Semi-trailer trucks are used to transport large quantities of manufactured goods, produce, livestock, building materials, etc., often over great distances. One type of semi-trailer, typically used to carry grain, includes a wheeled chassis comprised of a subframe, sometimes referred to as a “bogie,” at the trailer's rear that supports two axles with dual-wheel hubs so that the subframe supports two tandem rows of four wheels each. The chassis includes a pair of retractable legs disposed underneath and at the forward end of the trailer. A subframe forward of the retractable legs includes a downward-extending kingpin. A pair of aluminum bottom rails extend from front to back along the trailer's entire length and attach to the kingpin subframe, the retractable legs, and the bogie. The kingpin is received by a fifth wheel of a semi-truck tractor, as should be understood. The connection of the kingpin subframe to the bottom rails transfers load applied by the tractor, through the fifth wheel and the kingpin, to the trailer body.
The trailer body has a front wall, a rear wall, and two sidewalls that extend, on opposite sides of the trailer, from the front wall to the rear wall. The side bottom rails discussed above are attached to the bottom of the sidewalls, and a pair of respective top rails are attached to the tops of the sidewalls and also extend the trailer's length. Each of the front wall and rear wall has a top rail and a bottom rail that attach to the side bottom and top rails via corner posts at the trailer's four corners.
A cargo deck disposed within the volume defined by the sidewalls, the front wall, and the rear wall divides that volume into two sub-volumes. At the trailer's forward end, a planar aluminum or steel deck section is attached at one end to the front wall top rail and the front ends of the side top rails and at its opposite end to the two opposing side bottom rails at about one-quarter of the trailer's length, thereby forming a slope from the front top rail down to the trailer bottom. A similar sloped deck portion attaches to the rear wall top rail and the rear ends of the two side top rails and slopes down to attach to the side bottom rails at about three-quarters of the trailer's length. At the trailer's center, a vertical wall extends across the upper part of the trailer's interior, attached to the side wall top rails and extending about three-quarters deep into the trailer's interior. The bottom of the vertical wall attaches to two sloped sections, one extending downward from the center wall to the trailer bottom in a forward direction toward the front of the trailer and the other similarly extending downward from the center wall but toward the trailer's rear. Each of the center sloped sections attaches to the two sidewall bottom rails and extends across the trailer's interior, as do the front and rear sloped sections. Accordingly, the forward sloped section, the center wall, and the sloped section extending forward from the center wall defines a forward sub-volume of the trailer's interior, while the center wall, the sloped section extending rearward from the center wall, and the rear sloped section define a rear sub-volume.
As reflected above, a gap would be defined between the forward sloped section, the sloped section extending forward from the center wall, and the two sidewalls. A similar gap would exist between the rear sloped section, the sloped section extending rearwardly from the center wall, and the two sidewalls. The deck further comprises, however, a pair of hoppers that fill those gaps. Each hopper is a funnel-shaped structure having four sides, where each side extends downward, at an acute angle, from a respective one of the bottom edge of the sloped section (front or rear, as the case may be), the sloped section extending from the wall, and the two sidewalls. The hopper is formed by four metal sheets corresponding to the four sides, and that are attached to each other by weldment or screws. Some hoppers comprise two discrete sheets attached to each other. The bottom of each hopper define a four-sided hole. Since the cargo deck in each of the two sub-volumes slopes toward the respective holes, grain held within the cargo volume flows through the holes into a loading container or other receptacle when the holes are open. To close the holes for the trailer's transport, a frame is attached around each hole, and a horizontally-slidable door is mounted on the frame. The door is slidable between two positions, one blocking the hole and one leaving the hole open to the space below the trailer. To open and close the door, a rack is attached to the door, and a pinion is attached to the frame, engaged with the rack. An operator rotates the pinion by a handle extending from the pinion. The rack and pinion extend beneath the door. In another trailer, the handle drives a pulley located at the frame, above the level of the door, that moves the door through a belt drive. In another trailer, the door drive includes a linear chain drive.
