoparticles may be detected by catalytically reducing silver onto the surface of the particle, followed by imaging of the silver by detection of light scattered from the silver enhanced gold nanoparticles. Incorporating a DNA control at a specific copy number into the sample allows for co-amplification in a multiplex PCR and normalizes the readout intensity values to a predefined clinically relevant threshold.


Oligonucleotides

Each oligonucleotide sequence of the invention including those in primers, capture probes, mediator probes or attached to particles, has the ability to hybridize to at least one other specific nucleotide sequence that is HPV-specific, HPV-subtype specific, or non-HPV specific having a sequence sufficiently complementary.


Methods of making oligonucleotides of a predetermined sequence are well-known. See, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual (2nd ed. 1989) and F. Eckstein (ed.) Oligonucleotides and Analogues, 1st Ed. (Oxford University Press, New York, 1991). Solid-phase synthesis methods are contemplated for both oligoribonucleotides and oligodeoxyribonucleotides (the well-known methods of synthesizing DNA are also useful for synthesizing RNA). Oligoribonucleotides and oligodeoxyribonucleotides can also be prepared enzymatically. Non-naturally occurring nucleobases can be incorporated into the oligonucleotide, as well. See, e.g., Katz, J. Am. Chem. Soc., 74:2238 (1951); Yamane, et al., J. Am. Chem. Soc., 83:2599 (1961); Kosturko, et al., Biochemistry, 13:3949 (1974); Thomas, J. Am. Chem. Soc., 76:6032 (1954); Zhang, et al., J. Am. Chem. Soc., 127:74-75 (2005); and Zimmermann, et al., J. Am. Chem. Soc., 124:13684-13685 (2002).


The term “oligonucleotide” as used herein includes modified forms as discussed herein as well as those otherwise known in the art which are used to regulate gene expression Likewise, the term “nucleotides” as used herein is interchangeable with modified forms as discussed herein and otherwise known in the art. In certain instances, the art uses the term “nucleobase” which embraces naturally-occurring nucleotides as well as modifications of nucleotides that can be polymerized. Herein, the terms “nucleotides” and “nucleobases” are used interchangeably to embrace the same scope unless otherwise noted.


In various aspects, methods include oligonucleotides which are DNA oligonucleotides, RNA oligonucleotides, or combinations of the two types. Modified forms of oligonucleotides are also contemplated which include those having at least one modified internucleotide linkage. In one embodiment, the oligonucleotide is all or in part a peptide nucleic acid. Other modified internucleoside linkages include at least one phosphorothioate linkage. Still other modified oligonucleotides include those comprising one or more universal bases. “Universal base” refers to molecules capable of substituting for binding to any one of A, C, G, T and U in nucleic acids by forming hydrogen bonds without significant structure destabilization. The oligonucleotide incorporated with the universal base analogues is able to function as a probe in hybridization, as a primer in PCR and DNA sequencing. Examples of universal bases include but are not limited to 5′-nitroindole-2′-deoxyriboside, 3-nitropyrrole, inosine and pypoxanthine.


Modified Backbones. Specific examples of oligonucleotides include those containing modified backbones or non-natural internucleoside linkages. Oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. Modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone are considered to be within the meaning of “oligonucleotide.”


Modified oligonucleotide backbones containing a phosphorus atom include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates, 5′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, selenophosphates and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein one or more internucleotide linkages is a 3′ to 3′, 5′ to 5′ or 2′ to 2′ linkage. Also contemplated are oligonucleotides having inverted polarity comprising a single 3′ to 3′ linkage at the 3′-most internucleotide linkage, i.e. a single inverted nucleoside residue which may be abasic (the nucleotide is missing or has a hydroxyl group in place thereof). Salts, mixed salts and free acid forms are also contemplated. Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,194,599; 5,565,555; 5,527,899; 5,721,218; 5,672,697 and 5,625,050, the disclosures of which are incorporated by reference herein.


Modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages; siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; riboacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts. See, for example, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; 5,792,608; 5,646,269 and 5,677,439, the disclosures of which are incorporated herein by reference in their entireties.


Modified Sugar and Internucleoside Linkages. In still other embodiments, oligonucleotide mimetics wherein both one or more sugar and/or one or more internucleotide linkage of the nucleotide units are replaced with “non-naturally occurring” groups. In one aspect, this embodiment contemplates a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone. See, for example U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, and Nielsen et al., Science, 1991, 254, 1497-1500, the disclosures of which are herein incorporated by reference.


In still other embodiments, oligonucleotides are provided with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and including —CH2—NH—O—CH2—, —CH2—N(CH3)—O—CH2—, —CH2—O—N(CH3)—CH2—, —CH2—N(CH3)—N(CH3)—CH2— and —O—N(CH3)—CH2—CH2— described in U.S. Pat. Nos. 5,489,677, and 5,602,240. Also contemplated are oligonucleotides with morpholino backbone structures described in U.S. Pat. No. 5,034,506.


In various forms, the linkage between two successive monomers in the oligo consists of 2 to 4, desirably 3, groups/atoms selected from —CH2—, —O—, —S—, —NRII—, C═O, C═NRII, >C═S, —Si(R″)2—, —SO—, —S(O)2—, —P(O)2—, —PO(BH3)—, —P(O,S)—,—P(S)2—, —PO(R″)—, —PO(OCH3)—, and —PO(NHRH)—, where RH is selected from hydrogen and C1-4-alkyl, and R″ is selected from C1-6-alkyl and phenyl. Illustrative examples of such linkages are —CH2—CH2—CH2—, —CH2—CO—CH2—, —CH2—CHOH—CH2—, —O—CH2—O—, —O—CH2—CH2—, —O—CH2—CH=(including R5 when used as a linkage to a succeeding monomer), —CH2—CH2—O—, —NRH—CH2—CH2—, —CH2—CH2—NRH—, —CH2—NRH—CH2—, —O—CH2—CH2—NRH—, —NRH—CO—O—, —NRH—CO—NRH—, —NRH—CS—NRH—, —NRH—C(═NRH)—NRH—, —NRH—CO—CH2—NRH—O—CO—O—, —O—CO—CH2—O—, —O—CH2—CO—O—, —CH2—CO—NRH—, —O—CO—NRH—, —NRH—CO—CH2—, —O—CH2—CO—NRH—, —O—CH2—CH2—NRH—, —CH═N—O—, —CH2—NRH—O—, —CH2—O—N=(including R5 when used as a linkage to a succeeding monomer), —CH2—O—NRH—, —CO—NRH—CH2—, —CH2—NRH—O—, —CH2—NRH—CO—, —O—NRH—CH2—, —O—NRH, —O—CH2—S—, —S—CH2—O—, —CH2—CH2—S—, —O—CH2—CH2—S—, —S—CH2—CH=(including R5 when used as a linkage to a succeeding monomer), —S—CH2—CH2—, —S—CH2—CH2—O—, —S—CH2—CH2—S—, —CH2—S—CH2—, —CH2—SO—CH2—, —CH2—SO2—CH2—, —O—SO—O—, —O—S(O)2—O—, —O—S(O)2—CH2—, —O—S(O)2—NRH—, —NRH—S(O)2—CH2—; —O—S(O)2—CH2—, —O—P(O)2—O—, —O—P(O,S)—O—, —O—P(S)2—O—, —S—P(O)2—O—, —S—P(O,S)—O—, —S—P(S)2—O—, —O—P(O)2—S—, —O—P(O,S)—S—, —O—P(S)2—S—, —S—P(O)2—S—, —S—P(O,S)—S—, —S—P(S)2—S—, —O—PO(R″)—O—, —O—PO(OCH3)—O—, —O—PO(O CH2CH3)—O—, —O—PO(O CH2CH2S—R)—O—, —O—PO(BH3)—O—, —O—PO(NHRN)—O—, —O—P(O)2—NRH H—, —NRH—P(O)2—O—, —O—P(O,NRH)—O—, —CH2—P(O)2—O—, —O—P(O)2—CH2—, and —O—Si(R″)2—O—; among which —CH2—CO—NRH—, —CH2—NRH—O—, —S—CH2—O—, —O—P(O)2—O—O—P(—O,S)—O—, —O—P(S)2—O—, —NRH P(O)2—O—, —O—P(O,NRH)—O—, —O—PO(R″)—O—, —O—PO(CH3)—O—, and —O—PO(NHRN)—O—, where RH is selected form hydrogen and C1-4-alkyl, and R″ is selected from C1-6-alkyl and phenyl, are contemplated. Further illustrative examples are given in Mesmaeker et. al., Current Opinion in Structural Biology 1995, 5, 343-355 and Susan M. Freier and Karl-Heinz Altmann, Nucleic Acids Research, 1997, vol 25, pp 4429-4443.


Still other modified forms of oligonucleotides are described in detail in U.S. Patent Publication No. 20040219565, the disclosure of which is incorporated by reference herein in its entirety.


Modified oligonucleotides may also contain one or more substituted sugar moieties. In certain aspects, oligonucleotides comprise one of the following at the 2′ position: OH; F; O—, S—, or N-alkyl; O—, S—, or N-alkenyl; O—, S— or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Other embodiments include O[(CH2)nO]mCH3, O(CH2)nOCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2)nON[(CH2)nCH3]2, where n and m are from 1 to about 10. Other oligonucleotides comprise one of the following at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. In one aspect, a modification includes 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxyalkoxy group. Other modifications include 2′-dimethylaminooxyethoxy, i.e., a O(CH2)2ON(CH3)2 group, also known as 2′-DMAOE, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethyl-amino-ethoxy-ethyl or 2′-DMAEOE), i.e., 2′-O—CH2—O—CH2—N(CH3)2, also described in examples herein below.


Still other modifications include 2′-methoxy (2′-O—CH3), 2′-aminopropoxy (2′-OCH2CH2CH2NH2), 2′-allyl (2′-CH2—CH═CH2), 2′-O-allyl (2′-O—CH2—CH═CH2) and 2′-fluoro (2′-F). The 2′-modification may be in the arabino (up) position or ribo (down) position. In one aspect, a 2′-arabino modification is 2′-F. Similar modifications may also be made at other positions on the oligonucleotide, for example, at the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked oligonucleotides and the 5′ position of 5′ terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. See, for example, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; and 5,700,920, the disclosures of which are incorporated by reference in their entireties herein.


