The inventive subject matter relates to power systems and, more particularly, to island grid power supply systems and methods.
In power grids, the AC frequency is generally an important parameter. For example, devices attached to a grid often synchronize themselves to the grid frequency. Grid-connected devices, such as transformers, motors and the like, are typically designed to operate at or near the nominal grid frequency.
In island grid applications, generating assets, such as diesel or gas powered generators and turbines, may experience transient conditions that cause the frequency of the grid to vary significantly. These transient conditions may include, for example, large load changes and sudden changes in power source availability, such as a fuel-powered generator shutting down or a variation in supply from a generating asset such as a wind or solar generator. Such variations in line frequency may result in dropped loads or damaged equipment. Such problems may be particularly pronounced in systems that use engine/generator sets powered by natural gas or other lower energy density fuels.
Island grid generators are often sized with significant excess rated continuous power capacity in order to carry peak loads, respond to large transient load steps, and provide redundancy in support of mission-critical operations. They may operate at very high utilization rates, for example, 24 hours a day, 7 days a week, 365 days a year, but at relatively low real load factors, commonly between 15-50%, for extended periods of off-peak time. Furthermore, manufacturer warranty requirements may result in additional costs due to the use of self-imposed, manual load banks. This operating profile may result in lower fuel efficiency, excessive wear and tear on generators, and notable increases in particulate matter (PM) and hydrocarbon (HC) emissions due to the incomplete combustion of diesel or natural gas fuel.
Natural gas is becoming a more desirable fuel for power generation than diesel because of lower fuel cost and emissions. The potential drawbacks of natural gas engines include reduced step response capability and poor control performance with light loads.
In some embodiments of the inventive subject matter, an island grid power supply system includes at least one energy storage unit and at least one converter coupled to the at least one energy storage unit and configured to be coupled to an island grid. The system further includes a control circuit configured to detect a frequency variation of the island grid and to responsively cause the at least one converter to transfer power between the at least one energy storage unit and the island grid. The control circuit may be configured to cause a power transfer between the energy storage unit and the island grid to compensate for a load response delay of at least one generator coupled to the island grid.
In some embodiments, the control circuit may include a frequency control loop configured to reduce a frequency error of the island grid and a power control loop configured to reduce a power transfer between the energy storage unit and the island grid. The control circuit may be configured to control a power transfer from the energy storage unit to the island grid based on a combination of outputs of the frequency control loop and the power control loop.
In some embodiments, the at least one energy storage unit may include a first energy storage unit and a second energy storage unit, and the control circuit may be configured to selectively transfer power between the first and second energy storage units and the island grid under respective first and second load conditions. The first energy storage unit may have a greater demand capability than the second energy storage unit and the second energy storage unit may have a greater energy storage capacity than the first energy storage unit.
Further embodiments provide a system including an island grid and at least one engine/generator set coupled to the island grid. The system further includes a transient frequency stabilization system including at least one energy storage unit and configured to detect a frequency deviation of the island grid and to responsively perform a momentary transfer of energy between the energy storage unit and the island grid. The transient frequency stabilization system may include at least one converter coupled to the at least one energy storage unit and configured to be coupled to the island grid and a control circuit configured to detect a frequency variation of the island grid and to responsively cause the at least one converter to transfer power between the at least one energy storage unit and the island grid.
In some embodiments, the at least one engine/generator set may include at least two engine/generator sets coupled to the grid and the system may further include a system controller configured to control the at least two engine/generator sets responsive to an availability of the transient frequency stabilization system. In some embodiments, the at least one generator may include a variable speed generator.
In still further embodiments, a system includes at least one generator coupled to an island grid, at least one energy storage unit and a converter coupled to the at least one energy storage unit and configured to be coupled to the island grid. The system further includes a control circuit configured to cause the converter to transfer power between the at least one energy storage unit and the grid responsive to a change in a load on the island grid to maintain operation of the at least one generator at a predetermined operating point. The at least one generator may include a control system configured to match generator output to the load and the control circuit may be configured to maintain the control system of the at least one generator within a predetermined dynamic response capability limit responsive to the change in the load.
The accompanying drawings, which are included to provide a further understanding of the inventive subject matter and are incorporated in and constitute a part of this application, illustrate certain embodiment(s) of the inventive subject matter. In the drawings:
Embodiments of the inventive subject matter now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the inventive subject matter are shown. This inventive subject matter may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the inventive subject matter to those skilled in the art. Like numbers refer to like elements throughout.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the inventive subject matter. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. It will be further understood that elements “coupled in series” or “serially connected” may be directly coupled or may be coupled via intervening elements.
