The present invention relates to a grasping mechanism and a grasping device.
In the related art, with grasping mechanisms that grasp an object such as biological tissue by means of a pair of grasping pieces coupled with each other in a pivotable manner, there are known mechanisms utilizing a toggle mechanism (for example, see Patent Literature 1). The toggle mechanism is provided with a pair of linkages coupled with each other so as to be pivotable about a pivoting axis that is shared with the pair of grasping pieces, and thus, the opening operation of the pair of linkages is converted to the closing operation of the pair of grasping pieces. In this structure, it is possible to increase the grasping force exerted by the pair of grasping pieces in accordance with the lengths of the pair of linkages.
{PTL 1} Japanese Unexamined Patent Application, Publication No. 2007-301692
A first aspect of the present invention is a grasping mechanism including a first grasping piece; a second grasping piece that arranged side by side with the first grasping piece and that is coupled therewith so as to be pivotable about a pivoting axis that intersects the arrangement direction with respect to the first grasping piece so that first-end sides are opened and closed; a pulling pulley that is supported by the second grasping piece so as to be rotatable about a rotation axis that is parallel to the pivoting axis; and a wire that has a distal end secured to one of the first grasping piece and the second grasping piece and a proximal end that is disposed farther on a second-end side than the second grasping piece is, and whose distal-end portion is wound around the pulling pulley, wherein, the wire is wound around the pulling pulley so that tensile forces that act in substantially the same directions are generated in the wire on both sides of the pulling pulley flanking the rotation axis when the proximal end of the wire is pulled, and so that a resultant force of the tensile forces that act on the rotation axis of the pulling pulley generates a rotational moment about the pivoting axis in the closing direction of the second grasping piece.
A grasping mechanism and a grasping device provided with the grasping mechanism according to an embodiment of the present invention will be described below with reference to the drawings.
A grasping device 1 according to this embodiment is medical instrument having a function for grasping biological tissue, like grasping forceps. As shown in
As shown in
The first grasping piece 5 is integrally formed with a cylindrical sheath that constitutes the main unit of the body portion 2.
The first grasping piece 5 has a first grasping surface 5a on a distal-end side thereof, and the second grasping piece 6 has a second grasping surface 6a on a distal-end side thereof. The first grasping piece 5 and the second grasping piece 6 are individually disposed in directions along the longitudinal axis of the body portion 2, and are arranged side-by-side so that the grasping surfaces 5a and 6a face each other. In the following, the direction in which the first grasping piece 5 and the second grasping piece 6 are arranged will be defined as the top-to-bottom direction, the first grasping piece 5 side will be defined as the bottom side, and the second grasping piece 6 side will be defined as the top side.
Farther on the proximal-end side than the first grasping surface 5a and the second grasping surface 6a are, the second grasping piece 6 is coupled with the first grasping piece 5 by means of a hinge so as to be pivotable about a pivoting axis A1 that is orthogonal to the top-to-bottom direction and the longitudinal axis of the body portion 2. When the second grasping piece 6 is pivoted about the pivoting axis A1, distal-end sides of the first grasping piece 5 and the second grasping piece 6 are opened and closed.
The pulling pulley 7 has a shaft 9 that is coaxially formed with a rotation axis A2 of the pulling pulley 7. The second grasping piece 6 has a slot 10 that is formed so as to have a depth in a direction parallel to the pivoting axis A1 and so as to substantially radially extend toward the proximal-end side and the bottom side with respect to the pivoting axis A1. The shaft 9 is inserted into the slot 10, thereby the pulling pulley 7 is supported by the second grasping piece 6 so as to be rotatable about the rotation axis A2, which is parallel to the pivoting axis A1, and so as to be movable along the longitudinal direction of the slot 10 in a direction that approaches the pivoting axis A1, as well as in a direction that moves away therefrom. Here, the slot 10 is formed closer to the proximal-end side and the bottom side than the pivoting axis A1 is.
The wire 8 passes through in the interior of the body portion 2 in the longitudinal direction, with the distal-end portion thereof wound about half way around an outer circumferential surface on the distal-end side of the pulling pulley 7. The distal end of the wire 8 is secured to the body portion 2 farther on the proximal-end side than the pulling pulley 7 is, and the proximal end of the wire 8 is connected to the driving portion 4. In addition, a portion of the wire 8 that extends from the bottom end of the pulling pulley 7 toward the proximal-end side and a portion of the wire 8 that extends from the top end of the pulling pulley 7 toward the proximal-end side are disposed so as to be substantially parallel to each other.
