This application is based upon and claims benefit of priority of Japanese Patent Application No. 2006-104613 filed on Apr. 5, 2006, the content of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to a grinding apparatus, and more particularly to a sludge-removing device and a method of removing sludge.
2. Description of Related Art
A grinding apparatus, in which grinding operation is performed while supplying coolant to a surface to be ground and a grinder surface, has been known hitherto. Grinders, such as a conductive grinder made by binding grinder particles such as diamond particles with an electric-conductive binder or an electrodeposited grinder made by fixing grinding particles by electrolytic deposition, has been used. Sludge accumulated on the grinder in grinding operation has to be removed to recover sharpness of the grinder.
JP-A-5-131367 discloses a method of removing sludge from the grinder by brushing a grinding surface with a carbon brush or the like. In this brushing method, it is necessary to use a brush having thin wires to remove small sludge particles from the grinder. The brush has a relatively short life because the thin wires easily wear. JP-A-2004-351599 discloses a method of removing the sludge by means of ultrasonic energy of coolant that is oscillated by an ultrasonic oscillator. In this method, however, an expensive ultrasonic oscillator is required.
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an improved grinding apparatus, in which sludge accumulated on a grinder is easily and inexpensively removed. Another object of the present invention is to provide an improved method of removing sludge from the grinder.
The grinding apparatus includes a grinder driven by a driving device, a holder for fixedly holding a work, and a coolant-supplying device. The grinder has a grinding surface that contacts a portion of the work to be ground. During grinding operation, coolant is supplied to the grinding surface and the portion to be ground. The coolant is continued to be supplied to the grinding surface of the grinder while the grinder is leaving the work and returning to its original position after the grinding operation has been completed. Sludge accumulated on the grinding surface is removed by injecting the coolant to the grinding surface.
Preferably, the pressure of the coolant is set to a higher level when it is supplied to the grinding surface for removing the sludge than when it is supplied during the grinding operation. The portion to be ground may be a tapered surface, and the grinding surface may be a conical surface contacting the tapered surface during the grinding operation. The coolant may be supplied through a passage formed in the work. The number of works that have been ground may be counted, and the coolant for removing the sludge is supplied only when the number of works exceeds a predetermined number. It is also possible to remove the sludge by brushing when the number of works ground is less than the predetermined number. The driving device and the coolant-supplying device may be controlled in related timing by a controller including a microcomputer.
According to the present invention, the same coolant that is used in the grinding operation is supplied to the grinder for removing the sludge on the grinder when the grinder is leaving the work and returning to its original position. Therefore, the sludge is surely removed in a simple and inexpensive manner. Other objects and features of the present invention will become more readily apparent from a better understanding of the preferred embodiments described below with reference to the following drawings.
A first embodiment of the present invention will be described with reference to
A work 9 having a portion to be ground, which is a tapered surface 91 in this particular embodiment, is held by a holder 5. The grinder 2a has a grinding surface 21, which is a conical surface in this embodiment, and the grinding surface 21 contacts the tapered surface 91 thereby to grind the tapered surface. The work 9 includes a passage 92 through which the coolant is supplied to the grinding surface 21 and the tapered surface 91. The coolant-supplying device 6 has an opening 6c, through which the coolant is injected into the passage 92. The supply tube passage including the opening 6c may be inclined with respect to the passage 92 as long as the coolant is supplied to the grinding surface 21 and the tapered surface 91. The coolant is pressurized in the coolant source 6a by a pump P to a predetermined pressure (e.g., 1 MPa).
The controller 7 includes a microcomputer and controls operation of the driving device 4 and the coolant-supplying device 6 under interrelated timing. The grinder 2a is lowered to a position contacting the tapered surface 91 in a grinding operation and is lifted to its initial position after the grinding operation is completed. The coolant is supplied to the grinding surface 21 and the tapered surface 91 during the grinding operation. The coolant is supplied to the grinding surface 21 while the grinder 2a is leaving the tapered surface 91 after the grinding operation is completed in a manner described later in detail. All of these operations are controlled by the controller 7. The controller 7 also includes a device for counting the number of works that have been ground.
