Field of the Invention
The present invention relates to a grinding wheel used when a plate-shaped work piece is ground.
Description of the Related Art
In recent years, it has been required to process a wafer composed of a material such as silicon into a thin shape in order to realize size reduction and weight reduction of device chips. The wafer is thinned by grinding its back surface side after devices such as ICs and LSIs are formed in the respective regions marked out by planned dividing lines (streets) on the front surface for example.
When a plate-shaped work piece typified by a wafer is ground, grinding apparatus including a chuck table that holds the wafer and a grinding wheel that is disposed above the chuck table and has a lower surface to which abrasive stones containing abrasive grains are fixed is used for example (refer to Japanese Patent Laid-Open No. 2000-288881 for example). After the work piece is held on the chuck table, while this chuck table and the grinding wheel are each rotated, the grinding wheel is lowered and the abrasive stones are pressed against the work piece, which can grind the work piece.
When the work piece is ground by using the above-described grinding wheel, holes (chip pockets) serving as escape places for grinding waste generated by the grinding are formed in the contact surfaces of the abrasive stones in contact with the work piece. The grinding waste are discharged through these chip pockets and thereby the grinding performance of the grinding wheel is properly kept. However, in some cases, it is impossible to form the chip pockets stably and continuously depending on the specifications of the abrasive stones. In this case, the grinding performance deteriorates along with the progression of the grinding and it becomes easy for a crack to be formed in the ground surface of the work piece.
Therefore, an object of the present invention is to provide a grinding wheel whose grinding performance can be easily kept.
In accordance with an aspect of the present invention, there is provided a grinding wheel including a circular disc-shaped base having a fixed end surface in contact with a mount of grinding apparatus and a free end surface on an opposite side to the fixed end surface, and a plurality of abrasive stone chips arranged in a ring manner on the free end surface of the base. The abrasive stone chips are each formed into a block shape having a surface in which two or more kinds of plate-shaped abrasive stone members containing abrasive grains and a binder are exposed to the outside by overlapping the two or more kinds of abrasive stone members. The surfaces of the abrasive stone chips serve as grinding processing surfaces that get contact with a work piece.
In the one aspect of the present invention, the material of the binder may be any of a metal, a ceramic material, and a resin. Furthermore, in the one aspect of the present invention, it is preferable that the abrasive stone chips be formed by using the two or more kinds of abrasive stone members that are different in at least any of the grain size of the abrasive grain, the blending ratio of the abrasive grain, the material of the binder, the grade, and the porosity.
The grinding wheel according to the one aspect of the present invention includes plural abrasive stone chips each formed into a block shape by overlapping the two or more kinds of plate-shaped abrasive stone members containing the abrasive grains and the binder, and the surfaces in which the two or more kinds of abrasive stone members are exposed to the outside in the abrasive stone chips serve as the grinding processing surfaces that get contact with the work piece. Therefore, when the work piece is ground by this grinding wheel, recesses corresponding to the layered structure of the abrasive stone members are formed in the grinding processing surfaces of the abrasive stone chips. These recesses play a role similar to that of the chip pocket. That is, grinding waste generated by the grinding are discharged to the outside through the recesses formed in the grinding processing surfaces of the abrasive stone chips. As just described, in the grinding wheel according to the one aspect of the present invention, the recesses that play a role similar to that of the chip pocket can be formed stably and continuously and thus it is easy to keep the grinding performance.
The above and other objects, features and advantages of the present invention and the manner of realizing them will become more apparent, and the invention itself will best be understood from a study of the following description and appended claims with reference to the attached drawings showing a preferred embodiment of the invention.
An embodiment of the present invention will be described with reference to the accompanying drawings.
For example, grinding processing of a work piece (not shown) can be carried out by rotating the grinding wheel 2 and pressing the abrasive stone chips 6 against the ground surface of the work piece while feeding the grinding liquid from the feed ports 4d. Typical examples of the work piece are a semiconductor wafer, a resin substrate, and a ceramic substrate. However, another plate-shaped object may be employed as the work piece.
When the grinding wheel 2 formed as above is mounted on grinding apparatus (not shown), the side of the first surface 4a of the base 4 is fixed to a mount (not shown) of the grinding apparatus. That is, the first surface 4a of the base 4 serves as a fixed end surface in contact with the mount of the grinding apparatus. On the other hand, the second surface 4b on the opposite side serves as a free end surface that is not fixed to the grinding apparatus.
The abrasive stone member 8 and the abrasive stone member 10 are different in the grain size of the abrasive grain, the blending ratio of the abrasive grain, the material of the abrasive grain, the material of the binder, the grade, the porosity, etc. for example and exhibit different grinding properties. These abrasive stone members 8 and 10 are overlapped in such a manner that the first surface 8a of the abrasive stone member 8 and the first surface 10a of the abrasive stone member 10 are in tight contact with each other for example, to become the abrasive stone chip 6 having a rectangular parallelepiped shape. That is, the abrasive stone chip 6 according to the present embodiment is formed into a rectangular parallelepiped shape by stacking two kinds of abrasive stone members 8 and 10 having different grinding properties. Although two kinds of abrasive stone members 8 and 10 are alternately overlapped to form the abrasive stone chip 6 in the present embodiment, three or more kinds of abrasive stone members may be overlapped in arbitrary order. Furthermore, although ten layers of abrasive stone members 8 and 10 in total are used to form the abrasive stone chip 6 in the present embodiment, the numbers, size, and so forth of the abrasive stone members 8 and 10 are arbitrary.