Throughout the specification, like reference numerals in the drawings denote like elements. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the inventive subject matter. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” “comprising,” “includes” and/or “including” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this inventive subject matter belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein. The term “plurality” is used herein to refer to two or more of the referenced item.
Some embodiments of the inventive subject matter provide transient frequency stabilization systems and methods that may be used with one or more diesel, gas or other generators (piston, rotary, microturbine, fuel cell, etc.) in island grid applications. In such applications, generating assets, such as diesel or gas powered generators and turbines, may experience transient conditions that cause the frequency of the grid to vary significantly. These transient conditions may include, for example, large load changes and sudden changes in power source availability, such as a fuel-powered generator shutting down or a variation in supply from a generating asset such as a wind or solar generator. Such variations in line frequency may result in dropped loads or damaged equipment. Such problems may be particularly pronounced in systems that use engine/generator sets powered by natural gas or other lower energy density fuels.
In some embodiments, a transient frequency stabilization system may use energy storage in the form of a lithium-ion battery bank, ultra capacitor bank, flywheel storage, compressed air storage or the like that is selectively coupled to the grid using a power converter circuit (e.g., an inverter). In some embodiments, such a device may have a limited capacity and may be controlled with relatively small time constants in order to compensate for short term frequency variations. This may help reduce excessive fuel draw for rapid acceleration or deceleration and reduce mechanical stresses on engine/generator sets arising from sudden load steps. Such apparatus and methods may also help protect downstream devices from voltage sags, surges and frequency variations. Such apparatus and methods may be particularly advantageous for use in power distribution applications in which a relatively small diesel or gas generator-driven grid is subject to relatively large load changes due to the use of motors and other devices that draw heavy currents, such as in power distribution systems of large commercial vessels, work boats and remote oil and gas exploration sites. A transient frequency stabilization system according to some embodiments may be configured as a “drop-in” device that may be connected to the grid without requiring communication with an engine/generator set and/or system controller.
The energy storage unit 110 may include electrochemical storage, such as lithium-ion batteries and/or ultracapacitors (electro-chemical double layer capacitors) and/or other types of storage systems, such as a flywheel-based or compressed air based storage system. For example, lithium-ion cells may be stacked into series strings in order to have a usable working voltage in the range of 575 VDC to 750 VDC for directly connected storage, and 275 VDC to 750 VDC for storage connected through a DC/DC converter. The amount of energy capacity required may be relatively low. For example, in some applications, the capacity of the energy storage unit 110 may be roughly equivalent to 10 or so seconds of the output of the engine-generator set 20. For a 300 kW engine/generator set, for example, this would be approximately 1.67 kilowatt hours (kWh).
According to some embodiments, the energy storage unit 110 may not have a particularly large capacity, but may be capable of meeting a relatively high instantaneous demand for a relatively short time interval and, relatedly, capable of recharging at a relatively high rate. Devices such as ultracapacitors, hybrid battery/capacitor systems, flywheel systems, compressed air systems and the like may be capable of such high-demand performance.
The controller 130 may include, for example, a microprocessor, microcontroller or similar computing device(s), along with circuitry configured to interface the computing device(s) to the energy storage unit 110 and the DC/AC converter circuit 120. The controller 130 may include additional components, such as interface components (touchpad display, keyboard, wireless transceiver, etc.), which may display information about the state of the system and/or accept user input in order to change its operating mode or configuration, such as parameters relating to energy storage capacity, voltage limits and current limits. The controller 130 may also be configured to accept user input of information related to external devices that are also coupled to the grid 10, such as engine/generator set power rating, frequency limits, and fuel type, which may be used to control operational characteristics of the system 100. As noted above, in some embodiments, the controller 130 may operate in a standalone fashion without requiring input from an external device for normal operation. However, in some embodiments, the controller 130 may include communications interface circuitry, such as transceiver circuitry through which it can communicate using wire, fiber optic, radio and other communications media with other devices, such as SCADA system components, using, for example, protocols such as CAN(J1939), PROFINET, PROFIBUS, RS-232, Wi-Fi (802.11), GSM, CDMA, LPRS, EDGE, and the like. Such circuitry may be used, for example, to communicate status information to external devices and/or to allow for configuration and/or maintenance of the system 100.