A plurality of spaced-apart bars extends across the trailer's open top, attached to and between the side top rails, thereby stiffening the overall frame structure. Also attached to the sidewall top rails and extending across the open trailer top is a plurality of spaced-apart tarp bows. A rolled-up tarp is attached to one of the two top rails, at the trailer's exterior. The tarp can be unrolled and pulled over the tarp bows to the other side of the trailer and attached thereto, thereby forming a roof to cover the trailer contents. With the tarp retracted, grain can be loaded into the two sub-volumes from above.
In some trailers, each sidewall was formed in a sheet-and-post construction, comprising an aluminum inner panel, an aluminum outer panel extending the entire length of the trailer on the exterior, and a series of spaced-apart vertical posts disposed between and separating the inner and outer panels, the posts being attached to and extending between the sidewall top rail and bottom rail. The inner and outer panels were attached to the vertical posts by rivets or other fasteners that protruded through the inner panel's and outer panel's exterior surfaces. In another form of trailer, the sidewall was formed by a series of narrow aluminum plates or extrusions disposed sequentially beside each other to form the wall. Thus, the wall comprised a series of panels with vertical seams between the panels. In another trailer, the sidewall is formed of a series of sequential corrugated sheets welded to the top and bottom rails.
One or more embodiments of a trailer for use with a truck having a tractor has a wheeled chassis having at least one wheeled axle at a rearward end of the wheeled chassis and a support at a forward end of the wheeled chassis, and a body. The body has a cargo deck supported by the wheeled chassis, a front wall at the forward end, a rear wall at the rearward end, and a pair of sidewalls attached to opposing sides of the deck and extending between the front wall and the rear wall so that at least the sidewalls define a cargo volume above the cargo deck. Each sidewall comprises an inner generally planar panel that faces the cargo area, an outer generally planar panel that forms an outer surface of the trailer, and a center panel disposed between and attached to the inner panel and the outer panel that separates the inner panel from the outer panel. The outer panel is attached to the center panel by an adhesive so that an outer surface of the outer panel defines an area opposite the center panel through which no fastener between the outer panel and the center panel protrudes.
In another embodiment, a trailer for use with a truck having a tractor has a wheeled chassis having at least one wheeled axle at a rearward end of the wheeled chassis and a support at a forward end of the wheeled chassis, and a body. The body has a cargo deck supported by the wheeled chassis, a front wall at the forward end, a rear wall at the rearward end, and a pair of sidewalls attached to opposing sides of the deck and extending between the front wall and the rear wall so that at least the sidewalls define a cargo area above the cargo deck. The cargo deck comprises at least one hopper having a funnel at a bottom portion thereof defining an opening that opens to a space beneath the trailer. The hopper comprises a door attached to the body movably between a first position at which the door blocks the opening between the cargo volume and the space beneath the trailer and a second position in which at least part of the opening is open between the cargo volume and the space beneath the trailer. The trailer includes a linear actuator comprising a rack and pinion operatively attached between the door and the body so that actuation of the linear actuator moves the door between the first position and the second position. The linear actuator is disposed above a bottom surface of the door.
In a further embodiment, a trailer for use with a truck having a tractor has a wheeled chassis having at least one wheeled axle at a rearward end of the wheeled chassis and a support at a forward end of the wheeled chassis, and a body. The body comprises a cargo deck supported by the wheeled chassis, a front wall at the forward end, a rearward wall at the rearward end, and a pair of sidewalls attached to opposing sides of the deck and extending between the front wall and the rear wall so that at least the sidewalls define a cargo area above the cargo deck. The cargo deck comprises at least one hopper having a funnel at a bottom portion thereof that defines and surrounds an opening that opens through a space beneath the trailer. The funnel is formed of a single piece of molded polymer.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one or more embodiments of the invention and, together with the description, serve to explain the principles of the disclosure herein.
The disclosure herein refers to the accompanying drawings, in which some, but not all, embodiments of the disclosure are shown. Indeed, the subject matter of this disclosure may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements according to the disclosure.