In one aspect, a modification of the sugar includes Locked Nucleic Acids (LNAs) in which the 2′-hydroxyl group is linked to the 3′ or 4′ carbon atom of the sugar ring, thereby forming a bicyclic sugar moiety. The linkage is in certain aspects is a methylene (—CH2—)n group bridging the 2′ oxygen atom and the 4′ carbon atom wherein n is 1 or 2. LNAs and preparation thereof are described in WO 98/39352 and WO 99/14226.


Natural and Modified Bases. Oligonucleotides may also include base modifications or substitutions. As used herein, “unmodified” or “natural” bases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified bases include other synthetic and natural bases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further modified bases include tricyclic pyrimidines such as phenoxazine cytidine(1H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy)-H-pyrimido[5,4-b][1,4]benzox-azin-2(3H)-one), carbazole cytidine (2H-pyrimido[4,5-b]indol-2-one), pyridoindole cytidine (H-pyrido[3′,2′:4,5]pyrrolo[2,3-d]pyrimidin-2-one). Modified bases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Further bases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y. S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., ed., CRC Press, 1993. Certain of these bases are useful for increasing the binding affinity and include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. and are, in certain aspects combined with 2′-O-methoxyethyl sugar modifications. See, U.S. Pat. No. 3,687,808, U.S. Pat. Nos. 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,645,985; 5,830,653; 5,763,588; 6,005,096; 5,750,692 and 5,681,941, the disclosures of which are incorporated herein by reference.


A “modified base” or other similar term refers to a composition which can pair with a natural base (e.g., adenine, guanine, cytosine, uracil, and/or thymine) and/or can pair with a non-naturally occurring base. In certain aspects, the modified base provides a Tm differential of 15, 12, 10, 8, 6, 4, or 2° C. or less. Exemplary modified bases are described in EP 1 072 679 and WO 97/12896.


An oligonucleotide, or modified form thereof, may be from about 20 to about 100 nucleotides in length. It is also contemplated wherein the oligonucleotide is about 20 to about 90 nucleotides in length, about 20 to about 80 nucleotides in length, about 20 to about 70 nucleotides in length, about 20 to about 60 nucleotides in length, about 20 to about 50 nucleotides in length about 20 to about 45 nucleotides in length, about 20 to about 40 nucleotides in length, about 20 to about 35 nucleotides in length, about 20 to about 30 nucleotides in length, about 20 to about 25 nucleotides in length, or about 15 to about 90 nucleotides in length, about 15 to about 80 nucleotides in length, about 15 to about 70 nucleotides in length, about 15 to about 60 nucleotides in length, about 15 to about 50 nucleotides in length about 15 to about 45 nucleotides in length, about 15 to about 40 nucleotides in length, about 15 to about 35 nucleotides in length, about 15 to about 30 nucleotides in length, about 15 to about 25 nucleotides in length, or about 15 to about 20 nucleotides in length, and all oligonucleotides intermediate in length of the sizes specifically disclosed to the extent that the oligonucleotide is able to achieve the desired result. Accordingly, oligonucleotides of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, and 100 nucleotides in length are contemplated. For example, a primer for amplification may be from about 20 to about 35, or any integer in between, nucleotides in length, and a probe may be from about 25 to about 55, or any integer in between, nucleotides in length


“Hybridization,” which is used interchangeably with the term “complex formation” herein, means an interaction between two or three strands of nucleic acids by hydrogen bonds in accordance with the rules of Watson-Crick DNA complementarity, Hoogstein binding, or other sequence-specific binding known in the art. Hybridization can be performed under different stringency conditions known in the art.


In various aspects, the methods include use of oligonucleotides which are 100% complementary to another sequence, e.g., a sequence in HPV genomic DNA or another oligonucelotide sequence useful in the methods, i.e., a perfect match, while in other aspects, the individual oligonucleotides are at least (meaning greater than or equal to) about 95% complementary to all or part of another sequence, at least about 90%, at least about 85%, at least about 80%, at least about 75%, at least about 70%, at least about 65%, at least about 60%, at least about 55%, at least about 50%, at least about 45%, at least about 40%, at least about 35%, at least about 30%, at least about 25%, at least about 20% complementary to that sequence, so long as the oligonucleotide is capable of hybridizing to the target sequence.


It is understood in the art that the sequence of the oligonucleotide used in the methods need not be 100% complementary to a target sequence to be specifically hybridizable. Moreover, an oligonucleotide may hybridize to a target sequence over one or more segments such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure or hairpin structure). Percent complementarity between any given oligonucleotide and a target sequence can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol. Biol., 1990, 215, 403-410; Zhang and Madden, Genome Res., 1997, 7, 649-656).


The stability of the hybrids is chosen to be compatible with the assay conditions. This may be accomplished by designing the nucleotide sequences in such a way that the Tm will be appropriate for standard conditions to be employed in the assay. The position at which the mismatch occurs may be chosen to minimize the instability of hybrids. This may be accomplished by increasing the length of perfect complementarity on either side of the mismatch, as the longest stretch of perfectly homologous base sequence is ordinarily the primary determinant of hybrid stability. In one embodiment, the regions of complementarity may include G:C rich regions of homology. The length of the sequence may be a factor when selecting oligonucleotides for use with particles. In one embodiment, at least one of the oligonucleotides has 100 or fewer nucleotides, e.g., has 15 to 50, 20 to 40, 15 to 30, or any integer from 15 to 50, nucleotides. Oligonucleotides having extensive self-complementarity should be avoided. Less than 15 nucleotides may result in a oligonucleotide complex having a too low a melting temperature to be suitable in the disclosed methods. More than 100 nucleotides may result in a oligonucleotide complex having a too high melting temperature to be suitable in the disclosed methods. Thus, oligonucleotides are of about 15 to about 100 nucleotides, e.g., about 20 to about 70, about 22 to about 60, or about 25 to about 50 nucleotides in length.


Particles

Particles for use in the methods or kits of the invention may be formed of any material that allows for detection and/or genotyping of HPV. In one embodiment, the particles are formed of a noble metal. In one embodiment, the particles are nanoparticles (NP). In general, nanoparticles (NPs) contemplated include any compound or substance with a high loading capacity for an oligonucleotide as described herein, including for example and without limitation, a metal, a semiconductor, and an insulator particle compositions, and a dendrimer (organic or inorganic). The term “functionalized nanoparticle,” as used herein, refers to a nanoparticle having at least a portion of its surface modified with an oligonucleotide. In one embodiment, the nanoparticles are gold or silver nanoparticles.


Thus, nanoparticles are contemplated for use in the methods which comprise a variety of inorganic materials including, but not limited to, metals, semi-conductor materials or ceramics as described in U.S. Patent Publication No. 20030147966. For example, metal-based nanoparticles include those described herein. Ceramic nanoparticle materials include, but are not limited to, brushite, tricalcium phosphate, alumina, silica, and zirconia. Organic materials from which nanoparticles are produced include carbon. Nanoparticle polymers include polystyrene, silicone rubber, polycarbonate, polyurethanes, polypropylenes, polymethylmethacrylate, polyvinyl chloride, polyesters, polyethers, and polyethylene. Biodegradable, biopolymer (e.g. polypeptides such as BSA, polysaccharides, etc.), other biological materials (e.g. carbohydrates), and/or polymeric compounds are also contemplated for use in producing nanoparticles.


In one embodiment, the nanoparticle is metallic, and in various aspects, the nanoparticle is a colloidal metal. Thus, in various embodiments, nanoparticles useful in the practice of the methods include metal (including for example and without limitation, gold, silver, platinum, aluminum, palladium, copper, cobalt, indium, nickel, or any other metal amenable to nanoparticle formation), semiconductor (including for example and without limitation, CdSe, CdS, and CdS or CdSe coated with ZnS) and magnetic (for example., ferromagnetite) colloidal materials, as well as silica containing materials. Other nanoparticles useful in the practice of the invention include, also without limitation, ZnS, ZnO, Ti, TiO2, Sn, SnO2, Si, SiO2, Fe, Fe+4, Ag, Cu, Ni, Al, steel, cobalt-chrome alloys, Cd, titanium alloys, AgI, AgBr, HgI2, PbS, PbSe, ZnTe, CdTe, In2S3, In2Se3, Cd3P2, Cd3As2, InAs, and GaAs. Methods of making ZnS, ZnO, TiO2, AgI, AgBr, HgI2, PbS, PbSe, ZnTe, CdTe, In2S3, In2Se3, Cd3P2, Cd3As2, InAs, and GaAs nanoparticles are also known in the art. See, e.g., Weller, Angew. Chem. Int. Ed. Engl., 32, 41 (1993); Henglein, Top. Curr. Chem., 143, 113 (1988); Henglein, Chem. Rev., 89, 1861 (1989); Brus, Appl. Phys. A., 53, 465 (1991); Bahncmann, in Photochemical Conversion and Storage of Solar Energy (eds. Pelizetti and Schiavello 1991), page 251; Wang and Herron, J. Phys. Chem., 95, 525 (1991); Olshavsky, et al., J. Am. Chem. Soc., 112, 9438 (1990); Ushida et al., J. Phys. Chem., 95, 5382 (1992).


In practice, methods are provided using any suitable nanoparticle having oligonucleotides attached thereto that are in general suitable for use in detection assays known in the art to the extent and do not interfere with oligonucleotide complex formation, i.e., hybridization to form a double-strand or triple-strand complex. The size, shape and chemical composition of the particles contribute to the properties of the resulting oligonucleotide-functionalized nanoparticle. These properties include for example, optical properties, optoelectronic properties, electrochemical properties, electronic properties, stability in various solutions, magnetic properties, and pore and channel size variation. The use of mixtures of particles having different sizes, shapes and/or chemical compositions, as well as the use of nanoparticles having uniform sizes, shapes and chemical composition, is contemplated. Examples of suitable particles include, without limitation, nanoparticles, aggregate particles, isotropic (such as spherical particles) and anisotropic particles (such as non-spherical rods, tetrahedral, prisms) and core-shell particles such as the ones described in U.S. Pat. No. 7,238,472 and International Patent Publication No. WO 2002/096262, the disclosures of which are incorporated by reference in their entirety.