As shown in
The abrasive stone chip 6 formed in this manner is fixed to the second surface (free end surface) 4b of the base 4 in such a manner that the second surface 6b (or third surface 6c) serves as a grinding processing surface that gets contact with the work piece.
As described above, the grinding wheel 2 according to the present embodiment includes the plural abrasive stone chips 6 formed into a rectangular parallelepiped shape by stacking two kinds of plate-shaped abrasive stone members 8 and 10 containing the abrasive grains and the binder, and the second surfaces 6b of the abrasive stone chips 6, in which the abrasive stone members 8 and 10 are both exposed to the outside, serve as the grinding processing surfaces that get contact with a work piece. Therefore, when the work piece is ground by this grinding wheel 2, a stripe-like recess and projection structure (recesses) corresponding to the layered structure of the abrasive stone members 8 and 10 is formed in the grinding processing surfaces of the abrasive stone chips 6. The recesses in this recess and projection structure play a role similar to that of the chip pocket. That is, grinding waste generated by the grinding are discharged to the outside through the recesses formed in the grinding processing surfaces of the abrasive stone chips 6. As above, in the grinding wheel 2 according to the present embodiment, the recesses that play a role similar to that of the chip pocket can be formed stably and continuously and thus it is easy to keep the grinding performance.
(Working Example)
In the present working example, a more specific example of the grinding wheel according to the above-described embodiment will be described. However, the present invention is not limited by the description of the present working example.
In the present working example, abrasive stone chips were formed by alternately overlapping abrasive stone members (A) obtained by mixing 25-volume % abrasive grains composed of diamond in a binder composed of a resin and abrasive stone members (B) obtained by mixing 12.5-volume % abrasive grains composed of diamond in the binder composed of the resin. The size of each abrasive stone member was set to about 5 mm×20 mm×0.125 mm. Furthermore, each abrasive stone chip was formed by overlapping eight abrasive stone members (A) and eight abrasive stone members (B) (sixteen layers in total). That is, the size of the abrasive stone chip was about 5 mm×20 mm×2 mm. The material, size, number of stacked layers, and so forth of the abrasive stone members can be arbitrarily changed according to the specifications of the abrasive stone chip.
The outline of a manufacturing step of the abrasive stone chips will be described. First, a thermosetting resin in powder form and abrasive grains are mixed and put in a mold for forming abrasive stone members. Next, this mixture material is pressed (cold working) to obtain sheet-shaped powder compacts. Thereafter, the formed powder compacts are overlapped and pressed (hot working) at a proper temperature. Thereby, the abrasive stone chips each composed of a sintered body obtained by making the plural layers (sixteen layers) monolithic are obtained.
The plural abrasive stone chips obtained in the above-described manner are fixed to a base by using an adhesive or the like in such a manner that surfaces in which the two kinds of abrasive stone members of the abrasive stone chip are both exposed to the outside serve as grinding processing surfaces that get contact with a work piece. When a silicon wafer was ground by the grinding wheel formed in this manner, recesses were formed in the grinding processing surfaces and the grinding performance could be properly kept.
The present invention is not limited to the description of the above embodiment and working example and can be carried out with various changes. For example, in the above-described working example, the abrasive stone chips are formed by overlapping abrasive stone members (A) and abrasive stone members (B) that are different in the blending ratio (content) of the abrasive grain. However, the present invention is not limited to this form. It is also possible to form the abrasive stone chips by using abrasive stone members different in the grain size of the abrasive grain, abrasive stone members different in the material of the binder, abrasive stone members different in the grade, abrasive stone members different in the porosity, or the like.
Furthermore, in the above-described embodiment, the rectangular parallelepiped-shaped abrasive stone chip 6 having a predetermined layered structure is described. However, the abrasive stone chip according to the present invention can be formed into an arbitrary structure (shape). It suffices for the abrasive stone chip according to the present invention to be formed into a block shape having a surface in which at least two kinds of abrasive stone members are exposed to the outside.
Furthermore, in the above-described embodiment, the abrasive stone chip 6 formed of different two kinds of abrasive stone members 8 and 10 is described. However, it is also possible to form an abrasive stone chip by overlapping completely the same abrasive stone members. In this case, recesses are readily formed near the interface between adjacent abrasive stone members and the grinding performance can be properly kept.
The present invention is not limited to the details of the above described preferred embodiment. The scope of the invention is defined by the appended claims and all changes and modifications as fall within the equivalence of the scope of the claims are therefore to be embraced by the invention.
Number | Date | Country | Kind |
---|---|---|---|
2015-051103 | Mar 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3028710 | Pratt | Apr 1962 | A |
6196911 | Preston | Mar 2001 | B1 |
7677955 | Kajiyama | Mar 2010 | B2 |
9764442 | Suh | Sep 2017 | B2 |
20010011004 | Yamaguchi | Aug 2001 | A1 |
20020077054 | Sung | Jun 2002 | A1 |
20030054746 | Nussbaumer | Mar 2003 | A1 |
20030084894 | Sung | May 2003 | A1 |
20060009134 | Katayama | Jan 2006 | A1 |
20080202488 | Kim | Aug 2008 | A1 |
20090094902 | Hou | Apr 2009 | A1 |
20100035530 | Gosamo | Feb 2010 | A1 |
20120288677 | Ishizu | Nov 2012 | A1 |
20140051340 | Gosamo | Feb 2014 | A1 |
20160136773 | Suh | May 2016 | A1 |
Number | Date | Country |
---|---|---|
2000-288881 | Oct 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20160263729 A1 | Sep 2016 | US |