Reference will now be made in detail to present embodiments of the disclosure, one or more examples of which are illustrated in the accompanying drawings. Each example is provided by way of explanation of the disclosure, not limitation of the disclosure. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present disclosure without departing from the scope or spirit thereof. For instance, any number of features illustrated or described as part of one embodiment may be used on another embodiment, in any combination, to yield a still further embodiment. Thus, it is intended that the present disclosure covers such modifications and variations as come within the scope of the appended claims and their equivalents.
It should be understood that terms of orientation, e.g. “forward,” “front,” “rearward,” “rear,” “upper,” “lower,” and similar terms as used herein are intended to refer to relative orientation of components of the devices described herein with respect to each other under an assumption of consistent point of reference but do not require any specific orientation of the overall system. Thus, for example, the discussion herein may refer to a “forward” or “front” end of a semi-trailer, referring to a direction toward the end of the trailer that has the kingpin that is received by a fifth wheel at the “rearward” or “rear” end of a tractor, or a “rearward” end of the trailer, referring to a direction toward the trailer's rear, at which the rear wall is disposed and at which the bogie is attached. The present discussion may also refer to “upper” and/or “lower” surfaces of the trailer and/or its components, generally with regard to the trailer's orientation as shown in
Further, either of the terms “or” and “one of ______ and ______,” as used in this disclosure and/or the appended claims, is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from the context, either of the phrases “X employs A or B” and “X employs one of A and B” is intended to mean any of the natural inclusive permutations. That is, either phrase is satisfied by any of the following instances: X employs A; X employs B; or X employs both A and B, regardless whether the phrases “at least one of A or B” or “at least one of A and B” are otherwise utilized in the specification or claims. In addition, the articles “a” and “an,” as used in this application and the appended claims, should generally be construed to mean “one or more” unless specified otherwise or clear from the context to be directed to a singular form. Throughout the specification and claims, the following terms take at least the meanings explicitly associated with them herein, unless the context dictates otherwise. The meanings identified below do not necessarily limit the terms, but merely provide illustrative examples for the terms. The meaning of “a,” “an,” and “the” may include plural references, and the meaning of “in” may include “in” and “on.” The phrases “in one embodiment” or “in an embodiment,” or similar phrase, as used herein do not necessarily refer to the same embodiment, although they may.
Referring to
Trailer 10 may include four vertical walls—a front wall 32, two opposing sidewalls 34, and a rear wall 36. A respective aluminum bottom rail 38 may be attached to and extend the entire length of each sidewall 34. A respective top rail 40 may be attached to and extend the entire length of the upper edge of each sidewall 34. Similarly, a bottom rail 42 may be attached to and extend along the entire bottom length of front wall 32, while a top rail 44 may be attached to and extend the entire length of the top edge of front wall 32. A bottom rail 46 may be attached to and extend the entire length of the bottom of rear wall 36, while a top rail 48 may be attached to and extend the entire length of rear wall 36. Corner posts 50 may be disposed vertically at each corner of the trailer. Each corner post may be attached to two trailer walls that meet at the respective corner posts orthogonally to each other. Each corner post may also be attached to and thereby connect a pair of orthogonally-aligned top rails and a pair of orthogonally-aligned bottom rails that respectively meet at the corner post. A tail gate light panel 52 may attach to rear bottom rail 46.
Kingpin subframe 18 may attach to front bottom rail 42 and to each of the two side bottom rails 38. Axle subframe 14 may attach to rear bottom rail 46 and the two side bottom rails 38.
Within the interior trailer volume defined by walls 32, 34 and 36, grain trailer 10 may define two sub-volumes 54 and 56 in which the trailer may store grain during transport. Front sub-volume 54 may be defined on its sides by the opposing sidewalls 34, at its rear by a center wall section 58, and otherwise by a cargo deck comprised of a forward sloped section 60, a forward center sloped section 62, and a forward hopper 64. Rear sub-volume 56 may also be defined on its sides by opposing sidewalls 34, at its front by center wall section 58, and otherwise by the cargo deck, specifically rear sloped section 66, rear center sloped section 68 and rear hopper 70. While the presently-described examples of a grain trailer illustrate front and rear walls 32 and 36 that are distinct and offset from the cargo deck, it should be understood that these distinct wall structures can be omitted and that in such trailers, the front and rear walls may be embodied by the structure of the sloped sections 60 and 66.