Methods of making metal, semiconductor and magnetic nanoparticles are well-known in the art. See, for example, Schmid, G. (ed.) Clusters and Colloids (VCH, Weinheim, 1994); Hayat, M. A. (ed.) Colloidal Gold: Principles, Methods, and Applications (Academic Press, San Diego, 1991); Massart, R., IEEE Transactions On Magnetics, 17, 1247 (1981); Ahmadi, T. S. et al., Science, 272, 1924 (1996); Henglein, A. et al., J. Phys. Chem., 99, 14129 (1995); Curtis, A. C., et al., Angew. Chem. Int. Ed. Engl., 27, 1530 (1988). Preparation of polyalkylcyanoacrylate nanoparticles prepared is described in Fattal, et al., J. Controlled Release (1998) 53: 137-143 and U.S. Pat. No. 4,489,055. Methods for making nanoparticles comprising poly(D-glucaramidoamine)s are described in Liu, et al., J. Am. Chem. Soc. (2004) 126:7422-7423. Preaparation of nanoparticles comprising polymerized methylmethacrylate (MMA) is described in Tondelli, et al., Nucl. Acids Res. (1998) 26:5425-5431, and preparation of dendrimer nanoparticles is described in, for example Kukowska-Latallo, et al., Proc. Natl. Acad. Sci. USA (1996) 93:4897-4902 (Starburst polyamidoamine dendrimers).


Suitable nanoparticles are also commercially available from, for example, Ted Pella, Inc. (gold), Amersham Corporation (gold) and Nanoprobes, Inc. (gold).


Also as described in U.S. Patent Publication No. 20030147966, nanoparticles comprising materials described herein are available commercially or they can be produced from progressive nucleation in solution (e.g., by colloid reaction), or by various physical and chemical vapor deposition processes, such as sputter deposition. See, e.g., HaVashi, (1987) Vac. Sci. Technol. July/August 1987, A5(4):1375-84; Hayashi, (1987) Physics Today, December 1987, pp. 44-60; MRS Bulletin, January 1990, pp. 16-47.


As further described in U.S. Patent Publication No. 20030147966, nanoparticles contemplated are produced using HAuCl4 and a citrate-reducing agent, using methods known in the art. See, e.g., Marinakos et al., (1999) Adv. Mater. 11: 34-37; Marinakos et al., (1998) Chem. Mater. 10: 1214-19; Enustun & Turkevich, (1963) J. Am. Chem. Soc. 85: 3317. Tin oxide nanoparticles having a dispersed aggregate particle size of about 140 nm are available commercially from Vacuum Metallurgical Co., Ltd. of Chiba, Japan. Other commercially available nanoparticles of various compositions and size ranges are available, for example, from Vector Laboratories, Inc. of Burlingame, Calif.


At least one oligonucleotide is bound to the nanoparticle through a 5′ linkage and/or the oligonucleotide is bound to the nanoparticle through a 3′ linkage. In various aspects, at least one oligonucleotide is bound through a spacer to the nanoparticle. In these aspects, the spacer is an organic moiety, a polymer, a water-soluble polymer, a nucleic acid, a polypeptide, and/or an oligosaccharide. Methods of functionalizing the oligonucleotides to attach to a surface of a nanoparticle are well known in the art. See Whitesides, Proceedings of the Robert A. Welch Foundation 39th Conference On Chemical Research Nanophase Chemistry, Houston, Tex., pages 109-121 (1995). See also, Mucic et al. Chem. Comm. 555-557 (1996) (describes a method of attaching 3′ thiol DNA to flat gold surfaces; this method can be used to attach oligonucleotides to nanoparticles). The alkanethiol method can also be used to attach oligonucleotides to other metal, semiconductor and magnetic colloids and to the other nanoparticles listed above. Other functional groups for attaching oligonucleotides to solid surfaces include phosphorothioate groups (see, e.g., U.S. Pat. No. 5,472,881 for the binding of oligonucleotide-phosphorothioates to gold surfaces), substituted alkylsiloxanes (see, e.g. Burwell, Chemical Technology, 4:370-377 (1974) and Matteucci and Caruthers, J. Am. Chem. Soc., 103:3185-3191 (1981) for binding of oligonucleotides to silica and glass surfaces, and Grabaretal., Anal. Chem., 67:735-743 for binding of aminoalkylsiloxanes and for similar binding of mercaptoaklylsiloxanes). Oligonucleotides terminated with a 5′ thionucleoside or a 3′ thionucleoside may also be used for attaching oligonucleotides to solid surfaces. The following references describe other methods which may be employed to attach oligonucleotides to nanoparticles: Nuzzo et al., J. Am. Chem. Soc., 109:2358 (1987) (disulfides on gold); Allara and Nuzzo, Langmuir, 1:45 (1985) (carboxylic acids on aluminum); Allara and Tompkins, J. Colloid Interface Sci., 49:410-421 (1974) (carboxylic acids on copper); Iler, The Chemistry Of Silica, Chapter 6, (Wiley 1979) (carboxylic acids on silica); Timmons and Zisman, J. Phys. Chem., 69:984-990 (1965) (carboxylic acids on platinum); Soriaga and Hubbard, J. Am. Chem. Soc., 104:3937 (1982) (aromatic ring compounds on platinum); Hubbard, Acc. Chem. Res., 13:177 (1980) (sulfolanes, sulfoxides and other functionalized solvents on platinum); Hickman et al., J. Am. Chem. Soc., 111:7271 (1989) (isonitriles on platinum); Maoz and Sagiv, Langmuir, 3:1045 (1987) (silanes on silica); Maoz and Sagiv, Langmuir, 3:1034 (1987) (silanes on silica); Wasserman et al., Langmuir, 5:1074 (1989) (silanes on silica); Eltekova and Eltekov, Langmuir, 3:951 (1987) (aromatic carboxylic acids, aldehydes, alcohols and methoxy groups on titanium dioxide and silica); Lec et al., J. Phys. Chem., 92:2597 (1988) (rigid phosphates on metals).


Nanoparticle Size

In various aspects, methods provided include those utilizing nanoparticles which range in size from about 1 nm to about 250 nm in mean diameter, about 1 nm to about 240 nm in mean diameter, about 1 nm to about 230 nm in mean diameter, about 1 nm to about 220 nm in mean diameter, about 1 nm to about 210 nm in mean diameter, about 1 nm to about 200 nm in mean diameter, about 1 nm to about 190 nm in mean diameter, about 1 nm to about 180 nm in mean diameter, about 1 nm to about 170 nm in mean diameter, about 1 nm to about 160 nm in mean diameter, about 1 nm to about 150 nm in mean diameter, about 1 nm to about 140 nm in mean diameter, about 1 nm to about 130 nm in mean diameter, about 1 nm to about 120 nm in mean diameter, about 1 nm to about 110 nm in mean diameter, about 1 nm to about 100 nm in mean diameter, about 1 nm to about 90 nm in mean diameter, about 1 nm to about 80 nm in mean diameter, about 1 nm to about 70 nm in mean diameter, about 1 nm to about 60 nm in mean diameter, about 1 nm to about 50 nm in mean diameter, about 1 nm to about 40 nm in mean diameter, about 1 nm to about 30 nm in mean diameter, or about 1 nm to about 20 nm in mean diameter, about 1 nm to about 10 nm in mean diameter. In other aspects, the size of the nanoparticles is from about 5 nm to about 150 nm (mean diameter), from about 5 to about 50 nm, from about 10 to about 30 nm. The size of the nanoparticles is from about 5 nm to about 150 nm (mean diameter), from about 30 to about 100 nm, from about 40 to about 80 nm. The size of the nanoparticles used in a method varies as required by their particular use or application. The variation of size is advantageously used to optimize certain physical characteristics of the nanoparticles, for example, optical properties or amount surface area that can be derivatized as described herein.


Exemplary Solid Substrates

Any substrate which allows observation of a detectable change, e.g., an optical change, may be employed in the methods of the invention. Suitable substrates include transparent solid surfaces (e.g., glass, quartz, plastics and other polymers), opaque solid surface (e.g., white solid surfaces, such as TLC silica plates, filter paper, glass fiber filters, cellulose nitrate membranes, nylon membranes), and conducting solid surfaces (e.g., indium-tin-oxide (ITO), silicon dioxide (SiO2), silicon oxide (SiO), silicon nitride, etc.)). The substrate can be any shape or thickness, but generally is flat and thin. In one embodiment, the substrates are transparent substrates such as glass (e.g., glass slides) or plastics (e.g., wells of microtiter plates).


Exemplary System

The Verigene System consists of three major components, a disposable cartridge with on board reagents for each assay (Verigene test cartridge, (see, e.g., U.S. Pat. No. 5,599,668)), an automated fluid processor (Verigene Processor) to execute the assay protocol, and the imaging device (Verigene reader) to read the assay result (see, e.g., U.S. Pat. No. 7,110,585).


The disposable cartridge comprises a glass microarray slide captured by a substrate holder; a silicone gasket between the slide and plastic housing, which forms one individual 12 μL reaction chamber; and a plastic housing. The housing contains multiple reagent wells for on board reagent storage that are covered by a snap-on cover. Routing of fluids from the reagent wells to the reaction chamber is accomplished by a microfluidic valve plate with predetermined fluid paths for each step of the reaction.


During an assay, reagents are pumped from the reagent wells through a microfluidic channel and into the reaction chamber. The temperature subsystem is composed of resistive heating and thermoelectric cooling elements that have the ability to control fluid temperature in the hybridization cartridge from about 15° C. up to about 60° C., within about 1° C. to 2° C. of accuracy.


Once a disposable cartridge is inserted into the Verigene processor, the instrument automatically reads the bar code and alerts the Verigene System of the required processing protocol to be followed. This action triggers the start of the automated assay. Reagents are processed sequentially based on time, temperature, and motion requirements specified in the assay protocol. Waste reagents are stored in the disposable cartridge.


One patient sample can be analyzed per disposable cartridge. Upon completion of the assay, the disposable cartridge is removed from the automated fluid processor and the top portion comprising the microfluidic channels and the hybridization chambers is removed from the substrate holder (see, e.g., U.S. Pat. No. 7,163,823). Removing the hybridization cartridge automatically empties waste into a sealed container that is disposed of with the reagent cartridge.


The substrate holder with the microarray slide is inserted into the Verigene reader, which automatically begins imaging and data analysis.


The invention will be further described by the following non-limiting examples.


Example

Tables 1-13 provide sequence data for exemplary oligonucleotides useful to amplify and/or detect a HR-HPV of interest. Each table presents the oligonucleotide sequences for a specific HR HPV subtype and lists exemplary PCR primers for HPV subtype-specific amplification, exemplary sequences for oligonucleotide capture probes that may be bound to a solid support, and exemplary sequences for mediator probes. Note that the mediator probe sequences listed in the tables only show the HPV subtype-specific sequences. All of these mediator probes contain 3′-tails with about 20 to about 35 linked adenosine phosphate molecules (polyA).