The controller 130 may cause the DC/AC converter circuit 120 to selectively operate the energy storage unit 110 as a transient energy source and/or sink for the grid 10 to compensate for load and/or source step changes. In a non-interventive state, the DC/AC converter circuit 120 may process little or no power except, for example, to transfer energy to or from the grid 10 to maintain a desired charge level for the energy storage unit 110. When a frequency deviation associated with a load step change is detected on the grid 10, however, the controller 130 may activate the DC/AC converter circuit 120 to momentarily source or sink power in order to help restore a previously held frequency. After such an intervention to help stabilize the frequency, the controller 130 may again return to the non-interventive state.
In a relatively lower bandwidth loop that controls output power of the system, a power detector 430 generates a power estimate P, which is compared to a reference power value (e.g., zero) by a summer 415 to generate a power error signal eP. The power error signal eP is processed by a second compensator 440, which produces a second converter control component signal c2. The first and second converter control component signals c1 and c2 are combined in a third summer 425, to produce a converter control signal c, which may be used to control the DC/AC converter 120. The control structure shown in
It will be appreciated that the control loop architecture described above with reference to
In further embodiments, frequency stabilization along the lines described above may be combined with other stabilization measures, such as reactive power and/or distortion VA control. For example, in addition to the frequency stabilization loop described above with reference to
In some embodiments, the energy storage unit 110 may be maintained at a nominal state of charge that is less than fully-charged, e.g., a state of charge that may be optimal (or near optimal) for dealing with likely charge or discharge events associated with load or source step changes. This can enable the energy storage unit 110 to sink and supply energy as necessary to perform frequency stabilization.
An example of such operation is shown in
At a time t4, however, another major load step increase occurs, causing the energy storage unit to be discharged to a state C4 that is less than a lower threshold charge level CL. In response, the controller 130 causes the DC/AC converter 120 to transfer charge from the grid 10 to the energy storage unit 110 until its state of charge returns to the nominal charge level CN. As further shown, a subsequent load step decrease at a time t6 may raise the charge state of the energy storage unit 110 to a charge level C6 above a higher threshold CH, thus causing the control circuit to discharge the energy storage unit 110 to the grid 10 to return the energy storage unit 110 to the nominal charge level CN. In this manner, the charge of the energy storage unit 110 is maintained within bounds that allow the system to respond to both positive and negative load and source changes.
It will be appreciated that the operations shown in
Maintaining an energy storage source at a less than fully charged state may provide operational advantages, particularly in devices that are to be used in harsh environments. For example, the life of an ultracapacitor life may be dependent on the voltage maintained across the ultracapacitor under given environmental conditions, such that operating an ultracapacitor at significantly less than full rated voltage (on average) may allow the ultracapacitor to be utilized in environments that experience greater temperature extremes. Therefore, a system using ultracapacitors for energy according to some embodiments may be used in harsher environments that lack climate controls, such as the environments typically present in resource exploration, military and marine applications, without significantly degrading the reliability and lifetime of the energy storage and without requiring energy-consuming and potentially reliability-reducing heating and/or cooling systems.
Some embodiments of the inventive subject matter may be advantageously used in island grid applications such as commercial vessels and resource exploration sites. For example, an exploration site may include a local power distribution grid 10 powered by one or more diesel or natural gas powered engine/generator sets 20, as shown in
A system controller 30 may be configured to control operation of the engine/generator sets 20, along with ancillary components, such as circuit breakers and other switches, used with the engine/generator sets 20. In an exploration site, for example, such a controller 30 may be used to determine how many of the engine/generator sets 20 should be active to meet anticipated load and/or source changes on the grid. For example, some equipment, such as pumps and drill motors, may cause relatively large load steps that can cause the rotors of the engine/generator sets 20 to slow or accelerate appreciably. Although a control loop of an engine/generator set 20 may compensate for the changed load, delays in fuel injection and the generator control loop combined with the inertia of the generator rotor can cause significant response delays, which may cause the frequency of the grid to deviate from nominal for a significant period of time. Accordingly, in conventional installations, it is common to run significantly more engine/generator sets than required to meet the current steady-state load in order to reduce the extent and duration of such frequency excursions when a load step occurs. This can be fuel-inefficient, increase emissions and can increase wear and tear on the engine/generator sets.