Forward sloped section 60 may be an upper, generally planar sheet glass-filled polypropylene sheet 72 and a bottom formed aluminum structure 74. Structure 74 may comprise a plurality of generally C-shaped or generally Z-shaped aluminum cross members 75 beneath the polypropylene top sheet and attached to side rails 78. An aluminum top flange 76 may be attached to the top and bottom sections 72 and 74 and to front wall top rail 44. A pair of aluminum side rails 78 may be attached to the upper and/or lower sections 72 and 74, attaching also at their upper ends to top rail 40 and at their lower ends to sidewall bottom rails 38. A pair of shims 80 may be disposed between side rails 78 and the inner surfaces of walls 34 to seal a gap between side rails 78 and sidewalls 34. Shims 80 may be formed by high molecular weight polyethylene and may be attached to the sidewalls by huck bolts or other suitable fasteners that extend into the sidewall at the sidewall's inner panel but do not protrude through the wall's outer panel. Rear sloped section 66 may have a similar structure to, and be the mirror image of, forward slopes section 60 and is, therefore, not further discussed herein.
A cap rail 82 may attach to the top of center wall section 58 to provide structure to the center wall and to attach the center wall to the top rails through an attachment to a top rail cross bar 41. The center wall may be formed from a glass-filled polypropylene, similar to the front and rear sloped sections 60 and 66. Center wall 58 may attach to the respective sidewalls 34 through opposing side strips 84 (only one of which is shown in
A plurality of spaced apart top rail support bars 41 may attach to the top rails 40 of opposing sidewalls 34 so that the top rail support bars extend across the open top of the trailer body and provide rigidity support to the walls. Also attached to the top rails and extending across the open top may be a plurality of tarp bows 43. Five of the nine tarp bows may attach to the top rails at the same positions as respective ones of the five top rail support bars 41 so that the five tarp bows extend directly above the respective top rail support bars. The tarp bows support a retractable tarp 45 (seen in its retracted, rolled up state on one side of the trailer in
Referring to
Upper funnel edges 94 may bend away and downward from their respective triangle-shaped sections 92 to thereby provide attachment surfaces for angled aluminum support brackets 104. One flange of each bracket 104 may attach to a respective funnel edge 94, while the other side of flange 104 may attach to a corresponding bottom rail 38, top surface 72 of a sloped section 60/66, or a top surface of a center sloped section 62 or 68, thereby securing the hoppers to the trailer body so that they form a part of the cargo deck.
Where each hopper funnel 90 is made of a unitary piece of a molded polymer material so that the funnel is not formed in discrete sections joined together by weldment or other fasteners, the funnel may therefore have no joints, seams, or fastener heads at the surface of the funnel that holds grain. This may be true even at the creases defined between the various sections of the funnel described herein. As a result, the funnel may not define, or minimize, structure on the funnel's grain-holding surface that could become places of attachment for grain particles. This may facilitate both the flow of grain through the funnel and cleaning of the funnel.
Referring to
On each of the four sides of the center frame, an aluminum bracket 122 may attach to the outer surface of the main vertical portion of respective linear frame members 110, 112, 114, and 116. Attached to each aluminum brush bracket may be a brush 124 having downwardly-extending nylon bristles. The bristles may engage the edges of a door section of door panel 108 and inhibit the escape of grain between the upper door surface and the lower edges of funnel flanges 100. A mud flap 126 may attach to an outer downward-extending flange 128 of forward linear frame member 112 to inhibit fouling of the door mechanism, and of the intersection of the door and the funnel opening, from dirt and debris brought up from the roadway as the trailer moves in the forward direction.
