1. Field of the Invention
The present invention relates to a graphite base for heat sink and more particularly, to a method of making a graphite base by means of processing a graphite mixture of nanometered graphite and asphalt mixture into a graphite mass with a high pressure by means of hot press, cold press and vibration, and then dipping the graphite mass in a liquid phase asphalt, and then baking the graphite mass into a dry state graphite block.
2. Description of the Related Art
Following fast development of high technology, electronic devices are made in a mini scale, and element density in a unit area is relatively increased to enhance the working efficiency. An active electronic device produces much heat during operation. If heat is not quickly dissipated during the operation of an active electronic device, the electronic device will become unstable due to thermal stress or electron ionization. Therefore, it is important to prevent overheat of an electronic device during operation.
Because it is the market trend of semiconductor and electronic package toward high power and high density, heat dissipation problem will become more and more serious. For dissipating heat from electronic devices of high power density, pure copper is commonly used for making heat spreaders or heat pipes. However, copper heat spreaders and heat pipes are expensive. Further, the heat conductivity of copper and aluminum are about 400 W/mk and 200 W/mk respectively. These heat conductivities are not enough to dissipate heat from high-density power electronic devices efficiently. Further, copper and aluminum have a high density (about 8.5 g/cc and 2.7 g/cc respectively). A copper or aluminum heat sink has a certain weight, which gives a high pressure to the electronic device to which the heat sink is attached, such high pressure may damage the surface of the electronic device.
Because copper and aluminum-based heat sinks have the aforesaid drawbacks, new heat dissipation materials are desired. Further, carbon is an abundant natural substance in the world. When graphitized, carbon becomes a good electric and heat conductor. Natural graphite is a soft black material (see
The present invention has been accomplished under the circumstances in view. According to one aspect of the present invention, a graphite mixture of nanometered graphite and asphalt mixture is processed into a graphite mass with a high pressure by means of hot press, cold press and vibration, and then the graphite mass is dipped in a liquid phase asphalt to fill up crevices, and then the graphite mass is baked to a dry state graphite block. According to another aspect of the present invention, the top surface of the dry state graphite block is coated with a layer of metal coating for the bonding of metal radiation fins to form a heat sink. A heat sink made according to the present invention can efficiently quickly dissipate heat from the electronic device to which it is attached, preventing unstable status of the electronic device due to thermal stress or electron ionization. Further, the graphite base of the heat sink has less weight that gives not much pressure to the electronic device, preventing damage to the surface of the electronic device.
Referring to
The finished block-like graphite thus obtained has a very high density (see
Further, the metal coating 2 at the graphite base 1 can be obtained from copper, nickel, or their alloy by means of electroplating or vacuum evaporation.
As indicated above, the invention has the following features.
(1) The invention has graphite be nanometered and mixed with asphalt and then processed into ball-like graphite, which is then processed into a graphite block with a high pressure by means of hot press, cold press and vibration, and then dipped in a liquid phase asphalt for enabling the liquid phase asphalt to fill up crevices in the graphite block, and then baked to form a high thru-thickness heat conductive graphite.
(2) The high thru-thickness heat conductive graphite is used as a base, which is coated with a layer of metal coating to form a graphite base for heat sink. A heat sink using a graphite base according to the present invention can efficiently quickly dissipate heat from the electronic device to which it is attached, preventing unstable status of the electronic device due to thermal stress or electron ionization. Further, the graphite base has less weight that gives not much pressure to the electronic device, preventing damage to the surface of the electronic device.
Although a particular embodiment of the invention has been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3719608 | Olstowski | Mar 1973 | A |
4512858 | Struck et al. | Apr 1985 | A |
4929404 | Takahashi et al. | May 1990 | A |
Number | Date | Country | |
---|---|---|---|
20060230615 A1 | Oct 2006 | US |