As further shown in
As noted above, a device that provides momentary frequency stabilization as described above may also be used to control reactive power, distortion VA and other grid variables on a short-term or long-term basis. According to some embodiments, this capability may be achieved by including both short-term, high-demand energy storage with longer-term, higher capacity storage. For example, as illustrating in
For example the higher-capacity storage 140 may be used for compensation of transient overload events of a relatively longer duration than the transient load step events described above. For example, if the system controller 30 and/or the controller 130 of the frequency stabilization system 100′ have a priori knowledge of load events that may intermittently overload the capacity of the currently active ones of the engine/generator sets 20, but that have a predictable and limited frequency and extent. The system 100′ may use the high-capacity storage 140 to “ride out” these events without having to run an additional one of the engine/generator sets 20 to provide additional ready capacity to meet such demand events. This approach may allow the engine/generator sets 20 to be operated in a manner that increases fuel efficiency and that reduces emissions, noise and wear.
The embodiments of
Some embodiments of the inventive subject matter use diesel and gas generator hybridization technology that integrates configurable energy storage, power converter and controls with a wide range of generators, such as diesel engine/generator sets, gas engine/generator sets and gas turbine engine/generator sets, to potentially reduce fuel consumption, emissions, sound, vibration and maintenance costs without unduly impacting the performance, safety or reliability of the power system. Embodiments may be particularly advantageous in commercial island grid diesel and gas power systems.
Island grid generators are typically sized with significant excess rated continuous power capacity in order to carry peak loads, respond to large transient load steps, and provide redundancy in support of mission-critical operations. They typically operate at very high utilization rates, usually 24 hours a day, 7 days a week, 365 days a year, but at relatively low real load factors, commonly between 15-50%, for extended periods of off-peak time. Furthermore, manufacturer warranty requirements may result in additional costs due to the use of self-imposed, manual load banks. This operating profile may result in lower fuel efficiency, excessive wear and tear on generators, and notable increases in particulate matter (PM) and hydrocarbon (HC) emissions due to the incomplete combustion of diesel or natural gas fuel. Some embodiments of the inventive subject matter provide a solid state generator (SSG) systems and methods of operating the same that may increase efficiency and reduce emissions.
A typical diesel generator with a 100 kW-1 MW power range is capable of meeting a 5% frequency regulation while a maximum load of 50% is applied in one step.
Natural gas is becoming a more desirable fuel for power generation than diesel, because of lower fuel cost and improved emissions. The potential drawbacks of natural gas engines include reduced step response capability and poor control performance with light loads.
Table 1 below presents a snapshot of a conventional natural gas engine's step response performance:
If the load requires a 5% frequency regulation, the above engine is capable of accepting only around a 10% load change, compared to a diesel engine, which may accept around a 50% load change.
There are a wide variety of different load profiles that island grid generators may support.
Based on the above metrics and customer specific cost of fuel information, it is possible to select the optimal size SSG storage and power converter model for each customer application.
In order to determine the full cost of ownership in an island grid generator installation and operation, the following costs may be accounted for:
Once an industrial island grid power system is designed, special attention may be paid to back-feed power considerations. If the load profile has a regenerative/back-feed power requirement, an active motor break or passive load bank may be advantageous. A typical island grid generator might not be capable of sinking significant amounts of energy. In the case of reverse power, the generator might go over speed, trip off due to over frequency or possibly suffer damage to the alternator or engine. In order to properly design the power system, load banks are commonly used. Drawbacks of using the load bank are excessive fuel consumption and in some cases increased heat. Load banks are also used for pre-loading the generator, so that in the initial load step, it would meet the desired transient frequency requirement. If a passive load bank is used for creating this base load, it may also create an unnecessary operational cost burden.
In order to minimize these unwanted load bank energy charges, an SSG system according to some embodiments of the inventive subject matter may be used. The SSG system may not only address the transient response issues but may also function as an electronic load bank.
In order to understand the physics behind the limited step response capability of diesel and natural gas engines, it may be useful to look into a formula that represents mechanical and electrical energy parameters in a dynamic system model:
where
E=kinetic energy stored in the rotor
I=rotational inertia (related to the mass of the rotor)
ω=angular velocity
T=total rotor torque
PL=electrical load
TM=engine torque, controlled by injection rate and engine governor lag
α=rotational acceleration
Typical natural gas engines use a single manifold fuel feed, which generally limits how fast a pressurized fuel mixture of oxygen and natural gas can be increased in a combustion chamber. This lag may restrict how fast the mechanical torque can be increased. As can be seen from the above formula, if there is a constant power demand from the load, given the limited mechanical torque change, the speed of the engine may change as a function of kinetic mass. There is a direct relationship between axle speed and output to critical customer load bus frequency. If a customer has certain frequency regulation requirements, the above dynamical dependency will generally limit the maximum single load step that a natural gas engine can support.