Other primers for amplification, including those with nucleotide substitutions relative to those shown in the tables, may be employed in the methods and kits of the invention. Other capture probes and other mediators probes, including those with nucleotide substitutions relative to those shown in the tables, may be employed in the methods and kits of the invention. In addition, the sequence of a mediator probe shown in the tables may be employed as a capture probe and the sequence of a capture probe shown in the tables may be employed as a mediator probe so long as the mediator probe contains a sequence that binds to the oligonucleotide affixed to a detectable particle.


The high sensitivity of the Verigene system readily enables the use of a control DNA plasmid to determine the clinical relevance of a patient's HPV infection. By co-amplifying a known copy number of a control HPV sequence containing DNA plasmid, the multiplex PCR can be stopped during the exponential phase and detected on the Verigene platform. Since these reactions are stopped during the exponential phase of the PCR, before reaching the linear or plateau phases, the amplified HPV DNA can be quantified relative to the amplified control DNA. The Verigene system intensity value of the amplified control DNA can normalize the amplified HPV DNA and set a clinical relevance threshold. This normalizing method is facilitated by the high sensitivity of the Verigene System because it allows for stopping and detecting the PCR at cycles earlier than what would be possible with a fluorescent readout. When dealing with clinical samples of unknown DNA amounts, this greatly facilitates being able to stop the reaction in the exponential phase of the PCR.









TABLE 1







HPV primers and probes for amplifying and typing HPV type 16









SEQ ID NO:

Sequence (5′-3′)













PCR primers



1
hpv16_18779_3endtrunc
CGTAGACATTCGTACTTTGGAAGA





2
hpv16_18780_5endtrunc
ATTCGTACTTTGGAAGACCTGTTA





3
hpv16_22634_53endtrunc
TTACTACTTCAACTGATACCACAC





4
hpv16_22634_5endtrunc
CTACTTCAACTGATACCACACCTG





5
hpv16_19414_3endtrunc_rc
GTAAGTGGTGTTTGGCATATAGTG





6
hpv16_19414_5endtrunc_rc
ATATTTGTAAGTGGTGTTTGGCAT





7
hpv16_23344_rc
GGTTGTAGAAGTATCTGTAATAAAGTCATC






Capture probes



8
capv1_16_18107
TTCAGGACCCACAGGAGCGACCCAGAAAGT





9
capv1_16_18110
AGGACCCACAGGAGCGACCCAGAAAGTTAC





10
capv1_16_18112
GACCCACAGGAGCGACCCAGAAAGTTACCA





11
capv1_16_18114
CCCACAGGAGCGACCCAGAAAGTTACCACA





12
hpv16_cap_18973
TGACGAGAACGAAAATGACAGTGATACAGGTGAAGATTTGG





13
hpv16_cap_18973_extend_1
TGACGAGAACGAAAATGACAGTGATACAGGTGAAGATTTGG





14
capv1_16_18970
ACGAGAACGAAAATGACAGTGATACAGGTG





15
capv1_16_18971
CGAGAACGAAAATGACAGTGATACAGGTGA





16
capv1_16_18972
GAGAACGAAAATGACAGTGATACAGGTGAA





17
capv1_16_18973
AGAACGAAAATGACAGTGATACAGGTGAAG





18
capv1_16_18974
GAACGAAAATGACAGTGATACAGGTGAAGA





19
capv1_16_18975
AACGAAAATGACAGTGATACAGGTGAAGAT





20
hpv16_cap_22767
ACTGGAGGGCATTTTACACTTTCATCATCCACTATTAGTAC





21
hpv16_cap_22767_extend_1
ACTGGAGGGCATTTTACACTTTCATCATCCACTATTAGTAC





22
hpv16_cap_23109
AGGCCAGCATTAACCTCTAGGCGTACTGGCATTAGGTACAG






Mediator probes



23
medv1_16_19232
AGGAGATTATTTGAAAGCGAAGACAGCGGG





24
medv1_16_19233
GGAGATTATTTGAAAGCGAAGACAGCGGGT





25
medv1_16_19234
GAGATTATTTGAAAGCGAAGACAGCGGGTA





26
medv1_16_22953
TGCTTTTGTAACCACTCCCACTAAACTTAT





27
medv1_16_22953
TGCTTTTGTAACCACTCCCACTAAACTTAT





28
medv1_16_23263
ATAACACCTTCTACATATACTACCACTTCA





29
medv1_16_24920
AAACATACACCTCCAGCACCTAAAGAAGAT





30
medv1_16_24922
ACATACACCTCCAGCACCTAAAGAAGATGA





31
medv1_16_24926
ACACCTCCAGCACCTAAAGAAGATGATCCC
















TABLE 2







HPV primers and probes for amplifying and typing HPV type 18









SEQ ID NO:

Sequence (5′-3′)






PCR primers



32
hpv18_38408_3endtrunc
TATCACACCTTCGTCTACCTCTGT





33
hpv18_38471_3endtrunc
TGATCCGTCCATTATTGAAGTTCC





34
hpv18_38989_5endtrunc_rc
CATTGTCCTCCGTGGCAGATACTA





35
hpv18_38993_3endtrunc_rc
TTGTCCTCCGTGGCAGATACTAAA





36
hpv18_38989_5endtrunc_rc
CATTGTCCTCCGTGGCAGATACTA





37
hpv18_38993_3endtrunc_rc
TTGTCCTCCGTGGCAGATACTAAA






Capture probes



38
capv1_18_38686
CAGTGGCTAACCCTGAGTTTCTTACACGTC





39
capv1_18_38687
AGTGGCTAACCCTGAGTTTCTTACACGTCC





40
hpv18_cap_38693
GTGGCTAACCCTGAGTTTCTTACACGTCCATCCTCTTTAAT





41
hpv18_cap_38693_extend_1
GTGGCTAACCCTGAGTTTCTTACACGTCCATCCTCTTTAAT





42
capv1_18_38693
TAACCCTGAGTTTCTTACACGTCCATCCTC





43
capv1_18_38694
AACCCTGAGTTTCTTACACGTCCATCCTCT





44
capv1_18_38695
ACCCTGAGTTTCTTACACGTCCATCCTCTT





45
capv1_18_38696
CCCTGAGTTTCTTACACGTCCATCCTCTTT





46
capv1_18_38697
CCTGAGTTTCTTACACGTCCATCCTCTTTA





47
capv1_18_38698
CTGAGTTTCTTACACGTCCATCCTCTTTAA





48
capv1_18_38699
TGAGTTTCTTACACGTCCATCCTCTTTAAT





49
capv1_18_38700
GAGTTTCTTACACGTCCATCCTCTTTAATT





50
capv1_18_38772
ACATTTGATCCTCGTAGTGATGTTCCTGAT






Mediator probes



51
medv1_18_38687
AGTGGCTAACCCTGAGTTTCTTACACGTCC





52
medv1_18_38694
AACCCTGAGTTTCTTACACGTCCATCCTCT





53
medv1_18_38696
CCCTGAGTTTCTTACACGTCCATCCTCTTT





54
medv1_18_38699
TGAGTTTCTTACACGTCCATCCTCTTTAAT





55
medv1_18_38772
ACATTTGATCCTCGTAGTGATGTTCCTGAT
















TABLE 3







HPV primers and probes for amplifying and typing HPV type 31









SEQ ID NO:

Sequence (5′-3′)






PCR primers



56
hpv31_100787_53endtrunc
CAGACGTTATACCTAAAATAGAAC





57
hpv31_100788_53endtrunc
AGACGTTATACCTAAAATAGAACA





58
hpv31_103905_3endtrunc
CTATAATTTAGGTGTCACGCCATA





59
hpv31_103906_3endtrunc
TATAATTTAGGTGTCACGCCATAG





60
hpv31_101128_3endtrunc_rc
AACACTTGTTACATCTAAAATTGC





61
hpv31_104191_53endtrunc_rc
CACATAGTTGAACTACAGTTGTAT





62
hpv31_104192_53endtrunc_rc
ACACATAGTTGAACTACAGTTGTA






Capture probes



63
hpv31_cap_100917
ATATGTCCCTCTTAGTACACGTCCTTCTACAGTATCTGAGG





64
hpv31_cap_100917_extend_1
ATATGTCCCTCTTAGTACACGTCCTTCTACAGTATCTGAGG





65
capv1_31_100915
TATGTCCCTCTTAGTACACGTCCTTCTACA





66
capv1_31_100916
ATGTCCCTCTTAGTACACGTCCTTCTACAG





67
capv1_31_100917
TGTCCCTCTTAGTACACGTCCTTCTACAGT





68
capv1_31_100919
TCCCTCTTAGTACACGTCCTTCTACAGTAT





69
hpv31_cap_104028
TGTTTAAACATGCTAGTACAACTATGCTGATGCAGTAGTTC





70
capv1_31_104028
TTAAACATGCTAGTACAACTATGCTGATGC






Mediator probes



71
medv1_31_100961
TACCTATTAGACCACCAGTTAGCATTGACC





72
medv1_31_100963
CCTATTAGACCACCAGTTAGCATTGACCCT





73
medv1_31_100964
CTATTAGACCACCAGTTAGCATTGACCCTG





74
medv1_31_100965
TATTAGACCACCAGTTAGCATTGACCCTGT





75
medv1_31_112000
GTTTCCTGCCTAACACACCTTGCCAACATATAATCCAGTC





76
medv1_31_112001
TTTCCTGCCTAACACACCTTGCCAACATATAATCCAGTCC





77
medv1_31_112002
TTCCTGCCTAACACACCTTGCCAACATATAATCCAGTCCA





78
medv1_31_104118
TTTCCTGCCTAACACACCTTGCCAACATAT
















TABLE 4







HPV primers and probes for amplifying and typing HPV type 33









SEQ ID NO:

Sequence (5′-3′)






