Grid for plasma ion implant

Information

  • Patent Grant
  • 9318332
  • Patent Number
    9,318,332
  • Date Filed
    Thursday, December 19, 2013
    11 years ago
  • Date Issued
    Tuesday, April 19, 2016
    8 years ago
Abstract
A grid for minimizing effects of ion divergence in plasma ion implant. The plasma grid is made of a flat plate having a plurality of holes, wherein the holes are arranged in a plurality of rows and a plurality of columns thereby forming beamlets of ions that diverge in one direction. A mask is used to form the implanted shapes on the wafer, wherein the holes in the mask are oriented orthogonally to the direction of beamlet divergence.
Description
BACKGROUND

1. Field


This invention relates to plasma ion implant, such as used for fabrication of semiconductor devices, particularly solar cells.


2. Related Arts


Diffused junction solar cells are known in the art. Such cells are fabricated by doping a silicon substrate with dopants such as boron and phosphorous. Metallic contacts are then fabricated to collect current generated by the cell. Also known are cells referred to front contact cells where selective n++ emitter can be formed, wherein high doping concentration is provided at the area of the emitter's surface where the metallic contacts are deposited. Generally, blanket doping is done using POCl3 diffusion. Another known solar cell, in back contact cell that is generally referred to as point contact or interdigitated back-contact, or IBC, cell, wherein all of the electrical contacts are provided only on the backside of the solar cell. The selective emitter and IBC cells requires both a blanket doping of the entire sun-facing area of the wafer and selective doping only on selected areas of the backside of cell. For example, for selective emitter the areas that form the contact to the metal lines on the sun-facing surface of the solar cell are selectively doped at a higher dose than the background blanket doping. On the other hand, IBC cells require alternating areas of p-type and n-type doped areas, that are generally formed in separate steps using, e.g., masks.


The requirement for IBC masks to be able to provided varying doped patterned implant region is very rigorous. The opening in such mask can be a range such 200 to 1000 micron, and traverse the whole length of the substrate. The spacing or pitch of these line, for each dopant, can a range less than 1000 micron, where the lines for the opposing doped line can land in between and positioned to high precision. Fabrication of such a mask, may render it non-rigid and difficult to make, handle and use in an ion implant system. Any means of cross stitching the openings will lead to shadowing of the doped lines and hence render the doped line with poor or intermittent conductivity.


In addition there is a requirement for the selective implantation to be in two dimensional, where there are patterns that are in both x and y direction across the surface of the substrate. These could include lines with corners, deviation, shaped to accommodate the current flow, circles, halo, dots and other 2D shapes.


While it has been proposed that ion implantation can result in better doping profiles and, therefore, better cell efficiency, ion implantation has not been used due to the high cost and slow throughput of standard ion implantation equipment. However, with the increased demand for improved cell efficiency and for formation of selective emitter or IBC cells, market demand developed for ion implant technologies that can deliver the required low cost and high throughput. Consequently, certain solutions are emerging, which are plasma-based ion implant. One solution is generally referred to as plasma immersion ion implantation, PIII, in which plasma engulfs that substrate to be implanted. A related solution is to insert a grid assembly between the plasma and the substrate, such that ion are extracted from the plasma and are implanted onto the substrate, without the plasma contacting the substrate. While this solution seems promising, it requires modifications and improvement in order to enable selecting implantation.


SUMMARY

The following summary is included in order to provide a basic understanding of some aspects and features of the invention. This summary is not an extensive overview of the invention and as such it is not intended to particularly identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented below.


Disclosed embodiments provide plasma ion implant that incorporate grid and masks designs for selective implantation.


Certain disclosed embodiments provide for grid and masks designs that either avoid or take advantage of beam divergence, depending on the particular application.


Disclosed embodiments provide grid designs that enable placement of implant mask either on top of, or above and separated from, the surface of the wafer.


Various embodiments disclosed herein provide for a plasma ion implant grid and mask that are easy to manufacture and can withstand service conditions existing within the plasma chamber.


Still other embodiments provide for method of selective implantation through a grid and a mask such that the natural phenomenon of beam divergence is controlled and taken advantage of.


According to aspects of the invention, a grid for a plasma ion implant is provided, comprising a flat plate having a plurality of elongated holes or slots dispersed over its surface, each of the elongated holes having a cross-sectional shape of an elongated oval having a major axis and minor axis, and having a defined depth extending through the flat plate, wherein a major axis of each of the elongated holes is configured to be aligned in a direction perpendicular to a long axis of features to be implanted on a substrate when the grid is installed inside a plasma ion implant system. The plurality of elongated holes may be arranged in a plurality of rows and a plurality of columns, such that each of the holes in each column are aligned with the holes in the preceding and following column, such that a line passing through the major axis of holes in the same row would intersect at a right angle a line passing through the minor axis of holes aligned in the same column. The plurality of elongated holes are arranged in a plurality of rows and a plurality of columns, such that each of the holes in each column is shifted from alignment with the holes in the preceding and following column, such that a line passing through the center of all of the holes in a selected column forms an acute angle with a line passing through the major axis of holes in the same row.


According to another aspect, a combination of exit grid and implant mask for a plasma-based ion implant system is provided, wherein: the exit grid comprises a flat plate having a plurality of elongated holes dispersed over its surface, each of the elongated holes having a cross-sectional shape of an elongated oval having a major axis and minor axis, and having a defined depth extending through the flat plate to enable ions to pass through the elongated holes; the implant mask comprises a flat plate having a plurality of linear holes dispersed over its surface, each of the linear holes having a cross-sectional shape of an elongated oval having a long axis and short axis, and having a defined depth extending through the flat plate to enable ions to pass through the linear holes, wherein the linear holes are arranged in a plurality of parallel rows and linear holes in each row are separated from each other by ion blocking bridges; and, wherein a major axis of each of the elongated holes is aligned in a direction perpendicular to a long axis of the linear holes. The plurality of elongated holes of the exit grid may be arranged in a plurality of rows and a plurality of columns, such that each of the holes in each column are aligned with the holes in the preceding and following column, such that a line passing through the major axis of holes in the same row would intersect at a right angle a line passing through the minor axis of holes aligned in the same column.


According to other aspects, a plasma ion implant system is provided, comprising: a processing chamber; a grid assembly placed in the plasma chamber and dividing the processing chamber into a plasma section and ion implant section; a transport mechanism for transporting substrates in a travel direction and positioning the substrate under the grid assembly; wherein the grid assembly comprises a flat plate having a plurality of holes, wherein the holes are arranged in a plurality of rows and a plurality of columns and wherein each of the holes in each column is shifted from alignment with the holes in the preceding and following column, such that a line passing through the center of all of the holes in a selected row forms an acute angle with the travel direction. Each of the holes has a cross-sectional shape of an elongated oval having a major axis and minor axis, and having a defined depth extending through the flat plate to enable ions to pass through the elongated holes.


The system may further comprise a mask comprising a flat plate having a plurality of linear holes dispersed over its surface, each of the linear holes having a cross-sectional shape of an elongated oval having a long axis and short axis, and having a defined depth extending through the flat plate to enable ions to pass through the linear holes, wherein the linear holes are arranged in a plurality of parallel rows and linear holes in each row are separated from each other by ion blocking bridges. A major axis of each of the holes of the flat plate is aligned in a direction perpendicular to a long axis of the linear holes of the mask. The flat plate and/or the substrate may be coupled to ground potential. The transport mechanism may be a conveyor.


According to further aspects, an ion implant system is provided, comprising: a processing chamber; a plasma grid placed in the plasma chamber and dividing the processing chamber into a plasma section and ion implant section, the plasma grid comprising a plurality of holes configured to enable ions to pass from the plasma chamber into the processing chamber by forming ion beamlets, wherein ions in the ion beamlets diverge in a first direction; and a mask positioned below the plasma grid and comprising a flat plate having a plurality of holes arranged as parallel lines, wherein each hole is shaped as a line segment and wherein ion blocking bridges are provided between each two line segments in a row, and wherein the line segments are oriented in a second direction perpendicular to the first direction.


According to yet other aspects, a method for implanting ions into a substrate to thereby form parallel implanted lines in the substrate is provided, comprising: introducing a substrate to be implanted into a plasma processing chamber; positioning a mask at a predetermined gap above the substrate, the mask comprising a plurality of line segments arranged in parallel rows, wherein line segments in each row are separated by bridges that block ions impinging thereupon and the line segments in each row correspond to one implanted line; igniting plasma in the plasma processing chamber and extracting ions from the plasma so as to form beamlets of ions having divergence in a direction parallel to the direction of the rows; and, directing the beamlets to pass through the mask and implant into the substrate to thereby form the parallel implanted lines. The predetermined gap is calculated to enable diverging beamlets to implant ions at locations on the substrate that are positioned directly below the bridges, to thereby implant the plurality implanted lines, wherein each line has length corresponding to the sum of all the line segments and bridges on one row of the mask. Extracting the ions may further comprise forming beamlets that have no divergence in a direction perpendicular to the direction of the rows.





BRIEF DESCRIPTION OF THE DRAWINGS

Other aspects and features of the invention would be apparent from the detailed description, which is made with reference to the following drawings. It should be appreciated that the detailed description and the drawings provides various non-limiting examples of various embodiments of the invention, which is defined by the appended claims.


The accompanying drawings, which are incorporated in and constitute a part of this specification, exemplify the embodiments of the present invention and, together with the description, serve to explain and illustrate principles of the invention. The drawings are intended to illustrate major features of the exemplary embodiments in a diagrammatic manner. The drawings are not intended to depict every feature of actual embodiments nor relative dimensions of the depicted elements, and are not drawn to scale.



FIG. 1 is a schematic of a plasma ion implant system utilizing any of the grids and mask arrangements according to embodiments of the invention.



FIG. 2 is a schematic perspective view of a plasma ion implant grid according to one embodiment.



FIG. 3 is a schematic top view of a plasma ion implant grid according to anther embodiment.



FIG. 4 is a schematic top view of a plasma ion implant grid according to anther embodiment.



FIG. 5 is a schematic top view of a plasma ion implant grid according to anther embodiment.



FIG. 6 is a schematic of a plasma ion implant system according to one embodiment.



FIG. 6A illustrates an example of a shadow mask positioned over a substrate with a defined gap between the shadow mask and the substrate.



FIG. 7 is a schematic of a plasma ion implant system according to another embodiment.