System engineers have addressed the frequency step response issue by oversizing generators and/or by utilizing additional mechanical mass, like flywheels, to mitigate the issue through mechanical means. Other mechanical engineering solutions to transient problems include dual fuel and dual-concentric needle design. All these may improve performance but may not solve the fundamental issue of insufficient power during transients. Even if these alternative mechanical engineering based solutions are used, there still remains the challenge of natural gas engines, which may require load bank usage.
Modern high efficiency power conversion and high efficiency storage chemistries enable system designs that add electrical energy storage, which may be used to overcome the limitations of mechanical energy storage. In a SSG system according to some embodiments of the inventive subject matter, electrochemical storage can be sized in a cost efficient manner while at the same time using a smaller footprint. SSG in combination with a natural gas generator may provide a step response that meets or exceeds a diesel generator step response performance. A good time to consider SSG is during the initial system design of new construction. Benefits of the SSG system may include reducing the generator size, matching the average load, removal of load banks, increased fuel efficiency, and lower emissions. Basic operations of an SSG system according to some embodiments are illustrated in
Traditionally, generator controllers are programmed to implement voltage to frequency droop where the output voltage changes in proportion to the output frequency to enable paralleling and improve the frequency response. In the case of a resistive or passive load, this droop method may be useful in addressing the frequency regulation problem. However, many industrial processes use active Variable Frequency Drives (VFD), which may demand substantially constant power. In the case of a load requiring constant power, voltage drop due to the frequency droop may be harmful, causing current ratings of devices to be exceeded and circuit breakers to be prematurely tripped. When using an SSG according to some embodiments of the inventive subject matter as part of a system, the active VFD loads may be served from the SSG without little or no adverse effect to the generator. SSG may provide transient magnetizing current as well as transient active power energy storage, allowing an engine to operate within its dynamic response capability limits and at a desirable operation point. This may result in improved fuel efficiency and reduced emissions.
Storage chemistry and size are factors in optimizing the SSG storage element. There are several high-efficiency storage chemistries available, such as different variants of Li-Ion, NiZn, ultra-capacitors, and hybrid ultra-capacitor solutions.
The cyclic load profiles found in industrial and oil and gas (O&G) customer cases may require as high as 100,000 cycles in a 3-5 year storage life. A 5 year life is considered a desired minimal customer requirement for fielded life expectancy. Based on the information in
LTO cycle life can be as high as 6,000-9,000 full depth of discharge cycles as specified from vendors. When very light depth of discharge usage occurs as part of SSG, the Li-Ion battery may meet the 100,000 cycle requirement. Depending on a specific customer's load profile, LTO may be a suitable option for storage selection, assuming that environmental and cost requirements meet customer needs.
NiZn has a very limited cycle life and therefore is generally not suitable for high cycle life application, even though it is the most energy dense storage chemistry available.
A typical ultra-capacitor cycle life is 1,000,000 cycles. The life of an ultra-capacitor is largely a function of float voltage and temperature. In an SSG application, the float voltage may be kept low in order to have storage available for regenerative braking. That may allow exploitation of a full potential life cycle of storage without significant oversizing.
A technical challenge of utilizing ultra-capacitors is a wider voltage swing compared to other storage chemistries. The proper power conversion selection may be addressed by utilizing rugged, high overload capable, water cooled drives. Power converters may use a topology that enables maximum extraction of energy in all operating conditions from ultra-capacitors.
As presented in the above description, an SSG system according to some embodiments of the inventive subject matter may achieve significant cost savings through a technical solution for power generation challenges. Potential benefits include:
In the drawings and specification, there have been disclosed typical embodiments of the inventive subject matter and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the inventive subject matter being set forth in the following claims.