PCR primers



79
hpv33_54464_53endtrunc
TATTACATCTCGTAGACATACTGT





80
hpv33_54465_3endtrunc
GCTATTACATCTCGTAGACATACT





81
hpv33_54466_3endtrunc
CTATTACATCTCGTAGACATACTG





82
hpv33_55139_5endtrunc_rc
GTACCAATAATTTTTTAGCGTTAG






Capture probes



83
hpv33_cap_54589
TATTGTGCCTTTAGACCACACCGTGCCAAATGAACAATATG





84
hpv33_cap_54589_extend_5
TGCCTTTAGACCACACCGTGCCAAATGAACAAT





85
capv1_33_54588
GTGCCTTTAGACCACACCGTGCCAAATGAA





86
capv1_33_54589
TGCCTTTAGACCACACCGTGCCAAATGAAC





87
capv1_33_54590
GCCTTTAGACCACACCGTGCCAAATGAACA





88
capv1_33_54591
CCTTTAGACCACACCGTGCCAAATGAACAA





89
capv1_33_54592
CTTTAGACCACACCGTGCCAAATGAACAAT





90
hpv33_cap_54824
GATATACCTTCCCCTTTATTTCCCACATCTAGCCCATTTGT





91
capv1_33_54823
TACCTTCCCCTTTATTTCCCACATCTAGCC





92
capv1_33_54824
ACCTTCCCCTTTATTTCCCACATCTAGCCC





93
capv1_33_54833
TTTATTTCCCACATCTAGCCCATTTGTTCC





94
capv1_33_54835
TATTTCCCACATCTAGCCCATTTGTTCCTA






Mediator probes



95
medv1_33_54629
ACAGCCTTTACATGATACTTCTACATCGTC





96
medv1_33_54630
CAGCCTTTACATGATACTTCTACATCGTCT





97
medv1_33_54631
AGCCTTTACATGATACTTCTACATCGTCTT





98
medv1_33_54876
TTTCCTTTTGACACCATTGTTGTAGACGGT
















TABLE 5







HPV primers and probes for amplifying and typing HPV type 35









SEQ ID NO:

Sequence (5′-3′)













PCR primers



99
hpv35_116922_3endtrunc
TGACATCCATAAGTACACATGATA





100
hpv35_116923_3endtrunc
GACATCCATAAGTACACATGATAA





101
hpv35_117465_5endtrunc_rc
CATGTTGTAAGGGTTGTAATTCTA





102
hpv35_117509_5endtrunc_rc
ATTTAATGATGTTGAAACAGTGGT






Capture probes



103
hpv35_cap_125005
TGTTGACCCTGCCTTTATGACTTCTCCTGCAAAACTTATTACATATGATAA





104
hpv35_cap_125005_extend_6
GACCCTGCCTTTATGACTTCTCCTGCAAAACTTATTACATATG





105
capv1_35_125004
GACCCTGCCTTTATGACTTCTCCTGCAAAACTTATTACAT





106
capv1_35_125005
ACCCTGCCTTTATGACTTCTCCTGCAAAACTTATTACATA





107
capv1_35_117184
CCCTGCCTTTATGACTTCTCCTGCAAAACT





108
capv1_35_117185
CCTGCCTTTATGACTTCTCCTGCAAAACTT





109
capv1_35_117186
CTGCCTTTATGACTTCTCCTGCAAAACTTA





110
capv1_35_117187
TGCCTTTATGACTTCTCCTGCAAAACTTAT





111
capv1_35_117188
GCCTTTATGACTTCTCCTGCAAAACTTATT






Mediator probes



112
medv1_35_125066
CCTTAACCCTGATACAACCTTACAATTTGAGCATGAGGAT





113
medv1_35_125068
TTAACCCTGATACAACCTTACAATTTGAGCATGAGGATAT





114
medv1_35_125070
AACCCTGATACAACCTTACAATTTGAGCATGAGGATATTA





115
medv1_35_125073
CCTGATACAACCTTACAATTTGAGCATGAGGATATTAGCT
















TABLE 6







HPV primers and probes for amplifying and typing HPV type 39









SEQ ID NO:

Sequence (5′-3′)






PCR primers



116
hpv39_205196
CAGTAAGGTTTAGTAGGCTTGGCAAAAAGG





117
hpv39_205322_5endtrunc
TAGTTCACGCTGAGCCCTCTGATG





118
hpv39_205714_53endtrunc_rc
ATGCTGTCACTAGACCGCCACATA






Capture probes



119
hpv39_cap_213212
TAGATACTGCATTTAATAATACAAGGGATTCGGGCACTACATATAACACAG





120
hpv39_cap_213212_extend_3
TGCATTTAATAATACAAGGGATTCGGGCACTACATATAACACAG





121
capv1_39_205408
ACTGCATTTAATAATACAAGGGATTCGGGC





122
capv1_39_213212
ACTGCATTTAATAATACAAGGGATTCGGGCACTACATATA





123
capv1_39_205414
TTTAATAATACAAGGGATTCGGGCACTACA





124
capv1_39_205415
TTAATAATACAAGGGATTCGGGCACTACAT





125
capv1_39_205420
AATACAAGGGATTCGGGCACTACATATAAC





126
medv1_39_205568
GTACTACTCCACAGTTGCCATTGGTGCCTT





127
medv1_39_205569
TACTACTCCACAGTTGCCATTGGTGCCTTC





128
medv1_39_205570
ACTACTCCACAGTTGCCATTGGTGCCTTCT





129
medv1_39_205571
CTACTCCACAGTTGCCATTGGTGCCTTCTG





130
medv1_39_205572
TACTCCACAGTTGCCATTGGTGCCTTCTGG






Mediator probes



131
medv1_39_205568
GTACTACTCCACAGTTGCCATTGGTGCCTT





132
medv1_39_205569
TACTACTCCACAGTTGCCATTGGTGCCTTC





133
medv1_39_205570
ACTACTCCACAGTTGCCATTGGTGCCTTCT





134
medv1_39_205571
CTACTCCACAGTTGCCATTGGTGCCTTCTG





135
medv1_39_205572
TACTCCACAGTTGCCATTGGTGCCTTCTGG
















TABLE 7







HPV primers and probes for amplifying and typing HPV type 45









SEQ ID NO:

Sequence (5′-3′)






PCR primers



136
hpv45_126840_3endtrunc
TAGGGCTAATCAACAGGTCCGTGT





137
hpv45_126840_5endtrunc
TAATCAACAGGTCCGTGTGTCCAC





138
hpv45_127941_3endtrunc
CTGTTATTACGCAGGATGTTAGGG





139
hpv45_127941_5endtrunc
TTACGCAGGATGTTAGGGATAATG





140
hpv45_127942_5endtrunc
TACGCAGGATGTTAGGGATAATGT





141
hpv45_127302_rc
AATGGTACTGTAACATTACTGTAAGAGGAT





142
hpv45_128604_3endtrunc_rc
ACTGCTTAAACTTAGTAGGGTCAT





143
hpv45_128604_rc
TACTATACTGCTTAAACTTAGTAGGGTCAT






Capture probes



144
hpv45_cap_126880
AGTTTTTAACACATCCCTCATCGTTGGTTACATTTGATAAT





145
capv1_45_126880
TTAACACATCCCTCATCGTTGGTTACATTT





146
capv1_45_126882
AACACATCCCTCATCGTTGGTTACATTTGA





147
capv1_45_126883
ACACATCCCTCATCGTTGGTTACATTTGAT





148
capv1_45_126884
CACATCCCTCATCGTTGGTTACATTTGATA





149
hpv45_cap_127211
TGCAGACTTCCCACCTCCTGCGTCCACTACACCTAGCACTA





150
hpv45_cap_127211_extend_2
TGCAGACTTCCCACCTCCTGCGTCCACTACACCTAG





151
capv1_45_127211
ACTTCCCACCTCCTGCGTCCACTACACCTA





152
hpv45_cap_128173
TTGCAGGATACAAAGTGCGAGGTTCCATTAGACATTTGTCA





153
hpv45_cap_128173_extend_2
TTGCAGGATACAAAGTGCGAGGTTCCATTAGACATT





154
capv1_45_128173
GGATACAAAGTGCGAGGTTCCATTAGACAT






Mediator probes



155
medv1_45_126936
CACCACACTATCCTTTGAGCCTACCAGTAA





156
medv1_45_126937
ACCACACTATCCTTTGAGCCTACCAGTAAT





157
medv1_45_126938
CCACACTATCCTTTGAGCCTACCAGTAATG





158
medv1_45_127265
ATCCAAAGTATTCCTTGACCATGCCTTCTA





159
medv1_45_127269
AAAGTATTCCTTGACCATGCCTTCTACTGC





160
medv1_45_127271
AGTATTCCTTGACCATGCCTTCTACTGCTG





161
medv1_45_128326
TGTTATGGGTGACACAGTACCTACGGACCT
















TABLE 8







HPV primers and probes for amplifying and typing HPV type 51









SEQ ID NO:

Sequence (5′-3′)






PCR primers



162
hpv51_215984_3endtrunc
GAGAGTATAGACGTTATAGCAGGT





163
hpv51_220678_5endtrunc
CAGTACGCTTTAGTAGGTTAGGTC





164
hpv51_216387_3endtrunc_rc
ACGGAGCTTCAATTCTGTAACACG





165
hpv51_216387_53endtrunc_rc
AACACGGAGCTTCAATTCTGTAAC





166
hpv51_221289_3endtrunc_rc
AGTCTGGAACTGCCTGCATAGTAA





167
hpv51_221289_53endtrunc_rc
ATTAGTCTGGAACTGCCTGCATAG






Capture probes



168
hpv51_cap_216256
AAAGATGTAGTATTGCATTTAACACCACAGACTGAAATTGA





169
hpv51_cap_216256_extend_1
AAAGATGTAGTATTGCATTTAACACCACAGACTGAAATTGA





170
capv1_51_216256
TGTAGTATTGCATTTAACACCACAGACTGA





171
capv1_51_216257
GTAGTATTGCATTTAACACCACAGACTGAA





172
hpv51_cap_220901
CACACCACACCTATGTCACACTCCTCTTTGTCTAGGCAGTT





173
hpv51_cap_220901_extend_1
CACACCACACCTATGTCACACTCCTCTTTGTCTAGGCAGTT





174
capv1_51_220899
ACCACACCTATGTCACACTCCTCTTTGTCT





175
capv1_51_220901
CACACCTATGTCACACTCCTCTTTGTCTAG






Mediator probes



176
medv1_51_216346
TATGCGTGACCAGCTACCAGAAAGACGGGC





177
medv1_51_221069
TCCCCACACTTCCATTGACACCAAGCATTC





178
medv1_51_221072
CCACACTTCCATTGACACCAAGCATTCTAT





179
medv1_51_228853
ACACTTCCATTGACACCAAGCATTCTATTGTTATACTAGG





180
medv1_51_221075
CACTTCCATTGACACCAAGCATTCTATTGT





181
medv1_51_221080
CCATTGACACCAAGCATTCTATTGTTATAC
















TABLE 9







HPV primers and probes for amplifying and typing HPV type 56









SEQ ID NO:

Sequence (5′-3′)