DETAILED DESCRIPTION

Various embodiments disclosed herein enable high throughput of substrates in a plasma or any type of ion implant system, while providing accurate implant characteristics for selective implantation. The high throughput enabled by these embodiments is particularly suitable for solar cell fabrication, although it may be used for fabrication of other items, especially when there's a need for selective ion implant with the use of a mask. Certain embodiments utilize setback of an implant mask from the wafer, although the mask may travel with the wafer. The embodiments are particularly applicable to plasma implantation system that utilizes a plasma chamber in which grids are used to extract ions from the plasma and accelerate the ions towards the wafer.



FIG. 1 schematically illustrates a cross-section of a plasma ion implant chamber 100. Grid assembly 110 is used to extract ion beamlets 115 from plasma 105. The grids can be biased with respect to the plasma so as to extract the ions and accelerate the ion in the ion beamlets towards the wafer 120, so as to be implanted in the wafer 120. In one example, three grids are used to form grid assembly 110: a top grid that is positively biased to extract ions, a middle grid that is negatively biased to repel electrons, and a bottom grid which is grounded. The substrate may also be grounded or it may be biased. When the bottom grid and wafer are biased, a drift zone is created between the bottom grid and wafer, such that the implant energy is determined by the extraction potential. Other grid arrangements may be used, but regardless of the arrangement, the bottom-most grid would be referred to herein as the exit grid, i.e., the last grid the ions traverse when they exit the grid assembly 110. Various embodiments for the structure of the grids will be described below, in conjunction with the design of the implant mask.


A top view of an exit grid of grid assembly 110 is shown in the top callout of FIG. 1. In this example, the exit grid is in the form of a plate 135 having a plurality of circular holes 137. When the implant should be selective, i.e., over only selected areas of the wafer, such as, e.g., for selective emitter or IBC, a mask 125 may be placed over the wafer, such that only ions passing through the holes in the mask will be implanted in the wafer.


As illustrated in FIG. 1, when ions exit the holes 137 of the exit grid 135, mutual repulsion causes the ions to travel at a divergent trajectory. Thus, while some ions enter the wafer at 90° to the surface of the wafer, divergent ions enter the wafer at an angle that is off the perpendicular to the surface of the wafer. This beam divergence is particularly problematic when a mask is used during the implant, such as, for example, for creating selective emitters or IBC.


The dashed-line callout in FIG. 1 is an enlargement showing a cross-section of part of the mask 125 and wafer 120, and the ions 115 passing through the holes in the mask 125 and hitting the wafer 120. As shown, although the aspect ratio (i.e., hole diameter over hole height) is made so as to allow mostly ion beams traveling perpendicularly to the wafer's surface, when the ions emerge from the holes of the mask they still diverge again. This necessitates placing the mask very close to the wafer in order to control the dimensions of the implanted area. Moreover, even if the mask is placed very close to the wafer, some divergence still occurs, which adversely affects the accuracy of the implant pattern, especially when the implanted features have very small dimension such as, for example, line width and pitch of selective emitters or IBC.


As shown in FIG. 1, the ions that exit each grid's hole or indeed any beam (ribbon or otherwise) are generally divergent, depending on the shape of the plasma meniscus, that is determined by multiple factors such as plasma conditions, acceleration and suppression voltages applied. On the other hand, ions that exit at close proximity to the straight edges of an elongated oval hole or sides of a slot are not as divergent, that is dictated by the shape of the meniscus. This is along the long axis of the elongated slots, rendering extracted beam non-divergent in the long direction and divergent in the short direction of the beam extraction slot. This is true for any slotted extraction grids.


To take advantage of this phenomenon, the embodiment of FIG. 2 utilizes an exit grid having elongated oval holes or elongated slots rather than round holes. Consequently, as shown in the solid-line callout, which illustrates the cross-section along line A-A, over the long axis there is no beam divergence except at the very end of the elongated hole. Of course, as shown in the dashed-line callout, over the short axis there would be larger beam divergence. Therefore, in this embodiment the mask is oriented such that the long axis of the elongated hole is set perpendicular to the direction of the features to be implanted, as illustrated in FIG. 2. If a mask 125 is used, then the long axis of the grid holes should be perpendicular to the long axis of the features on the hard mask. Similarly, if the implant system uses movable substrate, i.e., pass-by ion implant, the motion of the substrate should be in a direction perpendicular to the long axis of the elongated grid holes.


While the grid according to the embodiment of FIG. 2 provides improved implant results, it is somewhat susceptible to degradation during the implant operation. Specifically, the plasma and ion extraction process causes heating of the grid. Using holes that are too long may lead to warping of the sidewall of the holes due to the excessive heat. This can be resolved by using a series of smaller elongated holes arranged in rows and columns, as illustrated in FIG. 3. The embodiment illustrated in FIG. 3 is less susceptible to degradation due to heat. In using the grid of FIG. 3, the elongated axis of the holes is positioned in a direction perpendicular to the long axis of the features to be implanted, perpendicular to the elongated holes on the mask, or perpendicular to the direction of travel of the substrate, if a pass-by implant is used.


The embodiment of FIG. 3 provides enhanced reliability by “breaking” the elongated holes into a series of shorter elongated holes. The shorter elongated holes are aligned in rows and columns, such that a straight line can pass through the major axis of holes in the same row, and it would intersect at a right angle a line passing through the minor axis of the holes in the same column. However, in between elongated holes there's a “dead zone” where no ions exit the grid, so that no implant occurs in the substrate travel direction, particularly for a homogenous implant. The embodiment of FIG. 4 alleviates this problem by having the holes arranged along an angled line, such that the dead zones are aligned along a line that is off from the perpendicular to the direction of travel. That is, in the embodiment of FIG. 4 each successive hole is shifted a given amount from alignment to its neighbor hole. Stating it another way, while a straight line can pass through the major axis of holes arranged in the same row, no straight line can pass through the minor axis of all the holes arranged in the same column. Also, a straight line passing through the major axis of holes arranged in the same row would intersect at a non-perpendicular angle a line passing through the center of all holes arranged in the same column. Consequently, for a traveling wafer, each point of a dead zone will be projected only once, such that all of the dead zones will be averaged and each will be covered by ions emanating from other holes. Therefore, once the wafer exits the system, each part on the wafer has been implanted, regardless of the dead zones.


A similar effect can be achieved by using round holes arranged on a diagonal or slanted direction to the direction of wafer travel. Such an embodiment is illustrated in FIG. 5. As illustrated in FIG. 5, a line passing through the center of each hole in all of the holes it passes is aligned at an acute angle to the direction of wafer travel. On the other hand, a line drawn parallel to the direction of travel cannot pass through the center of each hole it crosses. Consequently, every point on the wafer would be exposed to ions emanating from the center of some holes and the edges of other holes, such that the total implant is evened out.


In most, if not all, current implant applications, such as selective emitter and IBC, the selectively implanted features are in the form of long and narrow lines and other shapes, where lines can be of varying thickness to enhance current carrying capabilities, other shapes such as holes, Halo shapes and other features such a fiducial marking etc. One method to achieve this is to use standard photoresist or other hard mask, such as deposited or preferentially grown layered, masks and form a mask on the surface of the wafer. However, such mask formation process is long and costly and after the implant is completed the mask needs to be removed. If a second set of lines of the opposite polarity needs to be implanted, the masking needs to be repeated.


Therefore, it would be beneficial to use a shadow mask instead. Shadow masks are physical masks that are formed separately from the substrate and are plated on top or above the substrate during processing. However, when forming shadow mask for such application, the mask has many thin and long lines, as exemplified in FIG. 2. Since the mask is relatively thin and undergoes heating due to the impinging ions, the mask cannot maintain its original flat shape and the resulting implanted lines cannot be maintained according to the specifications. In addition the requirements for such selective implanted lines and fingers, that range from 100 to several micron opening width and a pitch, center to center for one type of dopant, of less than a 1000 micron, will make the shadow mask non-rigid, which makes it difficult for handling, in general, and not suitable for varying temperature, due to ion beam, and alignment accurately to the substrate. Such mask may not hold its fidelity for scribing dopant lines on the substrate consistently and over a long period of time. Furthermore, since this mask needs to be made out of thin materials, to avoid causing formation of Moiré effect, then this problem is particularly accentuated.


An example of an implant system that can be implemented for implanting long lines using hard mask is illustrated in FIG. 6. The plasma implant chamber may be of any design employing the grid plate or ribbons beam arrangement, but in this particular example the plasma chamber 600 has a conveyor 612 to convey wafers through the implant chamber 600. Chamber 600 has a grid assembly 610 or could have a long single or 3 to 5 slots as in the ribbon beam having an exit grid 635, which is shown in the upper callout. The grid assembly 610 is used to extract ions from plasma 605 and generate beamlets 615 directed towards the wafer 620. As illustrated in FIG. 6, since the major axis of the elongated holes in exit grid 635 are oriented perpendicular to the direction of travel of the wafers, the beamlets expand in a direction parallel to the direction of travel of the wafer, with negligible expansion in a direction perpendicular to the direction of travel of the wafer.


The mask 625 is shown in the lower callout. It is formed of a flat plate, e.g., stainless steel plate, and, rather than having long holes or elongated slots of the length required for the implanted lines, the long holes are broken using bridges 627. These bridges allow for the ease of mask fabrication and type of materials at various thickness. Of course, the actually implanted lines cannot have such bridges, since they will cause an open circuit—the implanted lines must have continuity of electrical conductance. However, by aligning the major axis of the elongated holes in the exit grid 635 to be perpendicular to the major axis of the elongated holes in the mask 625, the resulting beam divergence enables implanting ions under the bridges 627. This can be understood by referring to the illustration of FIG. 6A. Specifically, since beamlets 615 diverge in a direction parallel to the major axis of the elongated holes of mask 625, the divergent part travels under the bridge 627 so as to result in an implanted full line, rather than the line sections of the mask. By adjusting the gap, G, between the mask 625 and the wafer 620, the amount of ion implant delivered below the bridge 627 can be controlled.


Also, in the embodiment of FIG. 6, each wafer travels with its own mask. When the wafer reaches the implant zone, i.e., in alignment below the exit grid, the conveyor can be stopped or continue to travel, depending on the implant process, i.e., stationary or pass-by, and the implant process takes place. When the desired dose is achieved, or the duration of substrate passage under the beam is achieved, the ion beam is turned off or blocked and the conveyor is re-energized or continues to operate to remove the implanted wafer and introduce a new wafer underneath the beam. The mask from the implanted wafer may then be removed and cleaned for reuse.