A process of controlling the grinding apparatus will be described with reference to
The work 9 is firmly held by the holder 5. Then, the grinding operation starts at step S10. At the next step S20, a present work number is incremented by adding one (1) to the number of works (N) that have been ground (N=N+1). At step S30, the coolant is supplied to the grinding surface 21 of the grinder 2a and the tapered surface 91 (a portion to be ground). The tapered surface 91 is ground by pressing down the grinder 2a by a predetermined amount. At step S40, the grinding operation is completed. At step S50, whether or not the number of works that have been ground by now exceeds a predetermined number (NC). That is, whether N is larger than NC is determined. If N is larger than NC, the process proceeds to sludge-removing step S60 that includes steps S70 and S90. If not, the process proceeds to step S80.
If NC pieces of works 9 can be successfully ground by a new grinder 2a without removing the sludge, the predetermined number is set to such a number NC. In other words, the grinding sludge on the grinding surface 21 has to be removed when NC pieces of works have been ground in order to attain successful grinding results. The predetermined number NC may be set to, e.g., several-tens.
If it is determined that N is smaller than NC, the process proceeds to step S80, where supply of the coolant is stopped. At step S90, the grinder 2a is lifted upward and returned to its original position. Then, the process returns to step S10, where the grinding operation for the next work starts. If it is determined that N exceeds the predetermined number NC, the process proceeds to step S70, where supply of the coolant is continued after the grinding operation is completed. At step S90, the grinder 2a is lifted upward and returned to its original position, and the grinding surface 21 leaves the tapered surface 91 while the coolant is continued to be supplied. The sludge accumulated on the grinding surface 21 is removed by the coolant supplied to the grinding surface 21. Then, the process comes to the end.
With reference to
In
The curves in
With reference to
In the case where the velocity is measured at fixed clearances (10, 30, 50 and 90 percents of the fully open clearance), the velocity is not high enough to sufficiently remove the sludge from the grinder (cross-marked). On the other hand, in the case where the velocity is measured while the grinder is leaving the tapered surface 91 (at a very small clearance H smaller than 5 percents), the velocity is sufficiently high to remove the sludge (circle-marked). This means that it is very effective to inject the coolant to the grinding surface 21 at a moment when the grinder 2a is leaving the portion to be ground.
Preferably, the pressure of the coolant is increased when it is injected to the grinding surface 21 for removing sludge than when it is supplied during the grinding operation. By injecting the coolant at a higher pressure to the grinding surface 21, effects of removing the sludge are enhanced. If the pressure of the coolant supplied during the grinding operation is too high, the grinding surface 21 is forcibly separated from the portion to be ground, and thereby dimensional accuracy of grinding is adversely affected.
Since the coolant is supplied also during the grinding operation, the grinding surface 21 is cleaned during the grinding operation. Since the coolant is supplied through the passage 92 formed in the work 9 in the embodiment described above, the coolant can be easily and directly injected toward the grinder 2a.
A second embodiment of the present invention will be described with reference to
As described above, the grinder 2a is cleaned by brushing if N is small, while it is cleaned by injecting the coolant if N is large. In this manner, it is avoided to over-clean the grinder to thereby grind the work too much. If the grinder becomes too sharp than originally planed, the work may be ground deeper than expected. The grinder 2a can be used for a long time in the manner described in
The present invention is not limited to the embodiments described above, but it may be variously modified. For example, the portion to be ground is not limited to the tapered surface 91. The portion to be ground may be an inner peripheral surface or a semi-spherical surface of the work. While the present invention has been shown and described with reference to the foregoing preferred embodiments, it will be apparent to those skilled in the art that changes in form and detail may be made therein without departing from the scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-104613 | Apr 2006 | JP | national |