Groundwater and subsurface remediation

Information

  • Patent Grant
  • 8557110
  • Patent Number
    8,557,110
  • Date Filed
    Friday, January 15, 2010
    15 years ago
  • Date Issued
    Tuesday, October 15, 2013
    11 years ago
Abstract
A method of treating a site containing contaminants and apparatus are described The method and apparatus sparges the site with an air/ozone gas stream delivered with a hydroperoxide, which is a substantial byproduct of a reaction of a contaminant present in the aquifer or soil formation with the ozone.
Description
BACKGROUND

This invention relates generally to groundwater and subsurface soil remediation.


There is a well recognized need for removal of subsurface contaminants that exist in aquifers and surrounding soils. Such contaminants can include various man-made volatile hydrocarbons including chlorinated hydrocarbons, e.g., volatile organic compounds such as chlorinated olefins including tetrachloroethylene, trichloroethylene, c is 1,2-dichloroethane and vinyl chloride. Other compounds include aromatic or polyaromatic ring compounds such as benzene, toluene, methylbenzene, xylenes, naphthalene, and propellents or explosives such as nitro anilines trinitrotoluene, and so forth. The groups of compounds are characterized by aromatic ring structures also include alkyl substituted aromatic hydrocarbons.


SUMMARY

According to an aspect of the present invention, a method of treating a site includes sparging the site with an air/ozone gas stream delivered with a hydroperoxide, which is a substantial byproduct of a reaction of a contaminant present in the aquifer or soil formation with the ozone.


The air/ozone gas stream is delivered through a microporous diffuser that delivers the air/ozone gas in microbubbles. In some embodiments, the hydroperoxide is selected from the group consisting of formic peracid, hydroxymethyl hydroperoxide, 1-hydroxylethyl hydroperoxide, and chloroformic peracid or their derivatives. The hydroperoxide is selected based on the type of contaminant present in the site. The hydroperoxide is delivered as a surface layer over microfine bubbles including the air/ozone gas. Sparging introduces air including the oxidizing gas into the microporous diffuser. The microporous diffuser also introduces promoters or nutrients such as catalyst agents including iron containing compounds such as iron silicates or palladium containing compounds such as palladized carbon and platinum or platinum containing compounds.


According to an additional aspect of the invention, an apparatus for treating subsurface water includes a well having a casing with an inlet screen and outlet screen to promote recirculation of water into the casing and through surrounding ground area and at least one microporous diffuser disposed in the injection well that allows delivery of a pair of fluids with one of the fluids forming a coating over the other of the fluids. The apparatus also includes an ozone generator, an air compressor and compressor/pump control mechanism to deliver ozone (O3) from the ozone generator to the microporous diffuser, and a source of the liquid hydroperoxides selected from the group consisting of formic peracid, hydroxymethyl hydroperoxide, 1-hydroxylethyl hydroperoxide, and chloroformic peracid or their derivatives. The apparatus includes a pump to deliver the selected liquid hydroperoxide to the microporous diffuser.


One or more of the following advantages may be provided by one or more aspects of the invention.


The hydroperoxides promote decomposition of chlorinated olefins by forming a secondary liquid-phase reactive interface to the contaminants such as volatile chlorinated olefins and volatile hydrocarbons including chlorinated hydrocarbons, chlorinated olefins such as tetrachloroethylene, trichloroethylene, c is 1,2-dichloroethane and vinyl chloride and other compounds e.g., aromatic ring compounds, propellants, explosives, and so forth that are found as contaminants compounds as the contaminants enter the gaseous phase within the bubbles.


Promoters or nutrients are introduced with the hydroperoxides. The hydroperoxides are produced by reactions that decompose the contaminants. In the presence of the hydroperoxides, the promoters or nutrients can combine with the hydroperoxides and promote and accelerate the decomposition reactions. Further, when treating contaminants that have large number of double bonded carbon atoms or which are present in super-saturated conditions the addition of the hydroperoxides promotes rapid and efficient Criegee reactions of the contaminants.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1B are cross-sectional views showing soil formations and underlying aquifers with two embodiments of a sparging apparatus.



FIGS. 2A-3A and 2B-3B are respectively longitudinal cross-sectional and plan cross-sectional views of a microporous diffuser useful in the arrangement of FIG. 1.



FIG. 4 is a flow chart of a process flow using the system of FIG. 1A or FIG. 1B.



FIGS. 5A and 5B is are side views of an embodiment of a non-water-expanded and a water-expanded packer, respectively.



FIG. 5C is a top view of an embodiment of a packer.





DETAILED DESCRIPTION

Referring to FIG. 1A, an arrangement of treatment system 10 to treat contaminants in subsurface aquifer 12 includes sparging apparatus 14 that is disposed through soil formation 16. In this arrangement, the sparging apparatus is disposed through vadose zone 16a and underlying aquifer 12. Sparging apparatus 14 includes casing 18 that is positioned through bore hole 19 disposed through soil formation 16. Casing 18 has inlet screen 18a disposed on an upper portion thereof and outlet screen 18b disposed on a bottom portion thereof. Disposed through casing 18 is microporous diffuser 50 (FIG. 2A, 2B) or 70 (FIG. 3A, 3B), as will be described below. Also disposed in the casing is packer 17 that isolates upper screen 18a from lower screen 18b and appropriate piping to connect sources of decontamination agents to microporous diffuser 50, 70. When fluid is injected through microporous diffuser 50, 70, packer 17 and screens 18a, 18b enable a re-circulation water pattern 13 to emanate about sparging apparatus 14.