Another example is illustrated in FIG. 7. In the example of FIG. 7 it is desired to implant wafer 705 with a plurality of long lines 745. These lines may form, e.g., contact lines for selective emitter cell or doping lines for IBC cell. In order to implant the long and narrow lines 745 using a hard mask, one would need to have a mask with long cut outs in the form of the implanted lines 745. That would make the mask rather flimsy and unstable during heating and cooling cycles and general handling. Instead, rather than making the mask in the form of long lines, in mask 725 each line is broken into several line segments 728 by bridges 727. However, using such a mask in standard implant system would lead to line segments implanted on the wafer, such that the line segments do not have electrical continuity. Conversely, using omnidirectional diverging ion beams would make it difficult, if not impossible, to properly control the width of the implanted lines 745. Therefore, the exit grid 735 is formed to have elongated holes or line segments 738, which are oriented with their major axis perpendicular to the major axis of the line segments 728 of the mask. This can be adopted as the required doping features on the substrate changes direction, where both the shadow mask and extraction grid can accommodate such change in direction. This arrangement leads to beam divergence in the direction of the minor axis of the elongated holes 738, i.e., in the direction parallel to the line segments of the mask. The beam divergence in this direction would provide a trajectory for ions to be implanted under the bridges 727, so as to make the implanted lines 745 continuous. Conversely, because the holes 738 are elongated, there would be little beam divergence in the direction of the long axis of holes 738. Since the long axis of holes 738 of exit grid 735 are oriented perpendicular to the long axis of holes 728 of mask 725, there would be little divergence in the direction of the width of the lines 728, such that the width of lines 745 can be closely controlled.


In the example of FIG. 7, the beamlets flare or divergence of ions exiting the elongated holes of the exit grid may be up to about 6° in the minor axis direction, but almost zero in the major axis direction—except at the two extreme edges of the elongated holes, where the divergence may also reach 6°. The gap between the mask and the wafer may be set at between zero to about several millimeters, or more likely to be about 2 mm. At such gap the beam divergence on the wafer may be up to about 420 microns. Thus, unless the beam divergence is controlled as shown in the example of FIG. 7, ion passing through a mask opening of about 150 microns width can be implanted at line width of up to about 570 microns. Therefore, if the divergence control of FIG. 7 is not employed, in order to implant a line of 150 micron width, the holes in the mask must be made much narrower, which is more difficult and more costly to fabricate and control. Conversely, since in FIG. 7 the divergence of the beam is controlled in the direction of the line width, the width of the holes in the mask may be made of the same width as the lines to be implanted, making it simpler and cheaper to fabricate.


While the elongated holes or slots of the masks in the above embodiments are shown to all have the same shape and length, this is not necessary. To the contrary, the elongated slots of the masks may be of different shapes and lengths. For example, mask 725 of FIG. 7 has elongated slots 728 of different lengths.


The above described embodiment may be implemented in a method for implanting ions to fabricate solar cells. The method proceeds by introducing a wafer to be implanted into the plasma processing chamber and positioning a mask at a predetermined gap above the wafer. The mask is configured to comprise a plurality of line segments of varying shape and size, arranged in parallel rows, and line segments in each row are separated by bridges that block ions impinging thereupon. The method proceeds by igniting plasma in the plasma processing chamber and extracting ions from the plasma so as to form beamlets of ions having divergence in a direction parallel to the direction of the rows. The predetermined gap is calculated to enable diverging beamlets to implant ions at locations on the wafer that are positioned directly below the bridges, to thereby implant plurality of implanted lines each having length corresponding to the sum of all the line segments and bridges on one row of the mask.


While this invention has been discussed in terms of exemplary embodiments of specific materials, and specific steps, it should be understood by those skilled in the art that variations of these specific examples may be made and/or used and that such structures and methods will follow from the understanding imparted by the practices described and illustrated as well as the discussions of operations as to facilitate modifications that may be made without departing from the scope of the invention defined by the appended claims.

Claims
  • 1. A grid for a plasma ion implant, comprising: a flat plate having a plurality of elongated holes dispersed over its surface, each of the elongated holes having a cross-sectional shape of an elongated oval having a major axis and minor axis, and having a defined depth extending through the flat plate, wherein a major axis of each of the elongated holes is configured to be aligned in a direction perpendicular to a long axis of features to be implanted on a substrate when the grid is installed inside a plasma ion implant system.
  • 2. The grid of claim 1, wherein the plurality of elongated holes are arranged in a plurality of rows and a plurality of columns, such that each of the holes in each column are aligned with the holes in the preceding and following column, such that a line passing through the major axis of holes in the same row would intersect at a right angle a line passing through the minor axis of holes aligned in the same column.
  • 3. The grid of claim 1, wherein the plurality of elongated holes are arranged in a plurality of rows and a plurality of columns, such that each of the holes in each column is shifted from alignment with the holes in the preceding and following column, such that a line passing through the center of all of the holes in a selected column forms an acute angle with a line passing through the major axis of holes in the same row.
  • 4. The grid of claim 1, wherein the plurality of elongated holes are arranged in a plurality of rows and a plurality of columns enclosed within a rectangular area, such that each of the holes in each column is shifted from alignment with the holes in the preceding and following column, such that a line passing through the center of all of the holes in a selected row forms an acute angle with sides of the rectangular area.
  • 5. The grid of claim 1, wherein the plurality of elongated holes are arranged in a plurality of rows and a plurality of columns thereby forming dead zones in between the holes, such that each of the holes in each column is shifted from alignment with the holes in the preceding and following column, such that a line passing through the center of all of the dead zones in a selected row forms an acute angle with a direction of travel of a substrate to be implanted.
  • 6. A grid for a plasma ion implant, comprising: a flat plate having a plurality of round holes, wherein the holes are arranged in a plurality of rows and a plurality of columns within a rectangular area and wherein each of the holes in each column is shifted from alignment with the holes in the preceding and following column, such that a line passing through the center of all of the holes in a selected row forms an acute angle with sides of the rectangular area.
  • 7. A grid for a plasma ion implant, comprising: a flat plate having a plurality of round holes, wherein the holes are arranged in a plurality of rows and a plurality of columns and wherein each of the holes in each column is shifted from alignment with the holes in the preceding and following column, such that a line passing through the center of all of the holes in a selected row forms an acute angle with the direction of travel of a substrate to be implanted.
  • 8. A grid for a plasma ion implant, comprising: a flat plate having a plurality of round holes, wherein the holes are arranged in a plurality of rows and a plurality of columns thereby forming dead zones in between the holes, such that each of the holes in each column is shifted from alignment with the holes in the preceding and following column, such that a line passing through the center of all of the dead zones in a selected row forms an acute angle with a direction of travel of a substrate to be implanted.
  • 9. A combination of exit grid and implant mask for a plasma-based ion implant system, wherein: the exit grid comprises a flat plate having a plurality of elongated holes dispersed over its surface, each of the elongated holes having a cross-sectional shape of an elongated oval having a major axis and minor axis, and having a defined depth extending through the flat plate to enable ions to pass through the elongated holes;the implant mask comprises a flat plate having a plurality of linear holes dispersed over its surface, each of the linear holes having a cross-sectional shape of an elongated oval having a long axis and short axis, and having a defined depth extending through the flat plate to enable ions to pass through the linear holes, wherein the linear holes are arranged in a plurality of parallel rows and linear holes in each row are separated from each other by ion blocking bridges; and,wherein a major axis of each of the elongated holes is aligned in a direction perpendicular to a long axis of the linear holes.
  • 10. The combination of claim 9, wherein the plurality of elongated holes of the exit grid are arranged in a plurality of rows and a plurality of columns, such that each of the holes in each column are aligned with the holes in the preceding and following column, such that a line passing through the major axis of holes in the same row would intersect at a right angle a line passing through the minor axis of holes aligned in the same column.
  • 11. The combination of claim 9, wherein the plurality of elongated holes of the exit grid are arranged in a plurality of rows and a plurality of columns, such that each of the holes in each column is shifted from alignment with the holes in the preceding and following column, such that a line passing through the center of all of the holes in a selected column forms an acute angle with a line passing through the major axis of holes in the same row.
  • 12. A plasma ion implant system, comprising: a processing chamber;a grid assembly placed in the plasma chamber and dividing the processing chamber into a plasma section and ion implant section;a transport mechanism for transporting substrates in a travel direction and positioning the substrate under the grid assembly;wherein the grid assembly comprises a flat plate having a plurality of holes, wherein the holes are arranged in a plurality of rows and a plurality of columns and wherein each of the holes in each column is shifted from alignment with the holes in the preceding and following column, such that a line passing through the center of all of the holes in a selected row forms an acute angle with the travel direction.
  • 13. The system of claim 12, wherein each of the holes has a cross-sectional shape of an elongated oval having a major axis and minor axis, and having a defined depth extending through the flat plate to enable ions to pass through the elongated holes.
  • 14. The system of claim 13, further comprising a mask comprising a flat plate having a plurality of linear holes dispersed over its surface, each of the linear holes having a cross-sectional shape of an elongated oval having a long axis and short axis, and having a defined depth extending through the flat plate to enable ions to pass through the linear holes, wherein the linear holes are arranged in a plurality of parallel rows and linear holes in each row are separated from each other by ion blocking bridges.
  • 15. The system of claim 14, wherein a major axis of each of the holes of the flat plate is aligned in a direction perpendicular to a long axis of the linear holes of the mask.
  • 16. The system of claim 15, wherein the flat plate is coupled to ground potential.
  • 17. The system of claim 16, wherein the substrates are coupled to ground potential.
  • 18. The system of claim 15, wherein the transport mechanism comprises a conveyor.
  • 19. An ion implant system, comprising: a processing chamber;a plasma grid placed in the plasma chamber and dividing the processing chamber into a plasma section and ion implant section, the plasma grid comprising a plurality of holes configured to enable ions to pass from the plasma chamber into the processing chamber by forming ion beamlets, wherein ions in the ion beamlets diverge in a first direction;a mask positioned below the plasma grid and comprising a flat plate having a plurality of holes arranged as parallel lines, wherein each hole is shaped as a line segment and wherein ion blocking bridges are provided between each two line segments in a row, and wherein the line segments are oriented in a second direction perpendicular to the first direction.
  • 20. A method for implanting ions into a substrate to thereby form parallel implanted lines in the substrate, comprising: introducing a substrate to be implanted into a plasma processing chamber;positioning a mask at a predetermined gap above the substrate, the mask comprising a plurality of line segments arranged in parallel rows, wherein line segments in each row are separated by bridges that block ions impinging thereupon and the line segments in each row correspond to one implanted line;igniting plasma in the plasma processing chamber and extracting ions from the plasma so as to form beamlets of ions having divergence in a direction parallel to the direction of the rows; and,directing the beamlets to pass through the mask and implant into the substrate to thereby form the parallel implanted lines.
  • 21. The method of claim 20, wherein the predetermined gap is calculated to enable diverging beamlets to implant ions at locations on the substrate that are positioned directly below the bridges, to thereby implant the plurality implanted lines, wherein each line has length corresponding to the sum of all the line segments and bridges on one row of the mask.
  • 22. The method of claim 21, wherein extracting the ions further comprises forming beamlets that have no divergence in a direction perpendicular to the direction of the rows.
RELATED APPLICATIONS