Side linear frame members 110 and 114 may extend rearward beyond rear linear frame member 116. Aft of rear linear frame member 116, a hollow shaft 130 may extend between frame members 110 and 114 to abut bushings 132 and 134 that are fixed to the inner surfaces of rails 114 and 110, respectively. Each bushing may have a central through-bore through which extends a freely rotatable short shaft 136 and 138, respectively. Each short shaft 136 and 138 may be rotationally fixed to hollow shaft 130 by a respective pin 140 that extends through the ends of both the short shaft and the hollow shaft, where the short shaft is received within the open end of the hollow shaft. Short shafts 136 and 138 may extend through holes in the main vertical portions and the outer vertical flanges 146 and 148 of frame members 114 and 110 and then through holes of respective outer bushings 142 and 144 that are fixed to frame members 114 and 110, respectively). Each short shaft may be rotationally fixed to a pinion gear (not shown in
Referring again to
Referring to
In operation, and referring to
Referring to
A center panel 208 may be comprised of a plurality of elongated vertically-oriented hollow aluminum tubes 210 and a plurality of elongated, hollow tubes 212 that extend between top and bottom ends of adjacent vertical tubes at an acute angle with respect to horizontal. Each tube 210 and 212 may be formed of 6061-T6 or other suitable grade of aluminum and may be generally rectangular in cross-sectional shape, considered in a plane normal to the tube's elongation axis.
At the top of each bar 210 and 212, the bar may be attached to the top rail 40 to which the sidewall 34 is attached, by a huck bolt that passes through and three panels 204, 206, and 208. Similarly, at the bottom of each aluminum bar 210 and 212, the bar may attach to the bottom rail 38 of the corresponding sidewall 34 by respective huck bolts (or other suitable fasteners, such as bolt/nut systems) that pass entirely through the sidewall and the bottom rail.
Between each adjacent pair of vertical and horizontal aluminum bars 210 and 212 may be disposed a triangularly-shaped composite sub-panel 218. Each sub-panel 218 may be a polypropylene honeycomb composite with an internal cell structure comprised of polypropylene tubes laminated between two layers of polyester nonwoven scrim with an adhesive layer between each scrim layer and the polypropylene tube honeycomb core. The tubes may be at a density of three to four pounds per cubic foot, with a laminated thickness of approximately 2.2 inches. The material density may be approximately four pounds per cubic foot. The horizontal edge of each triangular sub-panel may be approximately forty-eight inches, with a vertical edge of approximately fifty-four inches. Thus, the vertical aluminum bars 210 may be approximately fifty-four inches in length, whereas angled tubes 212 may be approximately seventy-two and one-quarter inches in length. It will be understood, however, that such dimensions may vary with variations in trailer configuration, particularly with respect to trailer height. A honeycomb composite as described herein can be obtained from Plascore, Inc. of Zealand, Mich. It will be understood, in view of the present disclosure, that other structures, e.g. foams, may be used for the sub-panels instead of the composite honeycomb structure discussed herein.
The ends of the angled bars 212 attach at the attachment positions of adjacent vertical bars 210 to the top and bottom rails, so that the arrangement of bars 210 and 212 forms a truss that provides strength to the sidewall that maintains the wall's rigidity when the trailer is loaded with grain. Aluminum bars 210 and 212 may provide the majority of the strength of sidewall 34 in the outward direction, when the cargo sub-volumes are full of grain. The triangularly-shaped sub-panels, however, may support polypropylene inner and outer panels 204 and 206 to resist the outwardly-directed forces of the load. In that regard, the sub-panels demonstrate advantageous compressive strength but do so at a relatively low weight over the trailer's length. That is, the sub-panels have an advantageous compressive force-to-weight ratio.
Each panel 204 and 206 may be attached to center panel 208 by an adhesive that is applied across the length of the sidewall and from top to bottom, thereby avoiding the need for rivets, bolts or other fasteners that would otherwise extend through the outer (with respect to center panel 208) surfaces of panels 204 and 206. This results in smooth and continuous (where the panels 204 and 206 are each made as a single, unitary piece) inner and outer surfaces of the trailer wall at inner panel 204 and outer panel 206. In some embodiments, the absence of protruding fasteners exists entirely from the sidewall bottom rail to the sidewall top rail and entirely between vertical corner post 50 (
As noted above, fasteners may be used along the length of the bottom rail and top rail to secure each sidewall 34 through the aluminum bars 210 and 212 and through inner and outer panels 204 and 206.