The driving portion 4 has a motor (not shown) to which the proximal end of the wire 8 is connected and pulls the wire 8 to the proximal-end side by actuating the motor to generate tensile force in the wire 8.
Next, the operation of the thus-configured grasping mechanism 3 and grasping device 1 will be described below.
With the grasping device 1 according to this embodiment, when the wire 8 is pulled toward the proximal-end side by actuating the driving portion 4, a rotational moment M′ about the pivoting axis A1 in the closing direction acts on the second grasping piece 6, as shown in
In more detail, when the proximal end of the wire 8 is pulled by means of the driving portion 4, as shown in
In the state in which the pulling pulley 7 has been moved to the most proximal-end side of the slot 10, as shown in
As has been described above, with this embodiment, the pulling pulley 7 constitutes a movable pulley that pulls the second grasping piece 6 toward the proximal-end side and transmits the pulling force applied to the wire 8 from the driving portion 4 to the second grasping piece 6 by amplifying the pulling force approximately twofold. By doing so, as compared with a configuration in which the second grasping piece 6 is pulled by using a single wire 8 that is disposed straight in the direction along the longitudinal axis of the body portion 2, there is an advantage in that it is possible to approximately double the generated rotational moment M′, thus making it possible to increase the grasping forces exerted by the grasping pieces 5 and 6 approximately twofold.
Furthermore, the magnitude of the rotational moment M′ generated by the resultant force F′ is determined by the geometrical relationship between the pivoting axis A1 and the resultant force F, and is proportional to a distance D′ between a straight line, which passes through the rotation axis A2 of the pulling pulley 7 and extends in the direction of the resultant force F′, and the pivoting axis A1. In the grasping state, when the pulling pulley 7 is moved in the slot 10 from the distal-end side to the proximal-end side, the distance D′ is increased as compared with a distance D in the closed state. By doing so, a greater rotational moment M′ is achieved, and thus, there is an advantage in that it is possible to further increase the grasping force.
In addition, because the pivoting range of the second grasping piece 6 in the opening direction is not structurally restricted by the pulling pulley 7 and the wire 8, there is an advantage in that it is possible to ensure a large enough opening angle between the first grasping piece 5 and the second grasping piece 6.
In this embodiment, although the pulling pulley 7 is supported by the second grasping piece 6 so as to be movable in the direction that increases the distance D, alternatively, the pulling pulley 7 may be supported by the second grasping piece 6 so as to be rotatable at the same position without being moved.
By doing so also, the pulling force applied to the wire 8 due to the driving force can be amplified approximately twofold by the pulling pulley 7, and thus, the rotational moment and the grasping force that act on the second grasping piece 6 can be increased.
In this embodiment, as shown in
Specifically, the adjusting pulley 11 is provided farther on the top side than the pulling pulley 7 is so as to make an angle formed by the line segment S1 between the pivoting axis A1 and the rotation axis A2 and a line segment S2 between the rotation axis A2 and the rotation axis A3 closer to 90°, and the wire 8 extends from the top end of the pulling pulley 7 to the proximal-end side via the adjusting pulley 11. By doing so, an angle formed by a portion of the wire 8 between the top end of the pulling pulley 7 and the top end of the adjusting pulley 11 and the line segment S1 becomes closer to 90°, thus increasing the distance D′.
As shown in
α<β+γ (1)
θ>90 (2)
When α=β+γ, the pivoting axis A1, the rotation axis A2, and the rotation axis A3 are positioned on the same straight line. In the case of this arrangement, it is difficult to change the direction of the resultant force F′ to the direction that increases the rotational moment M′ by using the adjusting pulley 11.
In a case in which θ=90, the pulling pulley 7 is not moved in the slot 10. Therefore, the rotational moment M′ does not increase. In a case in which θ<90, the pulling pulley 7 is moved along the slot 10 to approach the pivoting axis A1. Therefore, the rotational moment M′ decreases.
Furthermore, in the grasping mechanism 3 in
By doing so, when the wire 8 is pulled, the pulling pulley 7 is moved in the direction that increases the distance D, that is, the rotational moment M, and thus, it is possible to increase the grasping force.