This application claims priority benefit from U.S. Provisional Application No. 61/739,676, filed on Dec. 19, 2012, and U.S. Provisional Application No. 61/869,022, filed on Aug. 22, 2013, the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (440)
Number Name Date Kind
3607450 Kiewit Sep 1971 A
3786359 King Jan 1974 A
3790412 Moline Feb 1974 A
3948682 Bordina et al. Apr 1976 A
3969163 Wakefield Jul 1976 A
3969746 Kendall et al. Jul 1976 A
3976508 Mlavsky Aug 1976 A
4001864 Gibbons Jan 1977 A
4004949 Lesk Jan 1977 A
4021276 Cho et al. May 1977 A
4029518 Matsutani et al. Jun 1977 A
4056404 Garone et al. Nov 1977 A
4070205 Rahilly Jan 1978 A
4070689 Coleman et al. Jan 1978 A
4072541 Meulenberg, Jr. et al. Feb 1978 A
4086102 King Apr 1978 A
4090213 Maserjian et al. May 1978 A
4095329 Ravi Jun 1978 A
4116717 Rahilly Sep 1978 A
RE29833 Mlavsky Nov 1978 E
4131486 Brandhorst, Jr. Dec 1978 A
4131488 Lesk et al. Dec 1978 A
4141756 Chiang et al. Feb 1979 A
4144094 Coleman et al. Mar 1979 A
4152536 Ravi May 1979 A
4152824 Gonsiorawski May 1979 A
4179311 Athanas Dec 1979 A
4219830 Gibbons Aug 1980 A
4227941 Bozler et al. Oct 1980 A
4253881 Hezel Mar 1981 A
4273950 Chitre Jun 1981 A
4295002 Chappell et al. Oct 1981 A
4301592 Lin Nov 1981 A
4322571 Stanbery Mar 1982 A
4353160 Armini et al. Oct 1982 A
RE31151 King Feb 1983 E
4377722 Wested Mar 1983 A
4379944 Borden et al. Apr 1983 A
4404422 Green et al. Sep 1983 A
4421577 Spicer Dec 1983 A
4428783 Gessert Jan 1984 A
4448865 Bohlen et al. May 1984 A
4449286 Dahlberg May 1984 A
4456489 Wu Jun 1984 A
4479027 Todorof Oct 1984 A
4490573 Gibbons Dec 1984 A
4495375 Rickus et al. Jan 1985 A
4522657 Rohatgi et al. Jun 1985 A
4523971 Cuomo et al. Jun 1985 A
4524237 Ross et al. Jun 1985 A
4533831 Itoh et al. Aug 1985 A
4539431 Moddel et al. Sep 1985 A
4540843 Gochermann et al. Sep 1985 A
4542256 Wiedeman Sep 1985 A
4581620 Yamazaki et al. Apr 1986 A
4587430 Adler May 1986 A
4589191 Green et al. May 1986 A
4633138 Tokiguchi et al. Dec 1986 A
4665277 Sah et al. May 1987 A
4667060 Spitzer May 1987 A
4676845 Spitzer Jun 1987 A
4681983 Markvart et al. Jul 1987 A
4719355 Meyers et al. Jan 1988 A
4737688 Collins et al. Apr 1988 A
4742381 Fujii May 1988 A
4758525 Kida et al. Jul 1988 A
4828628 Hezel et al. May 1989 A
4830678 Todorof et al. May 1989 A
4834805 Erbert May 1989 A
4847504 Aitken Jul 1989 A
4886555 Hackstein et al. Dec 1989 A
4900369 Hezel et al. Feb 1990 A
4927770 Swanson May 1990 A
4933021 Swanson Jun 1990 A
4933022 Swanson Jun 1990 A
4967088 Stengl et al. Oct 1990 A
5009720 Hokuyo et al. Apr 1991 A
5112409 Warfield et al. May 1992 A
5125983 Cummings Jun 1992 A
5132544 Glavish Jul 1992 A
5136171 Leung et al. Aug 1992 A
5290367 Hayashi et al. Mar 1994 A
5306647 Lehmann et al. Apr 1994 A
5330584 Saga et al. Jul 1994 A
5340454 Schaefer et al. Aug 1994 A
5356488 Hezel Oct 1994 A
5374456 Matossian et al. Dec 1994 A
5391886 Yamada et al. Feb 1995 A
5421889 Pollock et al. Jun 1995 A
5516725 Chang et al. May 1996 A
5554854 Blake Sep 1996 A
5583368 Kenney Dec 1996 A
H1637 Offord et al. Mar 1997 H
5641362 Meier Jun 1997 A
5693376 Fetherston et al. Dec 1997 A
5760405 King et al. Jun 1998 A
5831321 Nagayama Nov 1998 A
5883391 Adibi et al. Mar 1999 A
5885896 Thakur et al. Mar 1999 A
5907158 Nasser-Ghodsi et al. May 1999 A
5932882 England et al. Aug 1999 A
5935345 Kuznicki Aug 1999 A
5945012 Chan Aug 1999 A
5963801 Aronowitz et al. Oct 1999 A
5969366 England et al. Oct 1999 A
5985742 Henley et al. Nov 1999 A
5988103 Fetherston et al. Nov 1999 A
5994207 Henley et al. Nov 1999 A
5998282 Lukaszek Dec 1999 A
5999268 Yonezawa et al. Dec 1999 A
6006253 Kumar et al. Dec 1999 A
6010579 Henley et al. Jan 2000 A
6013563 Henley et al. Jan 2000 A
6016036 Brailove Jan 2000 A
6033974 Henley et al. Mar 2000 A
6034321 Jenkins Mar 2000 A
6048411 Henley et al. Apr 2000 A
6051073 Chu et al. Apr 2000 A
6060718 Brailove et al. May 2000 A
6083324 Henley et al. Jul 2000 A
6084175 Perry et al. Jul 2000 A
6091021 Ruby et al. Jul 2000 A
6092485 Ando et al. Jul 2000 A
6093625 Wagner et al. Jul 2000 A
6103599 Henley et al. Aug 2000 A
6113735 Chu et al. Sep 2000 A
6120660 Chu et al. Sep 2000 A
6130380 Nakamura Oct 2000 A
6138606 Ling Oct 2000 A
6146462 Yializis et al. Nov 2000 A
6146979 Henley et al. Nov 2000 A
6150708 Gardner et al. Nov 2000 A
6153524 Henley et al. Nov 2000 A
6155909 Henley et al. Dec 2000 A
6159824 Henley et al. Dec 2000 A
6159825 Henley et al. Dec 2000 A
6162705 Henley et al. Dec 2000 A
6171965 Kang et al. Jan 2001 B1
6180496 Farrens et al. Jan 2001 B1
6184111 Henley et al. Feb 2001 B1
6186091 Chu et al. Feb 2001 B1
6200883 Taylor et al. Mar 2001 B1
6204151 Malik et al. Mar 2001 B1
6206973 Bailey et al. Mar 2001 B1
6207005 Henley et al. Mar 2001 B1
6213050 Liu et al. Apr 2001 B1
6217724 Chu et al. Apr 2001 B1
6221740 Bryan et al. Apr 2001 B1
6221774 Malik Apr 2001 B1
6228176 Chu et al. May 2001 B1
6238582 Williams et al. May 2001 B1
6245161 Henley et al. Jun 2001 B1
6248649 Henley et al. Jun 2001 B1
6258173 Kirimura et al. Jul 2001 B1
6263941 Bryan et al. Jul 2001 B1
6265328 Henley et al. Jul 2001 B1
6269765 Chu et al. Aug 2001 B1
6271566 Tsuchiaki Aug 2001 B1
6274459 Chan Aug 2001 B1
6281428 Chiu et al. Aug 2001 B1
6287941 Kang et al. Sep 2001 B1
6290804 Henley et al. Sep 2001 B1
6291313 Henley et al. Sep 2001 B1
6291314 Henley et al. Sep 2001 B1
6291326 Henley et al. Sep 2001 B1
6294434 Tseng Sep 2001 B1
6300227 Liu et al. Oct 2001 B1
6313905 Brugger et al. Nov 2001 B1
6321134 Henley et al. Nov 2001 B1
6335534 Suguro et al. Jan 2002 B1
6338313 Chan Jan 2002 B1
6365492 Suguro et al. Apr 2002 B1
6383876 Son et al. May 2002 B1
6391740 Cheung et al. May 2002 B1
6417515 Barrett et al. Jul 2002 B1
6429037 Wenham et al. Aug 2002 B1
6448152 Henley et al. Sep 2002 B1
6458430 Bernstein et al. Oct 2002 B1
6458723 Henley et al. Oct 2002 B1
6468884 Miyake et al. Oct 2002 B2
6476313 Kawano Nov 2002 B2
6486478 Libby et al. Nov 2002 B1
6489241 Thilderkvist et al. Dec 2002 B1
6495010 Sferlazzo Dec 2002 B2
6500732 Henley et al. Dec 2002 B1
6507689 Tirloni et al. Jan 2003 B2
6534381 Cheung et al. Mar 2003 B2
6544862 Bryan Apr 2003 B1
6552259 Hosomi et al. Apr 2003 B1
6552414 Horzel et al. Apr 2003 B1
6594579 Lowrey et al. Jul 2003 B1
6600180 Ueno et al. Jul 2003 B1
6604033 Banet et al. Aug 2003 B1
6611740 Lowrey et al. Aug 2003 B2
6613974 Husher Sep 2003 B2
6632324 Chan Oct 2003 B2
6636790 Lightner et al. Oct 2003 B1
6660928 Patton et al. Dec 2003 B1
6732031 Lightner et al. May 2004 B1
6752912 Sandhu Jun 2004 B1
6759807 Wahlin Jul 2004 B2
6767439 Park Jul 2004 B2
6780759 Farrens et al. Aug 2004 B2
6787693 Lizotte Sep 2004 B2
6825102 Bedell Nov 2004 B1
6827824 Blalock et al. Dec 2004 B1
6874515 Ishihara et al. Apr 2005 B2
6878898 Hogan et al. Apr 2005 B2
6949895 DiVergilio et al. Sep 2005 B2
6968630 Kato et al. Nov 2005 B2
7011733 Sandhu Mar 2006 B2
7022984 Rathmell et al. Apr 2006 B1
7045793 Wahlin May 2006 B2
7066703 Johnson Jun 2006 B2
7078317 Henley Jul 2006 B2
7081186 Ehiasarian et al. Jul 2006 B2
7094666 Henley et al. Aug 2006 B2
7098394 Armer et al. Aug 2006 B2
7147709 Ong et al. Dec 2006 B1
7166520 Henley Jan 2007 B1
7174243 Lightner et al. Feb 2007 B1
7225047 Al-Bayati et al. May 2007 B2
7225065 Hunt et al. May 2007 B1
7228211 Lowrey et al. Jun 2007 B1
7250323 Gadeken et al. Jul 2007 B2
7339110 Mulligan et al. Mar 2008 B1
7354815 Henley Apr 2008 B2
7390724 Henley et al. Jun 2008 B2
7399680 Henley Jul 2008 B2
7427554 Henley et al. Sep 2008 B2
7447574 Washicko et al. Nov 2008 B1
7477968 Lowrey et al. Jan 2009 B1
7479441 Kirk et al. Jan 2009 B2
7480551 Lowrey et al. Jan 2009 B1
7498245 Aspar et al. Mar 2009 B2
7521699 Yamazaki et al. Apr 2009 B2
7523159 Williams et al. Apr 2009 B1
7532962 Lowrey et al. May 2009 B1
7532963 Lowrey et al. May 2009 B1