PCR primers



182
hpv56_142266_3endtrunc
ATCCGTTATTTATTGATCCCCCTG





183
hpv56_142266_53endtrunc
CGTTATTTATTGATCCCCCTGTTA





184
hpv56_142689_53endtrunc_rc
TACGTGTTTGTATAGTAGCCTTTC





185
hpv56_142690_5endtrunc_rc
CCTCTACGTGTTTGTATAGTAGCC






Capture probes






186
hpv56_cap_142497
TAAGGTAACTGACCCTGCATTTCTTGATAGACCTGCAACATTAGTATCTGCTGAT





187
hpv56_cap_142497_extend_4
GGTAACTGACCCTGCATTTCTTGATAGACCTGCAAC





188
capv1_56_142495
GGTAACTGACCCTGCATTTCTTGATAGACC





189
capv1_56_142496
GTAACTGACCCTGCATTTCTTGATAGACCT





190
capv1_56_142497
TAACTGACCCTGCATTTCTTGATAGACCTG





191
capv1_56_142498
AACTGACCCTGCATTTCTTGATAGACCTGC





192
capv1_56_142508
GCATTTCTTGATAGACCTGCAACATTAGTA





193
capv1_56_142509
CATTTCTTGATAGACCTGCAACATTAGTAT





194
capv1_56_142511
TTTCTTGATAGACCTGCAACATTAGTATCT





195
capv1_56_142512
TTCTTGATAGACCTGCAACATTAGTATCTG






Mediator probes



196
medv1_56_142563
GTACTGACACATCTTTAGCTTTTTCTCCGT





197
medv1_56_142566
CTGACACATCTTTAGCTTTTTCTCCGTCGG





198
medv1_56_142567
TGACACATCTTTAGCTTTTTCTCCGTCGGG





199
medv1_56_142568
GACACATCTTTAGCTTTTTCTCCGTCGGGT
















TABLE 10







HPV primers and probes for amplifying and typing HPV type 58









SEQ ID NO:

Sequence (5′-3′)






PCR primers



200
hpv58_65683_5endtrunc
GTGTAACCTGTAACAACGCCATGA





201
hpv58_70331_3endtrunc
TAGGGGCTAAAGTACATTACTACC





202
hpv58_70332_3endtrunc
AGGGGCTAAAGTACATTACTACCA





203
hpv58_66521_5endtrunc_rc
CTGTCTACATCCGTTTCACTGCTT





204
hpv58_66523_5endtrunc_rc
AACTGTCTACATCCGTTTCACTGC





205
hpv58_78723_53endtrunc_rc
ACTTTTTTATTGTTATTGGGACTT





206
hpv58_78723_5endtrunc_rc
ATTGTTATTGGGACTTTTGATGGA






Capture probes



207
hpv58_cap_66078
AGGTAGAAGCGGTAATAGAACGAAGAACAGGAGATAATATT





208
capv1_58_66078
GAAGCGGTAATAGAACGAAGAACAGGAGAT





209
capv1_58_74314
TCAGATGTAAGCAGTGAAACGGATGTAGACAGTTGTAATA





210
capv1_58_74315
CAGATGTAAGCAGTGAAACGGATGTAGACAGTTGTAATAC





211
capv1_58_66521
AGATGTAAGCAGTGAAACGGATGTAGACAG





212
capv1_58_74316
AGATGTAAGCAGTGAAACGGATGTAGACAGTTGTAATACT





213
capv1_58_66522
GATGTAAGCAGTGAAACGGATGTAGACAGT





214
capv1_58_74317
GATGTAAGCAGTGAAACGGATGTAGACAGTTGTAATACTG





215
capv1_58_66523
ATGTAAGCAGTGAAACGGATGTAGACAGTT





216
capv1_58_66524
TGTAAGCAGTGAAACGGATGTAGACAGTTG





217
capv1_58_66525
GTAAGCAGTGAAACGGATGTAGACAGTTGT





218
capv1_58_66526
TAAGCAGTGAAACGGATGTAGACAGTTGTA





219
capv1_58_66527
AAGCAGTGAAACGGATGTAGACAGTTGTAA





220
capv1_58_66528
AGCAGTGAAACGGATGTAGACAGTTGTAAT





221
capv1_58_70473
TTATGCTGACGATGCTGATACTATACATGA





222
hpv58_cap_70587
TTTGACACTCCTCTTGTGTCATTGGAACCTGGTCCAGACAT





223
hpv58_cap_70587_extend_3
CACTCCTCTTGTGTCATTGGAACCTGGTCCAGACAT





224
capv1_58_70586
ACACTCCTCTTGTGTCATTGGAACCTGGTC





225
capv1_58_70587
CACTCCTCTTGTGTCATTGGAACCTGGTCC






Mediator probes



226
medv1_58_65889
ACTTGTGGCACCACGGTTCGTTTGTGTATC





227
medv1_58_65890
CTTGTGGCACCACGGTTCGTTTGTGTATCA





228
medv1_58_66290
ATGCTCAGAAAGTGCTGTAGAGGACTGTGT





229
medv1_58_70648
AGTCCATTTATTCCTATATCTCCACTAACT





230
medv1_58_70650
TCCATTTATTCCTATATCTCCACTAACTCC
















TABLE 11







HPV primers and probes for amplifying and typing HPV type 59









SEQ ID NO:

Sequence (5′-3′)






PCR primers



231
hpv59_158129_53endtrunc
CTGACTTTTTAACACGTCCATCCA





232
hpv59_158274_53endtrunc
AACATCCAGACGCAGCACTGTAAG





233
hpv59_160491_5endtrunc
TGTCCCTTTATTGTTTCTTTGTCC





234
hpv59_160492_5endtrunc
GTCCCTTTATTGTTTCTTTGTCCT





235
hpv59_158666_rc
TGGTAAAGGGTGTAGTAGAATAAGTGGGTT





236
hpv59_158681_3endtrunc_rc
ACTGTATGGTGGTAAAGGGTGTAG





237
hpv59_160920_3endtrunc_rc
TTCTTGGATTGCACAGTAGTTTTG





238
hpv59_168789_5endtrunc_rc
CATTCTTGGATTGCACAGTAGTTT






Capture probes



239
hpv59_cap_158382
CATGATATAAGCCCTATACCACATGCTGAAGATATTGAATT





240
hpv59_cap_158382_extend_3
TATAAGCCCTATACCACATGCTGAAGATATTGAATT





241
capv1_59_158382
TATAAGCCCTATACCACATGCTGAAGATAT





242
capv1_59_158383
ATAAGCCCTATACCACATGCTGAAGATATT





243
capv1_59_158384
TAAGCCCTATACCACATGCTGAAGATATTG





244
capv1_59_158386
AGCCCTATACCACATGCTGAAGATATTGAA





245
capv1_59_158387
GCCCTATACCACATGCTGAAGATATTGAAT





246
hpv59_cap_160734
AATCCCCATCTTGTTTCCTCCTACACGCCTAGACTACTAAC





247
hpv59_cap_160734_extend_2
AATCCCCATCTTGTTTCCTCCTACACGCCTAGACTA





248
capv1_59_160734
CCATCTTGTTTCCTCCTACACGCCTAGACT






Mediator probes



249
medv1_59_158467
TATGCAGATATTACAGATGAAGCACCTACT





250
medv1_59_158468
ATGCAGATATTACAGATGAAGCACCTACTA





251
medv1_59_158469
TGCAGATATTACAGATGAAGCACCTACTAG





252
medv1_59_160767
AACACAACTTACAAACGCCAAATAGTTAGT





253
medv1_59_160769
CACAACTTACAAACGCCAAATAGTTAGTCA





254
medv1_59_160770
ACAACTTACAAACGCCAAATAGTTAGTCAT
















TABLE 12







HPV primers and probes for amplifying and typing HPV type 66









SEQ ID NO:

Sequence (5′-3′)






PCR primers



255
hpv66_176255_53endtrunc
GTAGTATCCTTGGGCAGTGTGTGT





256
hpv66_176255_5endtrunc
GTATCCTTGGGCAGTGTGTGTCAG





257
hpv66_176522_5endtrunc_rc
TAGTTGGCACAGAAATACAGGTGA





258
hpv66_176522_rc
TAGTTGGCACAGAAATACAGGTGAGTAATA






Capture probes



259
hpv66_cap_176349
AGTAACACACCAAACTCCATTTTAGTGCTGTACGCCATTTT





260
hpv66_cap_176349_extend_4
AACACACCAAACTCCATTTTAGTGCTGTACGCC





261
capv1_66_176347
AACACACCAAACTCCATTTTAGTGCTGTAC





262
capv1_66_176348
ACACACCAAACTCCATTTTAGTGCTGTACG





263
capv1_66_176349
CACACCAAACTCCATTTTAGTGCTGTACGC





264
capv1_66_176350
ACACCAAACTCCATTTTAGTGCTGTACGCC






Mediator probes



265
medv1_66_176398
AATTCGGTTGCCTAGCCTTTTGTCCTTATT





266
medv1_66_176399
ATTCGGTTGCCTAGCCTTTTGTCCTTATTT





267
medv1_66_176400
TTCGGTTGCCTAGCCTTTTGTCCTTATTTA
















TABLE 13







HPV primers and probes for amplifying and typing HPV type 68









SEQ ID NO:

Sequence (5′-3′)