In this embodiment, although the wire 8 is wound only about half way around the pulling pulley 7, alternatively, as shown in
The magnitude of the pulling force that acts on the second grasping piece 6 is increased with an increase in the apparent number of wires 8 indirectly via the pulling pulley 7 or directly connected to the second grasping piece 6. Therefore, by increasing the number of times the wire 8 is wound between the pulling pulley 7 and the adjusting pulley 11, it is possible to further increase the grasping force by further amplifying the pulling force and the rotational moment M′ that act on the second grasping piece 6.
For example, as shown in
In the grasping mechanism 3 in
In this case, a slot 14 that guides the rotation axis A3 of the adjusting pulley 11 is formed in the first grasping piece 5 so that the adjusting pulley 11 is moved toward the inside of a third circle C3 and toward the inside of a fourth circle C4 when the wire 8 is pulled. The third circle C3 is a circle that passes through the pivoting axis A1, the rotation axis A2 of the pulling pulley 7 when the rotation axis A2 is at the position farthest from the pivoting axis A1, and the rotation axis A3 of the adjusting pulley 11 when the rotation axis A3 is at the position farthest from the pivoting axis A1. The fourth circle C4 is a circle whose the center is the rotation axis A2 of the pulling pulley 7 when the rotation axis A2 is at the position farthest from the pivoting axis A1 and that passes through the rotation axis A3 of the adjusting pulley 11 when the rotation axis A3 is at the position farthest from the pivoting axis A1. Here, the position of the rotation axis A2 is a position when the first grasping piece 5 and the second grasping piece 6 are arranged so as to be closed.
By doing so, when the wire 8 is pulled, the adjusting pulley 11 is moved in a direction that makes the angle formed by the line segment S1 and the line segment S2 closer to 90°, and thus, the distance D′ and the rotational moment M′ are further increased. By doing so, it is possible to further increase the grasping force.
In this embodiment, although only the mechanism for generating the grasping force has been described, an arbitrary mechanism for pivoting the second grasping piece 6 in the opening direction can be provided in the pivoting mechanism.
For example, as shown in
Alternatively, an elastic member (not shown), such as a spring, that biases the second grasping piece 6 in the closing direction may be employed instead of the wire 12.
The above-described embodiment leads to the following inventions.
A first aspect of the present invention is a grasping mechanism including a first grasping piece; a second grasping piece that arranged side by side with the first grasping piece and that is coupled therewith so as to be pivotable about a pivoting axis that intersects the arrangement direction with respect to the first grasping piece so that first-end sides are opened and closed; a pulling pulley that is supported by the second grasping piece so as to be rotatable about a rotation axis that is parallel to the pivoting axis; and a wire that has a distal end secured to one of the first grasping piece and the second grasping piece and a proximal end that is disposed farther on a second-end side than the second grasping piece is, and whose distal-end portion is wound around the pulling pulley, wherein, the wire is wound around the pulling pulley so that tensile forces that act in substantially the same directions are generated in the wire on both sides of the pulling pulley flanking the rotation axis when the proximal end of the wire is pulled, and so that a resultant force of the tensile forces that act on the rotation axis of the pulling pulley generates a rotational moment about the pivoting axis in the closing direction of the second grasping piece.
With the first aspect of the present invention, when the pulling force is applied to the proximal end of the wire, the pulling force is transmitted to the pulling pulley around which the wire is wound and the second grasping piece supporting the pulling pulley; a component of the pulling force in a tangential direction about the pivoting axis of the second grasping piece acts on the second grasping piece in the form of the rotational moment in the closing direction, and thus, the first-end portion of the second grasping piece is pressed against the first-end portion of the first grasping piece. By doing so, it is possible to generate a grasping force on an object sandwiched between the first-end portion of the first grasping piece and the first-end portion of the second grasping piece.
In this case, when the pulling force is applied to the proximal end of the wire whose distal end is secured, tensile forces that act in substantially the same directions are generated in the wire on both sides flanking the rotation axis of the pulling pulley, and the resultant force of these two tensile forces acts on the pulling pulley. In other words, the pulling force applied to the proximal end of the wire acts on the pulling pulley and the second grasping piece after being amplified approximately twofold. By doing so, it is possible to increase the grasping force. In addition, because the pivoting angle of the second grasping piece in the opening direction with respect to the first grasping piece is not structurally restricted, it is possible to ensure a large enough opening angle between the first grasping piece and the second grasping piece.