7547609 Henley Jun 2009 B2
7564042 Lee et al. Jul 2009 B2
7598153 Henley et al. Oct 2009 B2
7611322 Bluck et al. Nov 2009 B2
7674687 Henley Mar 2010 B2
7701011 Kamath et al. Apr 2010 B2
7727866 Bateman et al. Jun 2010 B2
7759220 Henley Jul 2010 B2
7767561 Hanawa et al. Aug 2010 B2
7772088 Henley et al. Aug 2010 B2
7776727 Borden Aug 2010 B2
7796849 Adibi et al. Sep 2010 B2
7862683 Fukiage Jan 2011 B2
7867409 Brcka Jan 2011 B2
8058156 Hanawa et al. Nov 2011 B2
8179530 Levy et al. May 2012 B2
8286517 Lee et al. Oct 2012 B2
8697552 Adibi et al. Apr 2014 B2
8697553 Adibi et al. Apr 2014 B2
8749053 Adibi et al. Jun 2014 B2
8871619 Adibi et al. Oct 2014 B2
8997688 Adibi et al. Apr 2015 B2
20010002584 Liu et al. Jun 2001 A1
20010017109 Liu et al. Aug 2001 A1
20010020485 Ford et al. Sep 2001 A1
20020090758 Henley et al. Jul 2002 A1
20020109233 Farrar Aug 2002 A1
20020109824 Yamaguchi et al. Aug 2002 A1
20020139666 Hsueh et al. Oct 2002 A1
20020144725 Jordan et al. Oct 2002 A1
20020152057 Wang et al. Oct 2002 A1
20020185700 Coffa et al. Dec 2002 A1
20030015700 Eisenbeiser et al. Jan 2003 A1
20030106643 Tabuchi et al. Jun 2003 A1
20030116090 Chu et al. Jun 2003 A1
20030129045 Bonora et al. Jul 2003 A1
20030137050 Chambers et al. Jul 2003 A1
20030215991 Sohn et al. Nov 2003 A1
20030230986 Horsky et al. Dec 2003 A1
20040025791 Chen et al. Feb 2004 A1
20040025932 Husher Feb 2004 A1
20040067644 Malik et al. Apr 2004 A1
20040112426 Hagino Jun 2004 A1
20040123804 Yamazaki et al. Jul 2004 A1
20040185644 Shibata et al. Sep 2004 A1
20040187916 Hezel Sep 2004 A1
20040198028 Tanaka et al. Oct 2004 A1
20040200520 Mulligan et al. Oct 2004 A1
20040216993 Sandhu Nov 2004 A1
20040232414 Suthar et al. Nov 2004 A1
20050045835 DiVergilio et al. Mar 2005 A1
20050133084 Joge et al. Jun 2005 A1
20050150597 Henley et al. Jul 2005 A1
20050163598 Yuasa et al. Jul 2005 A1
20050181584 Foad et al. Aug 2005 A1
20050183670 Grantham et al. Aug 2005 A1
20050205211 Singh et al. Sep 2005 A1
20050211170 Hanawa et al. Sep 2005 A1
20050214477 Hanawa et al. Sep 2005 A1
20050247668 Malik et al. Nov 2005 A1
20050266781 Jaenen et al. Dec 2005 A1
20060019039 Hanawa et al. Jan 2006 A1
20060019477 Hanawa et al. Jan 2006 A1
20060037700 Shi et al. Feb 2006 A1
20060081180 Aoki et al. Apr 2006 A1
20060144335 Lee et al. Jul 2006 A1
20060148241 Brody et al. Jul 2006 A1
20060157733 Lucovsky et al. Jul 2006 A1
20060166394 Kukulka et al. Jul 2006 A1
20060174829 An et al. Aug 2006 A1
20060211219 Henley et al. Sep 2006 A1
20060234484 Lanzerotti et al. Oct 2006 A1
20060252217 Rouh et al. Nov 2006 A1
20060279970 Kernahan Dec 2006 A1
20070012503 Iida Jan 2007 A1
20070029043 Henley Feb 2007 A1
20070032044 Henley Feb 2007 A1
20070035847 Li et al. Feb 2007 A1
20070068624 Jeon et al. Mar 2007 A1
20070081138 Kerkhof et al. Apr 2007 A1
20070084505 Zaidi Apr 2007 A1
20070087574 Gupta et al. Apr 2007 A1
20070089833 Inouchi et al. Apr 2007 A1
20070119373 Kumar et al. May 2007 A1
20070132368 Kuwahara et al. Jun 2007 A1
20070134840 Gadeken et al. Jun 2007 A1
20070148336 Bachrach et al. Jun 2007 A1
20070169806 Fork et al. Jul 2007 A1
20070181820 Hwang et al. Aug 2007 A1
20070181829 Tanaka et al. Aug 2007 A1
20070209707 Weltman Sep 2007 A1
20070214101 Wang et al. Sep 2007 A1
20070217020 Li et al. Sep 2007 A1
20070235074 Henley et al. Oct 2007 A1
20070249131 Allen et al. Oct 2007 A1
20070268089 McKenzie et al. Nov 2007 A1
20070275569 Moghadam et al. Nov 2007 A1
20070277875 Gadkaree et al. Dec 2007 A1
20070281172 Couillard et al. Dec 2007 A1
20070281399 Cites et al. Dec 2007 A1
20070290283 Park et al. Dec 2007 A1
20080000497 Verhaverbeke Jan 2008 A1
20080001139 Augusto Jan 2008 A1
20080038908 Henley Feb 2008 A1
20080044964 Kamath et al. Feb 2008 A1
20080078444 Atanackovic Apr 2008 A1
20080090392 Singh et al. Apr 2008 A1
20080092944 Rubin Apr 2008 A1
20080092947 Lopatin et al. Apr 2008 A1
20080116397 Yoshida et al. May 2008 A1
20080121275 Ito et al. May 2008 A1
20080121276 Lopatin et al. May 2008 A1
20080128019 Lopatin et al. Jun 2008 A1
20080128641 Henley et al. Jun 2008 A1
20080164819 Hwang et al. Jul 2008 A1
20080179547 Henley Jul 2008 A1
20080188011 Henley Aug 2008 A1
20080190886 Choi et al. Aug 2008 A1
20080206962 Henley et al. Aug 2008 A1
20080217554 Abe Sep 2008 A1
20080242065 Brcka Oct 2008 A1
20080275546 Storey et al. Nov 2008 A1
20080284028 Greywall Nov 2008 A1
20080296261 Zhao et al. Dec 2008 A1
20080318168 Szot et al. Dec 2008 A1
20090014725 Nakanishi Jan 2009 A1
20090042369 Henley Feb 2009 A1
20090056807 Chen et al. Mar 2009 A1
20090081860 Zhou et al. Mar 2009 A1
20090124064 England et al. May 2009 A1
20090124065 England et al. May 2009 A1
20090140132 Lee et al. Jun 2009 A1
20090142875 Borden et al. Jun 2009 A1
20090149001 Cites et al. Jun 2009 A1
20090152162 Tian et al. Jun 2009 A1
20090162970 Yang Jun 2009 A1
20090206275 Henley et al. Aug 2009 A1
20090227061 Bateman et al. Sep 2009 A1
20090227062 Sullivan et al. Sep 2009 A1
20090227094 Bateman et al. Sep 2009 A1
20090227095 Bateman et al. Sep 2009 A1
20090227097 Bateman et al. Sep 2009 A1
20090246706 Hendel et al. Oct 2009 A1
20090289197 Slocum et al. Nov 2009 A1
20090308439 Adibi et al. Dec 2009 A1
20090308440 Adibi et al. Dec 2009 A1
20090308450 Adibi et al. Dec 2009 A1
20090309039 Adibi et al. Dec 2009 A1
20090317937 Gupta et al. Dec 2009 A1
20090324369 Scollay et al. Dec 2009 A1
20100025821 Ohmi et al. Feb 2010 A1
20100041176 Sullivan et al. Feb 2010 A1
20100055874 Henley Mar 2010 A1
20100059362 Anella Mar 2010 A1
20100062589 Anella et al. Mar 2010 A1
20100062674 Muraki Mar 2010 A1
20100087028 Porthouse et al. Apr 2010 A1
20100096084 Lee et al. Apr 2010 A1
20100110239 Ramappa et al. May 2010 A1
20100124799 Blake et al. May 2010 A1
20100159120 Dzengeleski et al. Jun 2010 A1
20100167511 Leung et al. Jul 2010 A1
20100170440 Mizukami et al. Jul 2010 A9
20100178723 Henley Jul 2010 A1
20100180945 Henley et al. Jul 2010 A1
20100181654 Fujiwara Jul 2010 A1
20100184243 Low et al. Jul 2010 A1
20100184248 Hilali et al. Jul 2010 A1
20100187611 Schiwon Jul 2010 A1
20100196626 Choi et al. Aug 2010 A1
20100197125 Low et al. Aug 2010 A1
20100206713 Li et al. Aug 2010 A1
20100229928 Zuniga et al. Sep 2010 A1
20100240169 Petti et al. Sep 2010 A1
20100240183 Narazaki Sep 2010 A1
20100314552 Tatemichi et al. Dec 2010 A1
20100323508 Adibi et al. Dec 2010 A1
20110011734 Marunaka et al. Jan 2011 A1
20110097824 Berliner et al. Apr 2011 A1
20110116205 Schlitz May 2011 A1
20110124186 Renau et al. May 2011 A1
20110135836 Hays et al. Jun 2011 A1
20110162703 Adibi et al. Jul 2011 A1
20110192993 Chun et al. Aug 2011 A1
20110272012 Heng et al. Nov 2011 A1
20110309050 Iori et al. Dec 2011 A1
20120021136 Dzengeleski et al. Jan 2012 A1
20120080082 Suh Apr 2012 A1
20120103403 Misra et al. May 2012 A1
20120118857 Tyler et al. May 2012 A1
20120122273 Chun et al. May 2012 A1
20120125259 Adibi et al. May 2012 A1
20120129325 Adibi et al. May 2012 A1
20120138230 Bluck et al. Jun 2012 A1
20120199202 Prajapati Aug 2012 A1
20120258606 Holland et al. Oct 2012 A1
20120305063 Moslehi et al. Dec 2012 A1
20130008494 Bateman Jan 2013 A1
20130115764 Pederson et al. May 2013 A1
20140166087 Hieslmair et al. Jun 2014 A1
20150072461 Adibi et al. Mar 2015 A1
Foreign Referenced Citations (129)
Number Date Country
1198597 Nov 1998 CN
1404619 Mar 2003 CN
1445604 Oct 2003 CN
1622294 Jun 2005 CN
1638015 Jul 2005 CN
1763916 Apr 2006 CN
101055898 Oct 2007 CN
101145569 Mar 2008 CN
102099870 Jun 2011 CN
102099923 Jun 2011 CN
102150277 Aug 2011 CN
102150278 Aug 2011 CN
102396068 Mar 2012 CN
102804329 Nov 2012 CN
102834905 Dec 2012 CN
103370769 Oct 2013 CN
4217428 Jun 1993 DE
19820152 Nov 1999 DE
1973145 Sep 2008 EP
2304803 Apr 2011 EP
2308060 Apr 2011 EP
2319087 May 2011 EP
2319088 May 2011 EP