This application is a continuation of U.S. patent application Ser. No. 13/875,603, entitled Island Grid Power Supply Apparatus and Methods using Energy Storage for Transient Stabilization; Filed May 2, 2013 which claims priority to U.S. Provisional Patent Application No. 61/771,417, entitled Solid State Generator (SSG), filed Mar. 1, 2013 and U.S. Provisional Patent Application No. 61/712,533, entitled Island Grid Transient Frequency Stabilization Apparatus and Methods, filed Oct. 11, 2012, the disclosures of which are herein incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4992920 | Davis | Feb 1991 | A |
5563802 | Plahn et al. | Oct 1996 | A |
5907192 | Lyons et al. | May 1999 | A |
5929538 | O'Sullivan et al. | Jul 1999 | A |
6038118 | Guerra | Mar 2000 | A |
6104102 | Tsuji et al. | Aug 2000 | A |
6128204 | Munro et al. | Oct 2000 | A |
6175217 | Da Ponte et al. | Jan 2001 | B1 |
6252753 | Bhargava | Jun 2001 | B1 |
6870279 | Gilbreth et al. | Mar 2005 | B2 |
6879053 | Welches et al. | Apr 2005 | B1 |
6958550 | Gilbreth et al. | Oct 2005 | B2 |
6969922 | Welches et al. | Nov 2005 | B2 |
7002260 | Stahlkopf | Feb 2006 | B2 |
7116010 | Lasseter et al. | Oct 2006 | B2 |
7184903 | Williams et al. | Feb 2007 | B1 |
7391126 | Liu et al. | Jun 2008 | B2 |
7474016 | Wang et al. | Jan 2009 | B2 |
7476987 | Chang | Jan 2009 | B2 |
7514808 | Wobben | Apr 2009 | B2 |
7560906 | Liu et al. | Jul 2009 | B2 |
7612466 | Skutt | Nov 2009 | B2 |
7675187 | Woods et al. | Mar 2010 | B2 |
7680562 | Delmerico et al. | Mar 2010 | B2 |
7701087 | Eckroad et al. | Apr 2010 | B2 |
7781902 | Cerney et al. | Aug 2010 | B2 |
7787272 | Lasseter et al. | Aug 2010 | B2 |
7834479 | Capp et al. | Nov 2010 | B2 |
7855467 | Kawazoe et al. | Dec 2010 | B2 |
7906862 | Donnelly et al. | Mar 2011 | B2 |
7969030 | Woods et al. | Jun 2011 | B2 |
8022572 | Vyas et al. | Sep 2011 | B2 |
8080898 | Fukuhara | Dec 2011 | B2 |
8099198 | Gurin | Jan 2012 | B2 |
8164217 | Miller | Apr 2012 | B1 |
8222756 | Koeneman et al. | Jul 2012 | B2 |
8227929 | Burra et al. | Jul 2012 | B2 |
8315745 | Creed | Nov 2012 | B2 |
8338987 | O'Brien et al. | Dec 2012 | B2 |
8452688 | Sharplin et al. | May 2013 | B1 |
8492913 | Koeneman et al. | Jul 2013 | B2 |
8532834 | Delong et al. | Sep 2013 | B2 |
8558510 | Moon | Oct 2013 | B2 |
8688281 | Viassolo et al. | Apr 2014 | B2 |
8751036 | Darden, II et al. | Jun 2014 | B2 |
8766474 | Carralero et al. | Jul 2014 | B2 |
8810066 | Moon | Aug 2014 | B2 |
8829698 | Koeneman et al. | Sep 2014 | B2 |
8831788 | Flynn et al. | Sep 2014 | B2 |
8849469 | Belady et al. | Sep 2014 | B2 |
8866334 | Donnelly et al. | Oct 2014 | B2 |
8922056 | Thisted | Dec 2014 | B2 |
8922062 | Johnson et al. | Dec 2014 | B2 |
8938323 | Lee | Jan 2015 | B2 |
8946916 | Tarnowski | Feb 2015 | B2 |
8946929 | Singh et al. | Feb 2015 | B2 |
8975767 | Algrain | Mar 2015 | B2 |
9026259 | Zadeh et al. | May 2015 | B2 |
9026260 | Thornley et al. | May 2015 | B1 |
9042141 | Yu et al. | May 2015 | B2 |
20020190525 | Worden et al. | Dec 2002 | A1 |
20020198648 | Gilbreth et al. | Dec 2002 | A1 |
20030047209 | Yanai et al. | Mar 2003 | A1 |
20040051387 | Lasseter et al. | Mar 2004 | A1 |
20040084965 | Welches et al. | May 2004 | A1 |