In the above-described first aspect, the pulling pulley may be supported by the second grasping piece so as to be movable due to the tensile force in the wire in a direction that increases a distance between a straight line, which passes through the rotation axis and extends in the direction of the resultant force, and the pivoting axis.
By doing so, because the magnitude of the rotational moment generated by the resultant force is proportional to the distance between the straight line, which passes through the rotation axis of the pulling pulley and extends in the direction of the resultant force, and the pivoting axis, by moving the pulling pulley in the direction that increases this distance, the rotational moment in the closing direction that acts on the second grasping piece is further amplified, and thus, it is possible to further increase the grasping force.
The above-described first aspect may be provided with an adjusting pulley that is supported by the first grasping piece farther on the second-end side than the pulling pulley is so as to be rotatable about a rotation axis parallel to the pivoting axis, and that, by having the wire extending toward the second-end side from the pulling pulley wound therearound, changes the direction of the wire extending toward the second-end side from the pulling pulley to a direction that increases a distance between a straight line, which passes through the rotation axis of the pulling pulley and extends in the direction of the resultant force, and the pivoting axis.
By doing so, by adjusting the direction of the resultant force, by the adjusting pulley, in the direction that increases the distance between the straight line, which passes through the rotation axis of the pulling pulley and extends in the direction of the resultant force, and the pivoting axis, the rotational moment in the closing direction that acts on the second grasping piece is further amplified, and thus, it is possible to further increase the grasping force.
The above-described first aspect may be provided with an adjusting pulley that is supported by the first grasping piece farther on the second-end side than the pulling pulley is so as to be rotatable about a rotation axis parallel to the pivoting axis, and that, by having the wire extending toward the second-end side from the pulling pulley wound therearound, changes the direction of the wire extending toward the second-end side from the pulling pulley to a direction that increases the distance between the straight line, which passes through the rotation axis of the pulling pulley and extends in the direction of the resultant force, and the pivoting axis, wherein the following relational expressions may be satisfied. In the following relational expressions, a is the distance between the pivoting axis and the rotation axis of the adjusting pulley, β is the distance between the pivoting axis and the rotation axis of the pulling pulley, γ is the distance between the rotation axis of the pulling pulley and the rotation axis of the adjusting pulley, and θ is the angle formed by the line segment connecting the rotation axis of the adjusting pulley and the rotation axis of the pulling pulley at a position farthest from the pivoting axis and the direction in which the pulling pulley is moved.
α<β+γ
θ>90
By doing so, the direction in which the pulling pulley is moved when the wire is pulled is stabilized in a constant direction, and thus, it is possible to stably generate a large grasping force.
In the above-described first aspect, the pulling pulley may be supported by the second grasping piece so as to be movable toward the outside of a circle that passes through the rotation axis of the pulling pulley when the rotation axis is at a position closest to the pivoting axis, the pivoting axis, and the rotation axis of the adjusting pulley, and toward the inside of a circle whose center is the rotation axis of the adjusting pulley and that passes through the rotation axis of the pulling pulley when the rotation axis is at a position closest to the pivoting axis.
By doing so, when the wire is pulled, the pulling pulley is moved in the direction that increases the distance between the straight line, which passes through the rotation axis of the pulling pulley and extends in the direction of the resultant force, and the pivoting axis, which further amplifies the rotational moment in the closing direction that acts on the second grasping piece, and thus, it is possible to further increase the grasping force.
In the above-described first aspect, the wire may be wound around once or more so as to surround the pulling pulley and the adjusting pulley.
By doing so, the pulling force applied to the proximal end of the wire is further amplified and transmitted to the pulling pulley and the second grasping piece, and thus, it is possible to further increase the rotational moment and the grasping force.
In the above-described first aspect, the adjusting pulley maybe supported by the first grasping piece so as to be movable, due to the tensile forces in the wire, toward the inside of a circle that passes through the rotation axis of the adjusting pulley when the rotation axis is at a position farthest from the pivoting axis, the rotation axis of the pulling pulley, and the pivoting axis, and toward the inside of a circle whose center is the rotation axis of the pulling pulley and that passes through the rotation axis of the adjusting pulley.
By doing so, when the wire is pulled, the adjusting pulley is moved in the direction that increases the distance between the straight line, which passes through the rotation axis of the pulling pulley and extends in the direction of the resultant force, and the pivoting axis, which further amplifies the rotational moment in the closing direction that acts on the second grasping piece, and thus, it is possible to further increase the grasping force.