2409331 Jan 2012 EP
2446458 May 2012 EP
2489757 Aug 2012 EP
2534674 Dec 2012 EP
2641266 Sep 2013 EP
2777069 Sep 2014 EP
S57132373 Aug 1982 JP
S62-15864 Jan 1987 JP
S62237766 Oct 1987 JP
63-143876 Jun 1988 JP
H01-290267 Nov 1989 JP
H02-201972 Aug 1990 JP
H04-221059 Aug 1992 JP
H06-47324 Feb 1994 JP
H07-135329 May 1995 JP
8-298247 Nov 1996 JP
H09-321327 Dec 1997 JP
H10-084125 Mar 1998 JP
2000-123778 Apr 2000 JP
2001-189483 Jul 2001 JP
2001-252555 Sep 2001 JP
2002-083981 Mar 2002 JP
2002-217430 Aug 2002 JP
2002-540548 Nov 2002 JP
2004-031648 Jan 2004 JP
2004-039751 Feb 2004 JP
2004-193350 Jul 2004 JP
2004-273826 Sep 2004 JP
2005-005376 Jan 2005 JP
2005-123447 May 2005 JP
2005-129597 May 2005 JP
2005-322780 Nov 2005 JP
2006-196752 Jul 2006 JP
2006-310373 Nov 2006 JP
2007-053386 Mar 2007 JP
2007-504622 Mar 2007 JP
2009-049443 Mar 2009 JP
2009-129611 Jun 2009 JP
2011-524638 Sep 2011 JP
2011-524639 Sep 2011 JP
2011-524640 Sep 2011 JP
2011-525301 Sep 2011 JP
2012-521642 Sep 2012 JP
2012-231520 Nov 2012 JP
2012-531520 Dec 2012 JP
2014-502048 Jan 2014 JP
5520290 Jun 2014 JP
10-2007-0043157 Apr 2007 KR
100759084 Sep 2007 KR
20110042051 Apr 2011 KR
20110042052 Apr 2011 KR
20110042053 Apr 2011 KR
20110050423 May 2011 KR
20120027149 Mar 2012 KR
20120034664 Apr 2012 KR
20120137361 Dec 2012 KR
20130129961 Nov 2013 KR
176547 Jan 2012 SG
183267 Sep 2012 SG
186005 Dec 2012 SG
190332 Jun 2013 SG
428216 Apr 2001 TW
200933797 Aug 2009 TW
201232796 Aug 2012 TW
201320229 May 2013 TW
02075816 Sep 2002 WO
2006019039 Feb 2006 WO
2007142865 Dec 2007 WO
2008009889 Jan 2008 WO
2009033134 Mar 2009 WO
2009033134 Mar 2009 WO
2009064867 May 2009 WO
2009064867 May 2009 WO
2009064872 May 2009 WO
2009064872 May 2009 WO
2009064875 May 2009 WO
2009085948 Jul 2009 WO
2009085948 Jul 2009 WO
2009111665 Sep 2009 WO
2009111665 Sep 2009 WO
2009111666 Sep 2009 WO
2009111666 Sep 2009 WO
2009111667 Sep 2009 WO
2009111667 Sep 2009 WO
2009111668 Sep 2009 WO
2009111668 Sep 2009 WO
2009111668 Sep 2009 WO
2009111669 Sep 2009 WO
2009111669 Sep 2009 WO
2009152365 Dec 2009 WO
2009152368 Dec 2009 WO
2009152375 Dec 2009 WO
2009152378 Dec 2009 WO
2009155498 Dec 2009 WO
2009155498 Dec 2009 WO
2010030588 Mar 2010 WO
2010030645 Mar 2010 WO
2010030645 Mar 2010 WO
2010108151 Sep 2010 WO
2010147997 Dec 2010 WO
2011005582 Jan 2011 WO
2011100363 Aug 2011 WO
2012068417 May 2012 WO
2013070978 May 2013 WO
2014100043 Jun 2014 WO
2014100506 Jun 2014 WO
Non-Patent Literature Citations (190)
Entry
Office Action in U.S. Appl. No. 13/312,957, dated Dec. 15, 2014.
Restriction Requirement in U.S. Appl. No. 13/719,145, mailed on Dec. 10, 2014.
Fourth Office Action in Chinese Application No. 200980128201.7 mailed on Oct. 24, 2014.
First Office Action and Examination Report in Chinese Patent Application No. 201080025312.8, dated Sep. 10, 2014.
Extended Search Report in European Patent Application No. 14176404.3, dated Nov. 14, 2014.
Horzel, J. et al., “A Simple Processing Sequence for Selective Emitters”, IEEE, 26th PVSC Conference Record of the Twenty-Sixth Photovoltaic Specialists Conference, Sep. 30-Oct. 3, 1997, Anaheim, CA, pp. 139-142.
Mouhoub, A. et al., “Selective Emitters for Screen Printed Multicrystalline Silicon Solar Cells”, Rev. Energ. Ren.: ICPWE, 2003, pp. 83-86.
Szlufcik, J. et al., “Advanced concepts of industrial technologies of crystalline silicon solar cells”, Interuniversity Microelectronics Centre (IMEC) Leuven, Beligium, Opto-Electronics Review, vol. 8, Issue 4, 2000, pp. 299-306.
Anders, “Plasma and Ion Sources in Large Area Coating: A Review”, Surface Coatings & Technology, Nov. 21, 2005, vol. 200, Issues: 5-6, pp. 1893-1906, Berkeley CA.
Armini et al., “A Non-Mass-Analyzed Solar Cell Ion Implanter”, Nuclear Instruments and Methods in Physics Research B6 (1985) 94-99, North Holland, Amsterdam, Spire Corporation, Patriots Park, Bedford, Masachusetti 01730, USA.
Chun, M. et al., “Using Solid Phase Epitaxial Re-Growth for Ion Implantation in Solar Cell Fabrications”, 26th European Photovoltaic Solar Energy Conference and Exhibition, Sep. 5, 2011 to Sep. 9, 2011, Hamburg (CCH Congress Centre & International Fair), Germany.
Com-Nougue et al., “CW CO2 Laser Annealing Associated with Ion Implantation for Production of Silicon Solar Cell Junctions”, Jan. 1982, IEEE, p. 770.
Cornet et al., “A New Algorithm for Charge Deposition for Multiple-Grid Method for PIC Simulations in r-z Cylindrical Coordinates”, www.sciencedirect.com, Journal of Computational Physics, Jul. 1, 2007, vol. 225, Issue: 1, pp. 808-828, Sydney, Australia.
Donnelly et al., “Nanopantography: A Method for Parallel Writing of Etched and Deposited Nanopatterns”, Oct. 2009, University of Houston, Houston, TX, 36 pages.
Douglas et al., “A Study of the Factors Which Control the Efficiency of Ion-Implanted Silicon Solar Cells”, IEEE Transactions on Electron Devices, vol. ED-27, No. 4, Apr. 1980, pp. 792-802.
Eaton Nova (Axcelis) 200E2 H/C Implanter, data sheet, 2 pgs. , Jan. 1990.
Fu et al., “Enhancement of Implantation Energy Using a Conducting Grid in Plasma Immersion Ion Implantation of Dielectric/Polymeric Materials”, Review of Scientific Instruments, vol. 74, No. 8, Aug. 2003, pp. 3697-3700.
Goeckner et al., “Plasma Doping for Shallow Junctions”, Journal of Vacuum Science and Technology B, vol. 17, Issue 5, Sep. 1999, pp. 2290-2293.
“Implantation par Immersion Plasma (PULSION)”, Ion Beam Services (IBS), Dec. 2008, ZI Peynier Rousset, France.
Jager-Hezel, K. “Developments for Large-Scale Production of High-Efficiency Silicon Solar Cells,” Advances in Solid State Physics, vol. 34, Jan. 1994, pp. 97-113, <http://www.springerlink.com/content/982620t34312416v/>.
Janssens, et al., “Advanced Phosphorus Emitters for High Efficiency SI Solar Cells”, 24th European Photovoltaic Solar Energy Conference, Sep. 21-25, 2009, Hamburg, Germany.
Kondratenko, S. et al, “Channeling Effects and Quad Chain Implantation Process Optimization for Low Energy Boron Ions,” abstract, IEEE Xplore Digital Library, Issue date: Sep. 22-27, 2002, Current version date: Jan. 7, 2004, 1 pg., downloaded from ieeexplore.ieee.org/xpl/freeabs—all.jsp?arnumber=1257941.
Kroner, F. et al., “Phosphorus Ion Shower Doping System for TFT-LCD's”, SPIE vol. 3014, 1997, pp. 31-37.
Kwok et al., “One-Step, Non-Contact Pattern Transfer by Direct-Current Plasma Immersion Ion Implantation”, Journal of Physics D: Applied Physics, IOP Publishing, vol. 42, No. 19, Sep. 2009, pp. 1-6.
Kwok et al. ““One-Step Non-Contact Pattern Transferring by Plasma Based Ion Implantation””, Journal of Physics D: Applied Physics, IOP Publishing, vol. 41, No. 22, Oct. 2008, pp. 1-6.
“Leading Semiconductor Manufacturer Selects Axcelis HE3 Ion Implantation Equipment; 300 mm Facility to Choose Axcelis Platform for High Energy Implant,” Business Wire, Oct. 17, 2000, 1 pg.
Minnucci et al., “Tailored Emitter, Low-Resistivity, Ion-Implanted Silicon Solar Cells”, IEEE Transactions on Electron Devices, vol. ED-27, No. 4, Apr. 1980, pp. 802-806.
Mishima, Y. et al., “Non-mass-separated ion shower doping of polycrystalline silicon”, J. Appl. Phys. vol. 75, No. 10, 1994, pp. 4933-4938.
Nakamoto, I. et al., “Ion Shower Doping System for TFT-LCD's”, SPIE vol. 3014, 1997, pp. 31-37.
Neuhaus et al., “Industrial Silicon Wafer Solar Cells”, Hindawl Publishing Corp, vol. 2007, pp. 1-15.
Nielsen, “Ion Implanted Polycrystalline Silicon Solar Cells”, Physica Scripta, vol. 24, No. 2, Aug. 1, 1981, pp. 390-391.
Nikiforov et al., Large Volume ICP Sources for Plasma-based Accelerators, Korea Elecrtrotechnology Research Institute (KERI), APAC 2004, Gyeongju, Korea.
Nitodas, S.F., et al., “Advantages of single and mixed species chaining for high productivity in high and mid-energy implantation,” published Sep. 2002, Ion Implantation Technology, Current version date Jan. 7, 2004, abstract, downloaded from ieeexplore.ieee.org., 1 pg.