20040245783 | Gilbreth et al. | Dec 2004 | A1 |
20050012395 | Eckroad et al. | Jan 2005 | A1 |
20050077881 | Capp | Apr 2005 | A1 |
20050154499 | Aldridge et al. | Jul 2005 | A1 |
20050200133 | Wobben | Sep 2005 | A1 |
20070182158 | Cerney et al. | Aug 2007 | A1 |
20070228836 | Teichmann | Oct 2007 | A1 |
20070267871 | Gregory | Nov 2007 | A1 |
20080088183 | Eckroad et al. | Apr 2008 | A1 |
20080203734 | Grimes et al. | Aug 2008 | A1 |
20080211230 | Gurin | Sep 2008 | A1 |
20080278000 | Capp et al. | Nov 2008 | A1 |
20090086520 | Nishimura | Apr 2009 | A1 |
20090140576 | Yu et al. | Jun 2009 | A1 |
20090189456 | Skutt | Jul 2009 | A1 |
20090195074 | Buiel | Aug 2009 | A1 |
20090312885 | Buiel | Dec 2009 | A1 |
20100008119 | O'Brien et al. | Jan 2010 | A1 |
20100096918 | Sawada et al. | Apr 2010 | A1 |
20100138066 | Kong | Jun 2010 | A1 |
20100264739 | Errington | Oct 2010 | A1 |
20100270864 | Vyas | Oct 2010 | A1 |
20100292853 | McDonnell | Nov 2010 | A1 |
20100327800 | Reineccius | Dec 2010 | A1 |
20110060474 | Schmiegel et al. | Mar 2011 | A1 |
20110062708 | Prochaska et al. | Mar 2011 | A1 |
20110068631 | Roscoe | Mar 2011 | A1 |
20110080044 | Schmiegel | Apr 2011 | A1 |
20110115295 | Moon et al. | May 2011 | A1 |
20110118894 | Reineccius et al. | May 2011 | A1 |
20110133558 | Park | Jun 2011 | A1 |
20110140520 | Lee | Jun 2011 | A1 |
20110140648 | Lee | Jun 2011 | A1 |
20110144822 | Choi | Jun 2011 | A1 |
20110148195 | Lee | Jun 2011 | A1 |
20110148360 | Lee | Jun 2011 | A1 |
20110204720 | Ruiz | Aug 2011 | A1 |
20110227340 | Rozman et al. | Sep 2011 | A1 |
20110248569 | Son et al. | Oct 2011 | A1 |
20110260546 | Hashizume et al. | Oct 2011 | A1 |
20110273022 | Dennis et al. | Nov 2011 | A1 |
20110309690 | West | Dec 2011 | A1 |
20120029897 | Cherian et al. | Feb 2012 | A1 |
20120033473 | Scharf | Feb 2012 | A1 |
20120046798 | Orthlieb et al. | Feb 2012 | A1 |
20120068540 | Luo et al. | Mar 2012 | A1 |
20120080942 | Carralero et al. | Apr 2012 | A1 |
20120083927 | Nakamura et al. | Apr 2012 | A1 |
20120089261 | Kim | Apr 2012 | A1 |
20120143383 | Cooperrider et al. | Jun 2012 | A1 |
20120146412 | Harrison | Jun 2012 | A1 |
20120146423 | Bodewes et al. | Jun 2012 | A1 |
20120147637 | Petter | Jun 2012 | A1 |
20120166013 | Park et al. | Jun 2012 | A1 |
20120215368 | Sharma | Aug 2012 | A1 |
20120239215 | Timbus et al. | Sep 2012 | A1 |
20120267952 | Ballatine et al. | Oct 2012 | A1 |
20120283887 | Goldsmith et al. | Nov 2012 | A1 |
20120283890 | Fu et al. | Nov 2012 | A1 |
20120292992 | Williams | Nov 2012 | A1 |
20120323396 | Shelton et al. | Dec 2012 | A1 |
20130015703 | Rouse et al. | Jan 2013 | A1 |
20130035802 | Khaitan et al. | Feb 2013 | A1 |
20130041516 | Rockenfeller et al. | Feb 2013 | A1 |
20130062953 | Nurmi et al. | Mar 2013 | A1 |
20130088084 | Szu | Apr 2013 | A1 |
20130099581 | Zhou et al. | Apr 2013 | A1 |
20130116844 | McNally et al. | May 2013 | A1 |
20130141956 | Chiang et al. | Jun 2013 | A1 |
20130158901 | Sahinoglu et al. | Jun 2013 | A1 |
20130166084 | Sedighy et al. | Jun 2013 | A1 |
20130169309 | Bickel | Jul 2013 | A1 |
20130187454 | Timbus et al. | Jul 2013 | A1 |
20130238151 | Vaum et al. | Sep 2013 | A1 |
20130241495 | Min | Sep 2013 | A1 |
