This disclosure relates to semiconductor and solar wafers such as silicon on insulator (SOI) bonded structures, and more particularly to a grinding tool for grinding a bonded SOI wafer.
Semiconductor wafers are generally prepared from a single crystal ingot (e.g., a silicon ingot) which is sliced into individual wafers. While reference will be made herein to semiconductor wafers constructed from silicon, other materials may be used as well, such as germanium, gallium arsenide or other materials described below. One type of wafer is a silicon-on-insulator (SOI) wafer. An SOI wafer includes a thin layer of silicon (an active layer) atop an insulating layer (i.e., an oxide layer) which is in turn disposed on a silicon substrate. A bonded SOI semiconductor wafer is a type of SOI structure.
Due to device width shrink, power conservation, super-high speed performance, and/or special applications in electronic industry, the demands on SOI (silicon on insulator) wafers are increasing. One challenge is to effectively remove the unbonded outer peripheral portion of an active layer wafer bonded to the support substrate in order to avoid delamination. Delamination can result in particle contamination in the process and/or device lines of the wafer.
When manufacturing an SOI wafer, outer peripheral portions of the two wafers to be bonded are subjected to R or T chamfering, or edge profiling (as further described below), in order to prevent wafer breakage, cracks and/or particle generation. Also, outer peripheral portions of a bonded substrate have uneven thickness due to wafering steps. Because of this uneven thickness, during the bonding process, the outer peripheral portion is either not bonded at all and/or weakly bonded. When an active wafer thickness is reduced with processes such as grinding, etching, polishing, etc., this unbonded portion is partially delaminated from the bonded substrate during the film thickness reducing processes. The delaminated parts cause problems for film thickness reduction, cleaning, and measurement processes. Furthermore, in device processes, the remaining unbonded portions are delaminated, which causes particle generation and severely impacts device yields.
There have been several prior art attempts to solve delamination. For example,
In another prior art example shown in
In the prior art example shown in
In prior art
In prior art
There remains an unfulfilled need for a wafer surface treatment method and a wafer that addresses the disadvantages of current methods of preventing delamination of the outer peripheral portion of an active layer of a bonded structure.
In one aspect, a grinding tool for trapezoid grinding of a wafer on a profiling machine comprises an annular wheel including a central hole adapted for mounting the wheel on a spindle. The wheel includes at least two grooves disposed at an outer edge of the wheel and the grooves are sized for receiving an outer edge of the wafer. At least one of the grooves is adapted for rough grinding of the wafer. At least one other of the grooves is adapted for fine grinding of the wafer.
In another aspect, the wheel of the grinding tool includes three or more grooves disposed at an outer edge of the wheel and the grooves and sized for receiving an outer edge of the wafer. At least one of the grooves is adapted for rough grinding of the wafer and at least one other of the grooves is adapted for fine grinding of the wafer. Each groove is sized and shaped so that only the upper peripheral edge of the wafer is ground.
In still another aspect, a grinding tool for grinding of a wafer on a profiling machine comprises an annular wheel including a central hole adapted for mounting the wheel on a spindle. The wheel includes three or more grooves disposed at an outer edge of the wheel and the grooves are sized for receiving an outer edge of the wafer. One groove is for rough grinding of the wafer and at least two grooves are for fine grinding of the wafer. Each groove has a V-shape in cross-section and is sized relative to the wafer so that only the upper peripheral edge of the wafer is ground.
Various refinements exist of the features noted in relation to the above-mentioned aspects. Further features may also be incorporated in the above-mentioned aspects as well. These refinements and additional features may exist individually or in any combination. For instance, various features discussed below in relation to any of the illustrated embodiments may be incorporated into any of the above-described aspects, alone or in any combination.
The figures are not to scale, and portions are enlarged for illustrative purposes. Corresponding reference characters indicate corresponding parts throughout the figures.
Referring now to
Active wafer 101 and substrate wafer 103 may be any single crystal semiconductor material suitable for use in an SOI structure. In general, the wafers may be composed of a material selected from the group consisting of silicon, germanium, gallium arsenide, silicon germanium, gallium nitride, aluminum nitride, phosphorous, sapphire and combinations thereof. In one embodiment, the wafers 101, 103 are made of silicon.
A layer of oxide is deposited 102 on the front surface of the active wafer. Oxidation is typically performed in a vertical furnace, e.g. commercially available AMS400. The front surface of the wafer is then bonded 104 to the front surface of the substrate wafer to form a bonded wafer 105 as shown in
Referring again to
As can be seen from
Referring again to
In
Referring to FIGS. 8 and 9A-9D, the grinding steps are reversed as compared to that of FIGS. 6 and 7A-7D. In other words, the surface of the active wafer 101 is ground first, before the trapezoid grinding. This order of steps is shown in
Referring to
The wheel 151 of this embodiment is ring-shaped or annular and has a central hole 154 adapted for mounting the wheel on the on the spindle 151 of the profiling machine 152. The wheel 151 has a diameter D of 202 mm with a central hole diameter HD of 30 mm and thickness of 20 mm. The wheel 151 of this embodiment has an upper groove 155, a central groove 157 and a lower groove 159 disposed at an outer edge of the wheel. The grooves 155, 157, 159 are generally V-shaped in this embodiment. Note that the wheel 151 may alternatively have just one groove, or practically any other number of grooves, within the scope of this disclosure.
In this embodiment, the upper and central grooves 155, 157 are adapted for fine grinding, and the lower groove 159 is adapted for rough grinding. Each groove suitably includes diamond grits. For fine grinding, diamond grit size of 2000 or 3000 mesh is suitable. For rough grinding, 600 mesh or 800 mesh is suitable. The wheel 151 is suitably made of metal alloy, aluminum alloy, or stainless steel, though other materials are contemplated.
Each groove wall of this embodiment slopes from a bottom of the groove to a top of the groove and has a flat bottom. In this embodiment, the slope is at about a 7° angle. The width of the bottom of the groove is about 1.8 mm for use with a bonded wafer having a total thickness of about 200 mm, so that the substrate wafer or back surface of the wafer is not in contact with the groove during trapezoid grinding. The width of each groove at its widest portion (the top of the groove) is about 3.5 mm. The wall of the groove curves into the bottom of the groove at a radius of about 0.2 mm. The groove depth GD is about 6.0 mm and the groove root depth RD is about 8.0 mm.
The wheel 151 is installed on the edge profiling machine 152, such as on a spindle of the STC EP-5800 RHO. After wheel installation, spindle height (vertical direction) and distance (horizontal direction) are fine adjusted, so that groove 155 of the wheel 151 and the bonded wafer 105 are aligned as shown in
The above example methods are applied to remove the unbonded outer peripheral parts of an active layer wafer bonded on a substrate wafer. This results in a bonded wafer having a more securely bonded outer peripheral portion. In a suitable method, after bonding of an active layer wafer onto a support substrate and post-bond heat treat of the bonded pairs, trapezoid grinding is applied to remove the unbonded outer peripheral portion of the active layer wafer. An edge grinding wheel such as wheel 151 may be used to perform the trapezoid grinding step. Among other advantages, the bonded wafer according to embodiments of this disclosure is less likely to suffer delamination. Additionally, the bonded wafer inhibits or prevents particle contamination that might otherwise occur due to delaminated unbonded portions on the process/device lines of the wafer.
When introducing elements of the present invention or the embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawing[s] shall be interpreted as illustrative and not in a limiting sense.