Pelletier et al., “Plasma-Based Ion Implantation and Deposition: A Review of Physics, Technology, and Applications”, http://www.escholarship.org/uc/item/84k974r2, Lawrence Berkeley National Laboratory, May 16, 2005, pp. 1-69.
Rentsch, et al. “Technology Route Towards Industrial Application of Rear Passivated Silicon Solar Cells”, Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion. vol. 1 (2006) pp. 1008-1011, May 2006.
Semiconductor Consulting Service publication: “Process Technology for the 21st Century,” Chapter 10—Substrates, Isolation, Well and Transistor Formation, Jan. 1999, downloaded from IC Knowledge.com, http://www.icknowledge.com/our—products/pt21c.html., pp. 10-1-10-4.
Sopian et al., “Plasma Implantation for Emitter and Localized Back Surface Field (BSF) Formation in Silicon Solar Cells”, European Journal of Scientific Research, http://www.eurojournals.com/ejsr.htm, ISSN 1450-216X, vol. 24, No. 3, Jan. 2008, pp. 365-372.
Steckl, “Particle-beam Fabrication and in Situ Processing of Integrated Circuits”, IEEE Xplore, vol. 74, Issue 12.
Tang et al., “Current Control for Magnetized Plasma in Direct-Current Plasma-Immersion Ion Implantation”, American Institute of Physics,Applied Physics Letters, vol. 82, No. 13, Mar. 31, 2003, pp. 2014-2016.
Vervisch et al., “Plasma Immersion Ion Implantation Applied to P+N Junction Solar Cells”, CP866, Ion Implantation Technology, American Institute of Physics, vol. 866, Jan. 2006, pp. 253-256.
“Varian Introduces a New High-Energy Ion Implant System for Optimized Performance and Lowest Cost of Ownership,” Press Release, Business Wire, Jul. 14, 1999, 1 pg.
Walther, S.R. et al., “Using Multiple Implant Regions to Reduce Development Wafer Usage”, Jan. 1, 2006, American Institute of Physics, CP866, Ion Implantation Technology, pp. 409-412.
Xu et al., “Etching of Nanopatterns in Silicon Using Nanopantography”, Applied Physics Letters, vol. 92, Jan. 9, 2008, pp. 1-3.
Xu et al., ““Nanopantography: A New Method for Massively Parallel Nanopatterning Over Large Areas””, Nano Lettrs, vol. 5, No. 12, Jan. 2005, pp. 2563-2568.
Yankov et al., “Plasma Immersion Ion Implantation for Silicon Processing”, Annalen der Physik, vol. 10, Issue: 4, Feb. 2001, pp. 279-298.
Young et al., “High-Efficiency Si Solar Cells by Beam Processing”, Applied Physics Letters, vol. 43, Issue: 7, Oct. 1, 1983, pp. 666-668.
Younger et al, “Ion Implantation Processing for High Performance Concentrator Solar Cells and Cell Assemblies,” Solar Cells, vol. 6, 1982, pp. 79-86.
Zeng et al., “Steady-State, Direct-Current (DC) Plasma Immersion Ion Implantation (PIII) for Planar Samples”, IEEE, Jan. 2000, pp. 515-519.
Zeng et al., “Steady-State Direct-Current Plasma Immersion Ion Implantation Using an Electron Cycoltron Resonance Plasma Source”, Thin Solid Films, www.elsevier.com/locate/tsf, vol. 390, Issues: 1-2, Jun. 30, 2001, pp. 145-148.
Restriction Requirement in U.S. Appl. No. 13/299,292 dated Aug. 13, 2013.
Office Action in U.S. Appl. No. 13/299,292 dated Nov. 13, 2013.
International Search Report and Written Opinion for PCT/US2011/61274 mailed on Mar. 29, 2012.
International Preliminary Report on Patentability for PCT/US2011/61274 mailed on May 30, 2013.
Taiwan Office Action in Application No. 100141931 mailed on Jan. 7, 2014.
International Search Report and Written Opinion in International Application No. PCT/US2012/64241 mailed on Mar. 26, 2013.
Restriction Requirement in U.S. Appl. No. 12/482,685 dated Feb. 1, 2012.
Office Action in U.S. Appl. No. 12/482,685 mailed on Feb. 28, 2012.
Office Action in U.S. Appl. No. 12/482,685 mailed on Jun. 6, 2012.
Notice of Allowance in U.S. Appl. No. 12/482,685 mailed on Sep. 6, 2012.
Office Action in U.S. Appl. No. 12/482,685 mailed on Jan. 28, 2013.
Office Action in U.S. Appl. No. 12/482,685 mailed on Jun. 25, 2013.
Office Action in U.S. Appl. No. 12/482,685 mailed Nov. 18, 2013.
Notice of Allowance in U.S. Appl. No. 12/482,685 mailed on Dec. 6, 2013.
International Search Report and Written Opinion for PCT/US2009/47090 mailed on Jul. 31, 2009.
International Preliminary Report on Patentability for PCT/US2009/47090 mailed on Dec. 23, 2010.
First Office Action in Chinese Application No. 200980128201.7, mailed on Dec. 5, 2012.
Second Office Action in Chinese Application No. 200980128201.7 mailed on Aug. 23, 2013.
Japanese Office Action in Application No. 2011-513699 mailed on Jul. 23, 2013.
Decision to Grant in Japanese Application No. 2011-513699 mailed on Mar. 11, 2014.
Examination Report in Singapore Application No. 201009185-8 dated Jul. 26, 2012.
Office Action in U.S. Appl. No. 12/482,947 mailed on Jun. 7, 2012.
Office Action in U.S. Appl. No. 12/482,947 mailed on Nov. 13, 2013.
International Search Report and Written Opinion for PCT/US2009/47094 mailed on Oct. 2, 2009.
International Preliminary Report on Patentability for PCT/US2009/47094 mailed on Dec. 23, 2010.
Extended Search Report in European Application No. 09763656.7, dated Sep. 13, 2013.
Chinese Office Action in Application No. 200980127944.2 mailed on Feb. 16, 2013.
Japanese Office Action in Application No. 2011-513701 mailed on Jan. 7, 2014.
Written Opinion in Singapore Application No. 201009193-2 mailed on Mar. 18, 2013.
Restriction Requirement in U.S. Appl. No. 12/482,980 dated Apr. 24, 2012.
Office Action in U.S. Appl. No. 12/482,980 mailed on Aug. 24, 2012.
Office Action in U.S. Appl. No. 12/482,980 mailed on Feb. 27, 2013.
Advisory Action in U.S. Appl. No. 12/482,980 mailed on Apr. 9, 2013.
International Search Report and Written Opinion for PCT/US2009/47102 mailed on Aug. 4, 2009.
International Preliminary Report on Patentability for PCT/US2009/47102 mailed on Dec. 23, 2010.
Chinese Office Action in Application No. 200980127945.7 mailed on Aug. 31, 2012.
Chinese Office Action in Application No. 200980127945.7 mailed on Jul. 25, 2013.
Chinese Office Action in Application No. 200980127945.7 mailed on Jan. 13, 2014.
First Japanese Office Action in Application No. 2011-513705 mailed on Jul. 16, 2013.
Second Japanese Office Action in Application No. 2011-513705 mailed on Jan. 7, 2014.
Written Opinion in Singapore Patent Application No. 201009191-6 dated Jul. 11, 2012.
2nd Written Opinion in Singapore Patent Application No. 201009191-6 dated Jun. 14, 2013.
Examination Report in Singapore Patent Application No. 201009191-6 dated Feb. 11, 2014.
Restriction Requirement in U.S. Appl. No. 12/483,017 dated Apr. 25, 2012.
Office Action in U.S. Appl. No. 12/483,017 mailed on Sep. 25, 2012.
Office Action in U.S. Appl. No. 12/483,017 mailed on Apr. 23, 2013.
Office Action in U.S. Appl. No. 12/483,017 mailed on Oct. 4, 2013.
International Search Report and Written Opinion for PCT/US2009/47109 mailed on Jul. 29, 2009.
International Preliminary Report on Patentability for PCT/US2009/47109 mailed on Dec. 23, 2010.
Chinese Office Action in Application No. 200980128202.1 mailed on May 8, 2013.
Japanese Office Action in Application No. 2011-513706, mailed on Jul. 30, 2013.
Written Opinion in Singapore Patent Application No. 201009194-0 dated Jul. 11, 2012.
Examination Report in Singapore Application No. 201009194-0 dated Jun. 25, 2013.
Restriction Requirement in U.S. Appl. No. 12/728,105 dated Oct. 5, 2012.
Office Action in U.S. Appl. No. 12/728,105 mailed on Jan. 14, 2013.
Office Action in U.S. Appl. No. 12/728,105 mailed on May 21, 2013.
International Search Report and Written Opinion for PCT/US2010/28058 mailed on May 25, 2010.
International Preliminary Report on Patentability for PCT/US2010/28058 mailed on Sep. 29, 2011.
Chinese Office Action in Application No. 201080012752.X mailed on Aug. 8, 2013.
Second Chinese Office Action in Application No. 201080012752.X mailed on Jan. 8, 2014.