20130285446 | Chow et al. | Oct 2013 | A1 |
20130342020 | Blevins et al. | Dec 2013 | A1 |
20140025217 | Jin et al. | Jan 2014 | A1 |
20140032000 | Chandrashekhara | Jan 2014 | A1 |
20140058571 | Hooshmand et al. | Feb 2014 | A1 |
20140078625 | Zheng et al. | Mar 2014 | A1 |
20140084682 | Covic et al. | Mar 2014 | A1 |
20140088778 | Nguyen | Mar 2014 | A1 |
20140088781 | Kearns et al. | Mar 2014 | A1 |
20140097683 | Piyabongkarn et al. | Apr 2014 | A1 |
20140100705 | Shi et al. | Apr 2014 | A1 |
20140103655 | Burra et al. | Apr 2014 | A1 |
20140103724 | Wagoner | Apr 2014 | A1 |
20140103855 | Wolter | Apr 2014 | A1 |
20140129042 | Miner | May 2014 | A1 |
20140148960 | Bhavaraju et al. | May 2014 | A1 |
20140183949 | Murano | Jul 2014 | A1 |
20140188300 | Nguyen | Jul 2014 | A1 |
20140191507 | Holmberg et al. | Jul 2014 | A1 |
20140200722 | Bhavaraju | Jul 2014 | A1 |
20140214223 | Tsunoda et al. | Jul 2014 | A1 |
20140217826 | Oguchi et al. | Aug 2014 | A1 |
20140225457 | Elliott, II | Aug 2014 | A1 |
20140229031 | Amarin et al. | Aug 2014 | A1 |
20140249686 | Brainard et al. | Sep 2014 | A1 |
20140265596 | Yuan et al. | Sep 2014 | A1 |
20140292259 | Kim et al. | Oct 2014 | A1 |
20140306533 | Paquin et al. | Oct 2014 | A1 |
20140306534 | Shi et al. | Oct 2014 | A1 |
20140312882 | Dong et al. | Oct 2014 | A1 |
20140324243 | Markowz et al. | Oct 2014 | A1 |
20140337002 | Manto | Nov 2014 | A1 |
20140375125 | Ye et al. | Dec 2014 | A1 |
20150001931 | Banham-Hall et al. | Jan 2015 | A1 |
20150008737 | Mao | Jan 2015 | A1 |
20150019034 | Gonatas | Jan 2015 | A1 |
20150021998 | Trescases et al. | Jan 2015 | A1 |
20150032278 | Bhageria et al. | Jan 2015 | A1 |
20150039145 | Yang et al. | Feb 2015 | A1 |
20150081124 | Ekanayake et al. | Mar 2015 | A1 |
20150094871 | Bhageria et al. | Apr 2015 | A1 |
20150097437 | Votoupal et al. | Apr 2015 | A1 |
20150105931 | Forbes, Jr. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
69 707 704 | Nov 2001 | DE |
69 707 704 | Jun 2002 | DE |
10 2007 005352 | Aug 2007 | DE |
0 947 042 | Oct 1999 | EP |
0 947 042 | Oct 2001 | EP |
2 251 953 | Nov 2010 | EP |
2 325 970 | May 2011 | EP |
2 330 726 | Jun 2011 | EP |
2 337 178 | Jun 2011 | EP |
2 337 184 | Jun 2011 | EP |
2 339 714 | Jun 2011 | EP |
2 380 769 | Oct 2011 | EP |
1 866 717 | Jun 2012 | EP |
2434928 | Aug 2007 | GB |
2434928 | Apr 2010 | GB |
2001-507199 | May 2001 | JP |
2011-109901 | Jun 2011 | JP |
WO 9828832 | Jul 1998 | WO |
WO 9932762 | Jul 1999 | WO |
WO 0217475 | Feb 2002 | WO |
WO 2004038892 | May 2004 | WO |
WO 2004054065 | Jun 2004 | WO |
WO 2005101610 | Oct 2005 | WO |
WO 2006094128 | Sep 2006 | WO |
WO 2007018830 | Feb 2007 | WO |
WO 2008039725 | Apr 2008 | WO |
WO 2008125696 | Oct 2008 | WO |
WO 2009144737 | Dec 2009 | WO |
WO 2010042550 | Apr 2010 | WO |
WO 2011008505 | Jan 2011 | WO |
WO 2011008506 | Jan 2011 | WO |
WO 2011020149 | Feb 2011 | WO |
WO 2011124657 | Oct 2011 | WO |
WO 2012015508 | Feb 2012 | WO |
WO 2012064906 | May 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20160190806 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
61771417 | Mar 2013 | US | |
61712533 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13875603 | May 2013 | US |
Child | 15065971 | US |