PCR primers



268
hpv68_185502_5endtrunc
ACAGCACAGGTACTTTTGAATATG





269
hpv68_185503_53endtrunc
AGACAGCACAGGTACTTTTGAATA





270
hpv68_189645_53endtrunc
ATGCACCTGATACTGACAATACTA





271
hpv68_191001_5endtrunc
ACATTGTCCACTACTACAGACTCT





272
hpv68_185878_5endtrunc_rc
ACATTGCAGCCTTTTTATTGTTAC





273
hpv68_190079_5endtrunc_rc
AATAACCTAGATGTACCAGCATAG





274
hpv68_190082_5endtrunc_rc
GTTAATAACCTAGATGTACCAGCA





275
hpv68_191484_rc
CAAGACATATAACAATTATTTTGACACACG






Capture probes



276
capv1_68_184546
GCAGGACATTGGACACTACATTGCATGACG





277
capv1_68_184546
GCAGGACATTGGACACTACATTGCATGACG





278
capv1_68_184549
GGACATTGGACACTACATTGCATGACGTTA





279
capv1_68_184549
GGACATTGGACACTACATTGCATGACGTTA





280
hpv68_cap_185604
ATAGAAAGCAGTCCTTTAGCAAAGTCGCCATTACAGGAATTATCACTA





281
hpv68_cap_185604_extend_6
AAGCAGTCCTTTAGCAAAGTCGCCATTACAGGAATTA





282
capv1_68_185597
AAGCAGTCCTTTAGCAAAGTCGCCATTACA





283
capv1_68_185604
CCTTTAGCAAAGTCGCCATTACAGGAATTA





284
capv1_68_185604
CCTTTAGCAAAGTCGCCATTACAGGAATTA





285
capv1_68_185605
CTTTAGCAAAGTCGCCATTACAGGAATTAT





286
capv1_68_185605
CTTTAGCAAAGTCGCCATTACAGGAATTAT





287
capv1_68_189702
CATTTACTACTCGTTCCCACATATCAGTTC





288
capv1_68_189703
ATTTACTACTCGTTCCCACATATCAGTTCC





289
capv1_68_189726
CAGTTCCTTCATTGGCTTCTGCTGCATCCA





290
capv1_68_189727
AGTTCCTTCATTGGCTTCTGCTGCATCCAC





291
capv1_68_189729
TTCCTTCATTGGCTTCTGCTGCATCCACTA





292
capv1_68_189730
TCCTTCATTGGCTTCTGCTGCATCCACTAC





293
capv1_68_189732
CTTCATTGGCTTCTGCTGCATCCACTACAT





294
capv1_68_189733
TTCATTGGCTTCTGCTGCATCCACTACATA





295
capv1_68_189738
TGGCTTCTGCTGCATCCACTACATATACTA





296
hpv68_cap_191232
TAGATACATACCGCTACCTACAATCAGCAGCAATTACATGT





297
hpv68_cap_191232_extend_1
TAGATACATACCGCTACCTACAATCAGCAGCAATTACATGT





298
capv1_68_191232
ACATACCGCTACCTACAATCAGCAGCAATT





299
capv1_68_191269
AAAAGGACGCCCCTGCACCTGTTAAAAAAG






Mediator probes



300
medv1_68_184624
TATATGAATTTGCCTTTAGTGACCTATGTG





301
medv1_68_184624
TATATGAATTTGCCTTTAGTGACCTATGTG





302
medv1_68_184627
ATGAATTTGCCTTTAGTGACCTATGTGTAG





303
medv1_68_184627
ATGAATTTGCCTTTAGTGACCTATGTGTAG





304
medv1_68_185707
AAGTGGAAACTAACTCGGAGGTAACTGTAG





305
medv1_68_185841
GATCCTAAATCACCTACTACCCAACTTAAA





306
medv1_68_185841
GATCCTAAATCACCTACTACCCAACTTAAA





307
medv1_68_185844
CCTAAATCACCTACTACCCAACTTAAAGTA





308
medv1_68_185844
CCTAAATCACCTACTACCCAACTTAAAGTA





309
medv1_68_189732
CTTCATTGGCTTCTGCTGCATCCACTACAT





310
medv1_68_189733
TTCATTGGCTTCTGCTGCATCCACTACATA





311
medv1_68_189845
CCACAGTTGCCTTTAACACCCTCTACTCCA





312
medv1_68_189847
ACAGTTGCCTTTAACACCCTCTACTCCAAT





313
medv1_68_189848
CAGTTGCCTTTAACACCCTCTACTCCAATT









Results

The following analytical and clinical sample data represent results demonstrating the utility of co-amplifying a control DNA of known input copy number into a multiplex PCR for specific HPV subtype amplification and detection. Table 14 contains the PCR primers, capture probes, and mediator probes used in these experiments.


Analytical Data

The sample mixtures in these experiments contain known input copy numbers of specific HPV subtype plasmids, specifically, for subtypes 18, 51, and 59. These samples were amplified in a multiplex PCR mixture (Table 15) for a specific number of cycles that stopped the reactions during the exponential amplification phase of the PCR before reaching the linear or plateau phases (Table 16). Then an aliquot of the multiplex PCR was diluted 1:10,000 and applied to a Verigene gold nanoparticle assay. The assay cartridge slide contained capture probes (Table 14), which targeted regions of the amplified DNA. The data in FIG. 1 demonstrate the relative qualitative sensitivity of the gold nanoparticle assay based on different plasmid input copy number.









TABLE 14





Nucleotide sequences for PCR primers, capture probes, and mediator probes.



















HPV

PCR primers














subtype
Mix
Name
Sequence (5′-3′)
Tm
Amp size





A.
HPV 18
7
hpv18_38408_3endtrunc
TATCACACCTTCGTCTACCTCTGT
62.88
610





hpv18_38989_5endtrunc_rc
CATTGTCCTCCGTGGCAGATACTA
64.3




HPV 51
29
hpv51_215984_3endtrunc
GAGAGTATAGACGTTATAGCAGGT
59.22
432





hpv51_216387_3endtrunc_rc
ACGGAGCTTCAATTCTGTAACACG
63.86




HPV 59
42
hpv59_158274_53endtrunc
AACATCCAGACGCAGCACTGTAAG
65.67
421





hpv59_158666_rc
TGGTAAAGGGTGTAGTAGAATAAGTGGGTT
65.75













HPV
Capture probes (/3AmM/)













subtype
Name
Sequence (5′-3′)






B.
HPV 18
CAPvE_18_E38693
TAACCCTGAGTTTCTTACACGTCCATCCTC




HPV 51
CAPvE_51_E216256
TGTAGTATTGCATTTAACACCACAGACTGA




HPV 59
CAPvE_59_E158382
TATAAGCCCTATACCACATGCTGAAGATAT













HPV
Mediator probes











subtype
Name
Sequence (5′-3′)





C.
HPV 18
MEDv1_18_38772
ACATTTGATCCTCGTAGTGATGTTCCTGATaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa



HPV 51
MEDv1_51_216346
TATGCGTGACCAGCTACCAGAAAGACGGGCaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa



HPV 59
MEDv1_59_158467
TATGCAGATATTACAGATGAAGCACCTACTaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
















TABLE 15







PCR thermocycling parameters for


analytical samples.










Reagents
Final Conc.







Primer Mix 7
0.80 μM



Primer Mix29
0.80 μM



Primer Mix 42
0.80 μM



HPV plasmid mix
variable




type 18, 51, and 59



dNTPs
200 μM ea.



10X PCR Buffer
1X



MgCl2
5 mM



Uracil N Glycosylase
I unit



FastStart Taq DNA Pol
2 units

















TABLE 16







PCR thermocycling parameters


for analytical samples.












Cycles

Temp. (° C.)
Time (min.)







 1X

95
05:00





94
00:30



27X
{open oversize brace}
56
00:30





72
01:00










Clinical Data

Based on the success of the analytical data with known input copy number of plasmids, this method was applied to clinical samples. Clinical samples were selected that were previously determined to be either HPV subtype 51 or 59 and those samples were co-amplified with a low plasmid copy number for HPV subtype 18. In this method, the plasmid DNA for HPV subtype 18 could serve as the normalizing control for a known input copy number of DNA. In these experiments, the input copy number is 250 copies. If extrapolated, this would be equivalent to 12,500 copies of HPV in a clinical sample extraction. This input copy number could be adjusted to normalize the intensity data and therefore serve as a determined clinical relevant cutoff point in a Verigene gold nanoparticle assay.


For the clinical samples, the cycling parameters were adjusted to accommodate the background human genomic DNA (Table 17), but still retain the same overall PCR cycle number as the previous analytical data so that the amplification is stopped in the exponential phase. The resulting data is shown in FIG. 2.









TABLE 17







PCR thermocycling parameters


for clinical samples.












Cycles

Temp. (° C.)
Time (min.)







 1X

95
05:00





94
00:30



15X
{open oversize brace}
58
01:30





72
01:00





94
00:30



12X
{open oversize brace}
58
00:30





72
01:00










Data from additional studies are shown in FIG. 3. Table 18 summarizes the capture and mediator oligonucleotides and plasmids used for HPV subtypes 16, 18, 31, 33, 35, 39, 45, 51, 56, 58, 59, 66, and 68. Fr1, Fr2, and Fr3 refer to fractional plasmids from Dr. Robert Burk's laboratory at the Albert Einstein College of Medicine (AECOM), Bronx, N.Y.









TABLE 18







Capture and Mediator Oligonucleotides for Plasmid Detection












Target
Number of




HPV Type
Source
Copies
Capture Oligos
Mediator Oligos





16
ATCC-45113
6E7
CAPv1_16_18971
MEDv1_16_19232





CAPv2_16_22767
MEDv2_16_23263





CAPv2_16_23109
MEDv2_16_22953


18
ATCC-45152
6E7
CAPv1_18_38693
MEDv1_18_38687





CAPv1_18_38772


31
Fr1, Fr2, Fr3-
6E7
CAPv1_31_100917
MEDv1_31_100961



R. Burk

CAPv1_31_104028
MEDv1_31_112000



(AECOM)


33
Fr1, Fr2, Fr3-
6E7
CAPv1_33_54589
MEDv1_33_54629



R. Burk

CAPv1_33_54824
MEDv1_33_54876



(AECOM)


35
ATCC-40330
6E7
CAPv1_35_117187
MEDv1_35_125066



ATCC-40331

CAPv1_35_125005


39
Fr1, Fr2-R.
6E7
CAPv1_39_205414
MEDv1_39_205568



Burk

CAPv1_39_213212



(AECOM)


45
Fr1, Fr2-R.
6E7
CAPv1_45_126880
MEDv1_45_126936



Burk

CAPv1_45_127211
MEDv1_45_127265



(AECOM)

CAPv1_45_128173
MEDv1_45_128326


51
Fr1, Fr2, Fr3-
6E7
CAPv1_51_216256
MEDv1_51_216346



R. Burk

CAPv1_51_220901
MEDv1_51_228853



(AECOM)


56
ATCC-40549
6E7
CAPv1_56_142497
MEDv1_56_142563





CAPv1_56_142511


58
Fr1, Fr2, Fr3-
6E7
CAPv1_58_66078
MEDv1_58_70648



R. Burk

CAPv1_58_70587
MEDv1_58_66290



(AECOM)


MEDv1_58_65889


59
Fr1, Fr2, Fr3-
6E7
CAPv2_59_158382
MEDv1_59_158467



R. Burk

CAPv2_59_160734
MEDv1_59_160767



(AECOM)


66
Fr1, Fr2, Fr3-
6E7
CAPv1_66_176349
MEDv1_66_176398



R. Burk



(AECOM)


68
Fr1, Fr2, Fr3-
6E7
CAPv2_68_185597
MEDv2_68_185707



R. Burk

CAPv2_68_185604
MEDv2_68_185841



(AECOM)

CAPv2_68_191232
MEDv2_68_191269









Diluted samples of all plasmids were tested for double-stranded DNA concentration using a Nanodrop Model ND-1000 UV spectrophotometer. Plasmids were diluted to 10 pM concentration prior to testing. Sample-loaded cartridges were tested using DEV1 parameters on Naptune II instruments, with onboard sonication and liquid shuttle parameters set to “0”. 6E7 (60,000,000) plasmid DNA copies were used as targets. Tests were performed in quadruplicate for each target. All assays were imaged on the Verigene Reader with well saturation set to 1%. Each set of relevant plasmid capture replicates is evaluated by the following criteria: A capture must exhibit a ratio of 1.5:1 or higher for mean target capture signal intensity:highest non-target capture signal intensity.