A second aspect of the present invention is a grasping device provided with any one of the above-described grasping mechanisms and a driving portion that is provided on the second-end side of the grasping mechanism and that pulls the proximal end of the wire.
Number | Date | Country | Kind |
---|---|---|---|
PCT/JP2015/065633 | May 2015 | WO | international |
This is a continuation of International Application PCT/JP2016/065611 which is hereby incorporated by reference herein in its entirety. This application is based on International Application PCT/JP2015/065633, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5507773 | Huitema et al. | Apr 1996 | A |
5562700 | Huitema et al. | Oct 1996 | A |
5562701 | Huitema et al. | Oct 1996 | A |
5562702 | Huitema et al. | Oct 1996 | A |
6206903 | Ramans | Mar 2001 | B1 |
6896704 | Higuchi et al. | May 2005 | B1 |
7316681 | Madhani et al. | Jan 2008 | B2 |
8333780 | Pedros et al. | Dec 2012 | B1 |
10016207 | Suzuki | Jul 2018 | B2 |
10343291 | Jogasaki | Jul 2019 | B2 |
20020040217 | Jinno | Apr 2002 | A1 |
20040267406 | Jinno | Dec 2004 | A1 |
20060167589 | Jinno | Jul 2006 | A1 |
20070288044 | Jinno et al. | Dec 2007 | A1 |
20080039255 | Jinno et al. | Feb 2008 | A1 |
20080232932 | Jinno | Sep 2008 | A1 |
20090110533 | Jinno | Apr 2009 | A1 |
20090112229 | Omori et al. | Apr 2009 | A1 |
20090112230 | Jinno | Apr 2009 | A1 |
20100198253 | Jinno et al. | Aug 2010 | A1 |
20120239011 | Hyodo et al. | Sep 2012 | A1 |
20150025571 | Suzuki et al. | Jan 2015 | A1 |
20170135710 | Hasegawa et al. | May 2017 | A1 |
20180050456 | Yamanaka | Feb 2018 | A1 |
20190059922 | Yamanaka | Feb 2019 | A1 |
20190231374 | Kimura et al. | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
0668057 | Feb 1995 | EP |
0800792 | Oct 1997 | EP |
1 195 151 | Apr 2002 | EP |
1854418 | Nov 2007 | EP |
1886630 | Feb 2008 | EP |
2077095 | Jul 2009 | EP |
2666429 | Nov 2013 | EP |
2837341 | Feb 2015 | EP |
3263053 | Jan 2018 | EP |
1500906 | Nov 1967 | FR |
H01-199777 | Aug 1989 | JP |
2000325375 | Nov 2000 | JP |
2002-103255 | Apr 2002 | JP |
2002102248 | Apr 2002 | JP |
2007301692 | Nov 2007 | JP |
2008-036793 | Feb 2008 | JP |
2009-106606 | May 2009 | JP |
2009-107095 | May 2009 | JP |
2009107087 | May 2009 | JP |
2010-221329 | Oct 2010 | JP |
2010227331 | Oct 2010 | JP |
2010-253162 | Nov 2010 | JP |
2012187311 | Oct 2012 | JP |
2013-215502 | Oct 2013 | JP |
2009057347 | May 2009 | WO |
2010090292 | Aug 2010 | WO |
2010126129 | Nov 2010 | WO |
2013154157 | Oct 2013 | WO |
2016136676 | Sep 2016 | WO |
2016194067 | Dec 2016 | WO |
2016194777 | Dec 2016 | WO |
2017195246 | Nov 2017 | WO |
Entry |
---|
International Search Report dated Aug. 9, 2016 issued in PCT/JP2016/065611. |
International Search Report dated Aug. 18, 2015 issued in PCT/JP2015/065633. |
International Search Report dated Aug. 2, 2016 issued in PCT/JP2016/063728. |
International Search Report dated Jan. 31, 2017 issued in PCT/JP2016/085237. |
German Office Action dated Mar. 13, 2019 in German Patent Application No. 11 2016 001 915.7. |
International Search Report and the Written Opinion dated Aug. 9, 2016 received in related International Application No. PCT/JP2016/065962. |
Japanese Office Action dated Jul. 21, 2020 in Japanese Patent Application No. 2017-521884, together with English language translation. |
Number | Date | Country | |
---|---|---|---|
20180050456 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2016/065611 | May 2016 | US |
Child | 15801356 | US |