While one or more embodiments of the disclosure are described herein, it should be appreciated by those skilled in the art that various modifications and variations can be made in such embodiments without departing from the scope and spirit of this disclosure. Accordingly, it should be understood that the elements of one embodiment may be combined with another embodiment to create a still further embodiment. It is intended that the present disclosure cover such modifications and variations as come within the scope and spirit of the disclosure, the appended claims, and their equivalents.
The present application claims priority to U.S. provisional patent application No. 62/911,866, filed Oct. 7, 2019, entitled GRAIN TRAILER, the entire disclosure which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3138116 | Dorey | Jun 1964 | A |
3241730 | Dorey | Mar 1966 | A |
3635170 | Chierici | Jan 1972 | A |
3933100 | Dugge | Jan 1976 | A |
4301741 | Chierici | Nov 1981 | A |
4342267 | Blout | Aug 1982 | A |
4498264 | McCafferty et al. | Feb 1985 | A |
4715515 | Steilen | Dec 1987 | A |
5000358 | Dugge | Mar 1991 | A |
5046432 | Bowler | Sep 1991 | A |
5403062 | Sjostedt et al. | Apr 1995 | A |
5448955 | Dugge et al. | Sep 1995 | A |
5584251 | Lucas | Dec 1996 | A |
5671684 | Lucas | Sep 1997 | A |
6059372 | McDonald et al. | May 2000 | A |
6073562 | Cozine et al. | Jun 2000 | A |
6085948 | Putze | Jul 2000 | A |
6257150 | Burke | Jul 2001 | B1 |
6363863 | Dohr | Apr 2002 | B1 |
6450564 | Sill | Sep 2002 | B1 |
6736297 | Kassian et al. | May 2004 | B2 |
6793271 | Deets | Sep 2004 | B1 |
6802521 | Boughton | Oct 2004 | B1 |
6899038 | Fortuna | May 2005 | B2 |
6923493 | Buchholz et al. | Aug 2005 | B2 |
6932433 | Helder et al. | Aug 2005 | B2 |
7378000 | Lemmons | May 2008 | B2 |
7478865 | Klein | Jan 2009 | B2 |
7621589 | Gerome | Nov 2009 | B1 |
7677642 | Wylezinski | Mar 2010 | B2 |
7819464 | Haub et al. | Oct 2010 | B2 |
7901537 | Jones et al. | Mar 2011 | B2 |
7914034 | Roush | Mar 2011 | B2 |
7931328 | Lewallen et al. | Apr 2011 | B2 |
7950722 | Booher | May 2011 | B2 |
8186747 | Bloodworth et al. | May 2012 | B2 |
8465073 | Roeder | Jun 2013 | B2 |
8720974 | Hurst et al. | May 2014 | B2 |
8746152 | Charney | Jun 2014 | B2 |
8757704 | Zhao et al. | Jun 2014 | B2 |
8925467 | Kennedy et al. | Jan 2015 | B2 |
8998295 | Katz et al. | Apr 2015 | B2 |
9340140 | Blitterswijk et al. | May 2016 | B1 |
9393970 | Senn | Jul 2016 | B2 |
9469352 | Booher et al. | Oct 2016 | B2 |
9659451 | Olive | May 2017 | B2 |
9708013 | Belpaire | Jul 2017 | B2 |
9950713 | Senn et al. | Apr 2018 | B2 |
20020100390 | Jwuc et al. | Aug 2002 | A1 |
20080143142 | Lemmons | Jun 2008 | A1 |
20100270848 | Heider et al. | Oct 2010 | A1 |
20140130657 | Pilpel et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
2123815 | Nov 1994 | CA |
2877266 | Jul 2016 | CA |
Number | Date | Country | |
---|---|---|---|
20210101515 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
62911866 | Oct 2019 | US |