Intensity ratio results for each capture oligonucleotide compared against the nonspecific plasmid with the highest signal are summarized in Table 19. No target intensitites were calculated based on the image captured at the maximum exposure time (2976 msec). Exposure times for plasmid-based detection at 6E7 copes were less than 500 msec in all cases.









TABLE 19







Intensity Ratio Results Applied to Capture Oligonucleotides












Mean
Nonspecific
Mean



Capture Oligo
Intensity
Plasmid
Intensity
Ratio














CAPv1_16_18973
9932.46
HPV31
282.04
35.2:1


CAPv1_16_22767
15711.2
HPV18
556.6
28.2:1


CAPv1_16_23109
45287.2
HPV18
1719.9
26.3:1


CAPv1_18_38772
57730.0
HPV31
703.8
  82:1


CAPv1_31_100917
57060.4
HPV33
425
134.3:1 


CAPv1_31_104028
23845.0
HPV33
227
105:1


CAPv1_33_54589
53428.7
HPV35
1147.4
46.6:1


CAPv1_33_54824
41719.1
HPV35
944
44.2:1


CAPv1_35_117187
39597.6
HPV39
524.7
75.5:1


CAPv1_35_125005
52151.8
HPV31
791.6
65.9:1


CAPv1_39_205414
19506.1
HPV31
372.9
52.3:1


CAPv1_39_213212
55990.2
HPV31
631.2
88.7:1


CAPv1_45_126880
27449.9
HPV31
837.8
32.8:1


CAPv1_45_127211
49464.6
HPV18
1129.9
43.8:1


CAPv1_45_128173
26478.1
HPV31
465.8
56.8:1


CAPv1_51_216256
53642.6
HPV39
1737.8
30.9:1


CAPv1_51_220901
43959.8
HPV39
1105
39.8:1


CAPv1_56_142497
58885.8
HPV39
2315.2
25.4:1


CAPv1_56_142511
42919.5
HPV18
1067
40.2:1


CAPv1_58_66078
40428.5
HPV18
593.8
68.1:1


CAPv1_58_70587
51881.7
HPV31
666.5
77.8:1


CAPv1_59_158382
54730.6
HPV39
1011.8
54.1:1


CAPv1_59_160734
49493.2
HPV16
434
 114:1


CAPv1_66_176349
57865.1
HPV68
737.7
78.4:1


CAPv2_68_185597
46914.2
HPV31
841.6
55.7:1


CAPv2_68_185604
53936.1
HPV31
1453.4
37.1:1


CAPv2_68_191232
33334.8
HPV31
519.5
64.2:1









All of the oligonucleotide capture probes specific for one of the HPV subtypes above demonstrated very high detection specificity at 6E7 copy number of plasmid.


All publications, patents and patent applications are incorporated herein by reference. While in the foregoing specification, this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details herein may be varied considerably without departing from the basic principles of the invention.

Claims
  • 1. A method for detecting high risk human papilloma virus (HPV) in a sample, comprising: a) providing a substrate having a capture probe bound thereto, wherein at least a portion of the capture probe has a nucleic acid sequence that is complementary to at least a first portion of the genome of a HPV;b) providing a mediator probe, wherein at least a portion of the mediator probe has a nucleic acid sequence that is complementary to at least a second portion of the HPV genome that is different than the first portion and a nucleotide sequence that is complementary to a non-HPV sequence on oligonucleotides bound to a gold particle, wherein the nucleic acid sequence in the capture probe or the mediator probe, or both, are HPV-subtype specific;c) contacting a sample suspected of having HPV that is subjected to an amplification reaction with HPV-specific primers, the substrate, the mediator probe and gold particles having oligonucleotides with sequences that are complementary to the nucleotide sequence in the mediator probe under conditions that are effective for the hybridization of the nucleic acid sequence in the capture probe and the nucleic acid sequence in the mediator probe to amplified HPV DNA in the sample and for the hybridization of the nucleotide sequence in the mediator probe to the oligonucleotides bound to the gold particle;d) washing the substrate to remove non-specifically bound material; ande) detecting whether gold particles are bound to the substrate, wherein binding of gold particles to the substrate is indicative of the presence of a specific subtype of HPV in the sample.
  • 2. The method of claim 1 wherein the HPV that is detected is HPV16, HPV18, HPV31, HPV33, HPV35, HPV39, HPV45, HPV51, HPV56, HPV58, HPV59, HPV66, or HPV68.
  • 3. The method of claim 1 wherein the HPV-specific primers amplify HPV16, HPV18, HPV31, HPV33, HPV35, HPV39, HPV45, HPV51, HPV56, HPV58, HPV59, HPV66, or HPV68.
  • 4. The method of claim 1 wherein the capture probe includes a nucleic acid sequence corresponding to one of SEQ ID No. 8-22, 38-50, 63-70, 83-94, 103-111, 119-130, 144-154, 168-175, 186-195, 207-225, 239-248, 259-264, or 276-299, or a sequence with at least 90% nucleotide sequence identity thereto.
  • 5. The method of claim 1 wherein the mediator probe includes a nucleic acid sequence corresponding one of SEQ ID No. 23-31, 51-55, 71-78, 95-98, 112-115, 131-135, 155-161, 176-181, 195-199, 226-230, 249-254, 264-267, or 300-313, or a sequence with at least 90% nucleotide sequence identity thereto.
  • 6. The method of claim 4 or 5 wherein the nucleic acid sequence has least 95% nucleotide sequence identity to SEQ ID No. 8-22, 38-50, 63-70, 83-94, 103-111, 119-130, 144-154, 168-175, 186-195, 207-225, 239-248, 259-264, or 276-299 or SEQ ID No. 23-31, 51-55, 71-78, 95-98, 112-115, 131-135, 155-161, 176-181, 195-199, 226-230, 249-254, 264-267, or 300-313.
  • 7. The method of claim 1 wherein the sample is contacted with the mediator probe so as to form a mixture, and the mixture is then contacted with the substrate.
  • 8. The method of claim 1 wherein the sample is contacted with the substrate, and then contacted with the mediator probe.
  • 9. The method of claim 1 wherein the sample is contacted simultaneously with the mediator probe and the substrate.
  • 10. The method of claim 1 wherein the particles are nanoparticles.
  • 11. The method of claim 1 wherein the detecting comprises contacting the substrate with silver stain.
  • 12. The method of claim 1 wherein the detecting comprises detecting light scattered by the particle.
  • 13. The method of claim 1 wherein the detecting comprises observation with an optical scanner.
  • 14. A kit comprising at least two of: a) a capture probe, at least a portion of which has a nucleic acid sequence that complementary to at least a first portion of a genome of a HPV;b) a mediator probe, at least a portion of which has a nucleic acid sequence that is complementary to at least a second portion of the genome of the HPV that is different than the first portion and a nucleotide sequence that is complementary to a non-HPV sequence on oligonucleotides bound to a gold particle; orc) gold particles having the oligonucleotides;wherein the nucleic acid sequence in the capture probe or the mediator probe has SEQ ID No. 8-31, 38-55, 63-78, 83-98, 103-115, 119-135, 144-161, 168-181, 186-199, 207-230, 239-254, 259-267, or 276-313, or a sequence with at least 90% nucleotide sequence identity thereto.
  • 15. The kit of claim 14 which further comprises a primer having SEQ ID No. 1-7, 32-37, 79-82, 96-102, 116-118, 136-143, 162-167, 182-185, 200-206, 231-238, 255-258, or 268-275 or a sequence with at least 90% nucleotide sequence identity thereto.
  • 16. The kit of claim 14 wherein the capture or mediator probe have a sequence selected from a) SEQ ID No. 8-31 or a sequence with at least 90% nucleotide sequence identity thereto; b) SEQ ID No. 38-55 or a sequence with at least 90% nucleotide sequence identity thereto; c) SEQ ID No. 63-78 or a sequence with at least 90% nucleotide sequence identity thereto; d) SEQ ID No. 83-98 or a sequence with at least 90% nucleotide sequence identity thereto; e) SEQ ID No.103-115 or a sequence with at least 90% nucleotide sequence identity thereto; f) SEQ ID No. 119-135 or a sequence with at least 90% nucleotide sequence identity thereto; g) SEQ ID No. 144-161 or a sequence with at least 90% nucleotide sequence identity thereto; h) SEQ ID No. 168-181 or a sequence with at least 90% nucleotide sequence identity thereto; i) SEQ ID No.186-199 or a sequence with at least 90% nucleotide sequence identity thereto; j) SEQ ID No. 207-230 or a sequence with at least 90% nucleotide sequence identity thereto; k) SEQ ID No. 239-25 or a sequence with at least 90% nucleotide sequence identity thereto; 1) SEQ ID No. 259-267 or a sequence with at least 90% nucleotide sequence identity thereto; or m) SEQ ID No. 276-313 or a sequence with at least 90% nucleotide sequence identity thereto.
  • 17. An isolated oligonucleotide comprising one of SEQ ID Nos. 1-313, a sequence with at least 80% sequence identity thereto, the complement of one of SEQ ID No. 1-313 or the sequence with 80% sequence identity thereto, or a fragment thereof with at least 10 contiguous nucleotides.
  • 18. The isolated oligonucleotide of claim 17 which has no more than 100 nucleotides.
  • 19. The isolated oligonucleotide of claim 17 which has at least 90% sequence identity to one of SEQ ID Nos. 1-313 or the complement thereof, or a fragment thereof with at least 10 contiguous nucleotides.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of the filing date of U.S. application Ser. No. 61/138,942, filed on Dec. 18, 2008, the disclosure of which is incorporated by reference herein.

Provisional Applications (1)
Number Date Country
61138942 Dec 2008 US