Japanese Office Action in Application No. 2012-501017 mailed Nov. 26, 2013.
Written Opinion in Singapore Patent Application No. 201106457-3 dated May 10, 2012.
Examination Report in Singapore Patent Application No. 201106457-3 dated Jan. 18, 2013.
Office Action in U.S. Appl. No. 12/821,053 mailed on Mar. 15, 2012.
Office Action in U.S. Appl. No. 12/821,053 mailed on Aug. 17, 2012.
Office Action in U.S. Appl. No. 12/821,053 mailed on Jan. 16, 2013.
Office Action in U.S. Appl. No. 12/821,053 mailed on Aug. 13, 2013.
Advisory Action in U.S. Appl. No. 12/821,053 mailed on Jan. 9, 2014.
Notice of Allowance in U.S. Appl. No. 12/821,053 mailed on Feb. 27, 2014.
Written Opinion and Search Report in Singapore Patent Application No. 201107307-9 mailed on May 17, 2013.
Examination Report in Singapore Patent Application No. 201107307-9 mailed on Jan. 2, 2014.
International Search Report and Written Opinion in International Application No. PCT/US10/39690 dated Oct. 7, 2010.
International Preliminary Report on Patentability for PCT/US10/39690 mailed on Jan. 12, 2012.
Korean Office Action in Application No. 10-2011-7030721 dated Nov. 21, 2013.
Office Action in U.S. Appl. No. 13/363,341 mailed on Apr. 5, 2013.
Office Action in U.S. Appl. No. 13/363,341 mailed Nov. 25, 2013.
Restriction Requirement in U.S. Appl. No. 13/363,347 mailed on Jul. 9, 2013.
Notice of Allowance in U.S. Appl. No. 13/363,347 mailed on Nov. 21, 2013.
Restriction Requirement in U.S. Appl. No. 13/024,251 mailed on Jun. 19, 2013.
Office Action in U.S. Appl. No. 13/024,251 mailed Jan. 28, 2014.
International Search Report and Written Opinion for PCT/US2011/24244 mailed on Apr. 6, 2011.
International Preliminary Report on Patentability for PCT/US2011/24244 mailed on Aug. 23, 2012.
Second Office Action in Japanese Application No. 2011-513706, mailed on Apr. 1, 2014.
Office Action in U.S. Appl. No. 13/719,145, mailed on Mar. 30, 2015.
International Preliminary Report on Patentability for PCT/US2013/075869 mailed on Mar. 26, 2015.
Office Action in U.S. Appl. No. 13/672,652, mailed on Feb. 17, 2015.
International Preliminary Report on Patentability PCT/US2012/064241 mailed on May 22, 2014.
Written Opinion in Singapore Patent Application No. 11201402177X, mailed on Mar. 11, 2015.
Examination Report for Taiwanese Patent Application No. 101141546 dated Mar. 25, 2015.
Decision of Rejection in Chinese Application No. 200980128201.7 mailed on Mar. 2, 2015.
Office Action in U.S. Appl. No. 13/024,251 mailed on Feb. 10, 2015.
Steckl, “Particle-beam Fabrication and in Situ Processing of Integrated Circuits”, IEEE Xplore, Dec. 1986, vol. 74, Issue 12.
International Search Report and Written Opinion for PCT/US2013/075869 mailed on Apr. 16, 2014.
Decision for Rejection in Japanese Patent Application No. 2011-513705 mailed on Jan. 7, 2014.
Decision for Rejection in Japanese Patent Application No. 2012-501017 mailed on Apr. 22, 2014.
Extended Search Report in European Patent Application No. 11742754.2 dated Apr. 28, 2014.
International Search Report and Written Opinion for PCT/US2013/76741 mailed on Apr. 18, 2014.
Final Office Action in U.S. Appl. No. 13/299,292 dated May 12, 2014.
Third Office Action in Chinese Application No. 200980128201.7 mailed on Apr. 9, 2014.
Notice of Allowance in U.S. Appl. No. 12/482,947 mailed on Jun. 25, 2014.
Decision of Rejection in Japanese Office Action in Application No. 2011-513701 mailed on Jun. 10, 2014.
Decision to Grant in Korean Office Action in Application No. 10-2011-7030721 dated May 31, 2014.
Notice of Allowance in U.S. Appl. No. 13/363,341 mailed Jun. 19, 2014.
Office Action in U.S. Appl. No. 13/024,251 mailed Jun. 23, 2014.
Kim, D-M. et al., “Dopant activation after ion shower doping for the fabrication of low-temperature poly-SI TFTs”, Thin Solid Films, Elsevier-Sequoia S.A. vol. 475, No. 1-2, Mar. 22, 2005 pp. 342-347.
Kim, H.J. et al., “Construction and characterization of an amorphous silicon flat-panel detector based on ion-shower doping process”, Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, Elsevier Science B.V., North Holland, vol. 505, No. 1-2, Jun. 1, 2003, pp. 155-158.
Kim, K-S et al., “PH3 Ion Shower Implantation and Rapid Thermal Anneal with Oxide Capping and Its Application to Source and Drain Formation of a Fully Depleted Silicon-on-Insulator Metal Oxide Semiconductor Field Effect Transistor”, Japanese Journal of Applied Physics, vol. 43, No. 10, Oct. 1, 2004, pp. 6943-6947.
Moon, B.Y. et al., “Fabrication of amorphous silicon p-i-n solar cells using ion shower doping technique”, Solar Energy Materials and Solar Cells, vol. 49, No. 1-4, Dec. 1, 1997, pp. 113-119.
Wu, Y. et al., “Large-area shower implanter for thin-film transistors”, IEE Proceedings—G Circuits, Devices and Systems, Institution of Electrical Engineers, vol. 141, No. 1, Feb. 1, 1994, pp. 23-36.
Extended Search Report in European Patent Application No. 11841747.6, mailed Jul. 24, 2014.
Restriction Requirement in U.S. Appl. No. 13/672,652, mailed on Aug. 8, 2014.
Examination Report for Taiwanese Patent Application No. 101141546 dated Sep. 16, 2014.
Decision for Rejection in Japanese Application No. 2011-513706, mailed on Sep. 2, 2014.
Office Action in Japanese Patent Application No. 2012-517699 dated Aug. 26, 2014.
Taiwan Notice of Allowance in Application No. 100141931 mailed on Oct. 2, 2014.
Extended Search Report in European Patent Application No. 12847303.0, dated Dec. 16, 2014.
First Office Action and Examination Report in Chinese Patent Application No. 201180018217.X, dated Nov. 3, 2014.
Office Action in U.S. Appl. No. 13/719,145 dated Sep. 17, 2015.
Examination Report in Singapore Patent Application No. 11201402177X dated Aug. 18, 2015.
Notice of Reasons for Preliminary Rejection for Korean Patent Application No. 10-2011-7000467 dated Jul. 26, 2015.
Office Action in U.S. Appl. No. 13/672,652 dated Sep. 10, 2015.
Office Action in U.S. Appl. No. 13/024,251 mailed on Aug. 17, 2015.
Notice of Allowance in U.S. Appl. No. 14/510,109 dated Oct. 15, 2015.
First Office Action in Chinese Patent Application No. 201180060732.4 dated May 11, 2015.
Board Opinion in Chinese Patent Application No. 200980127945.7 dated Jun. 30, 2015.
Office Action for Japanese Patent Application No. 2012-517699 dated May 12, 2015.
Second Office Action in Chinese Patent Application No. 201180018217.X, dated Jun. 9, 2015.
International Preliminary Report on Patentability for PCT/US2013/076741, mailed on Jul. 2, 2015.
Office Action in Taiwanese Patent Application No. 102147302, dated Jul. 22, 2015.
Extended Search Report in European Patent Application No. 12164231.8, dated Jun. 18, 2015.
Partial Search Report in European Patent Application No. 12164231.8, dated Jun. 15, 2015.
First Office Action and Examination Report in Taiwanese Patent Application No. 102147302, dated Apr. 8, 2015.
Office Action in U.S. Appl. No. 13/719,145 dated Jan. 12, 2016.
Board Opinion in Chinese Patent Application No. 200980128201.7 mailed on Dec. 4, 2015.
Board Decision in Chinese Patent Application No. 200980127945.7 dated Dec. 29, 2015.
Decision to Grant Japanese Patent Application No. 2012-517699 dated Jan. 5, 2016.
Office Action in Chinese Patent Application No. 201180018217.X dated Oct. 19, 2015.
Notice of Allowance in U.S. Appl. No. 13/672,652 dated Dec. 22, 2015.
Notification of Grant for Chinese Patent Application No. 200980127945.7 dated Jan. 25, 2016.
Extended Search Report in European Patent Application No. 12164231.8, dated Dec. 9, 2015.
Notice of Grant for Chinese Patent Application No. 201180018217.X dated Jan. 29, 2016.
Related Publications (1)
Number Date Country
20140170795 A1 Jun 2014 US
Provisional Applications (2)
Number Date Country
61739676 Dec 2012 US
61869022 Aug 2013 US