Referring to FIGS. 5A, 5B and 5C, packer 17 may be constructed of material 115 that is compatible for use with ozone or oxidizing agents. Material 115 can further withstand long-term flexation. Packer 17 may be temporarily or permanently inserted within a well or a borehole and functions to isolate or seal a portion of the well, well annulus, or borehole at a specific level.


In an embodiment, packer material 115 may be constructed of a high density polyethylene (HDPE) material. Material 115 may form an inner wall and an outer wall. Material 115 may be constructed to form closed compartment 117 and may be generally shaped like a mesh bag or “sock” which may be sealed at both ends. Packer 17 may be constructed to form internal space 113, an aperture for the insertion of the gas and liquid lines as illustrated in FIG. 1B. Material 115 may be a fine mesh and may be water permeable.


Compartment 117 may be filled with material such as pellets 114 that expand upon contact with water. In an embodiment pellets 114 may be bentonite pellets. It is to be appreciated that pellets 114 are not limited to any shape or type of material. Pellets 114 may be of various sizes and shapes may be placed inside compartment 117. In a preferred embodiment pellets 114 are ¼ inch bentonite pellets.


Turning to FIG. 5B, pellets 114 absorb water. As pellets 114 increase in size, material 115 forming packer 17 expands to seal a portion of the well, well annulus, or borehole.


Packer 17 may have plug 116. Plug 116 may be constructed of any material. In a preferred embodiment, plug 116 is constructed of Teflon or silicon. Plug 116 may be placed inside the distal end of compartment 117. Plug 116 may function like a washer or stopper, to lessen pitting by microbubbles and bentonite spread into well screen regions. Plug 116 may be constructed to be generally circular in shape, comprising a generally circular aperture to allow the air and liquid lines, as illustrated in FIG. 1B, to pass through plug 116.


Arrangement 10 also includes treatment control system 30 including air compressor 32, e.g., pump that feeds a mixture of air/ozone into microporous diffusers 50, 70. Air compressor 32 delivers air mixed with ozone (O3) that is produced from ozone generator 36 into the microporous diffusers. The mixture of air/ozone affects substantial removal of contaminants such as various man-made volatile hydrocarbons including chlorinated hydrocarbons, chlorinated olefins such as tetrachloroethylene, trichloroethylene, c is 1,2-dichloroethane and vinyl chloride and other compounds e.g., aromatic ring compounds, propellants, explosives, and so forth that are found as contaminants.


Treatment system 10 also includes a delivery mechanism e.g., second pump 38 or other feed arrangement that supplies a liquid decontamination agent such as hydrogen peroxide or other hydroperoxides into microporous diffuser 50, 70. The hydrogen peroxide or other hydroperoxides are provided via source 40. Also supplied to the microporous diffusers are promoters or nutrients, as well as catalyst agents 42 including iron containing compounds such as iron silicates, ferrous iron, acetic acid, or palladium containing compounds such as palladized carbon or other transition metals in acid solution. In addition, other materials such as platinum may alternatively be used. The promoters or nutrients are introduced with the hydroperoxides. The hydroperoxides are produced by reactions that decompose the contaminants. In the presence of the hydroperoxides, the promoters or nutrients can combine with the hydroperoxides and promote and accelerate the decomposition reactions.


Referring to FIG. 1B an alternate embodiment of treatment system 10′ is shown. Treatment system 10′ treats contaminants in subsurface aquifer 12′ includes sparging apparatus 14′ that is disposed through soil formation 16′. In this arrangement, the sparging apparatus is disposed through vadose zone 16a′ and underlying aquifer 12′. Sparging apparatus 14 includes microporous diffuser 50 (FIG. 2A, 2B) or 70 (FIG. 3A, 3B), as will be described below. Microporous diffuser 50 or 70 is positioned through bore hole 19 disposed through soil formation 16 or alternatively can be of the type that is injected into the soil formation. The microporous diffuser is coupled to appropriate piping to connect sources of decontamination agents to microporous diffuser 50, 70. When fluid is injected through microporous diffuser 50, 70, microporous diffusers enables water pattern 13′ to emanate about diffuser. Light bubbles tend to travel upwards whereas heavier bubbles tend to travel downwards.


Arrangement 10′ also includes treatment control system 30′ generally similar to system 30′ (FIG. 1A) including air compressor 32′ that feeds a mixture of air/ozone into microporous diffusers 50, 70. Air compressor 32′ delivers air mixed with ozone (O3) that is produced from ozone generator 36 into the microporous diffusers. Treatment system 10′ also includes second pump 38′ that supplies a liquid decontamination agent such as hydrogen peroxide or other hydroperoxides into microporous diffuser 50, 70. The hydrogen peroxide or other hydroperoxides are provided via source 40′. Also supplied to the microporous diffusers are promoters or nutrients, as well as catalyst agents 42′ as also mentioned above.


Treatment system 10 or system 10′ makes use of a gas-gas reaction of contaminant vapors with ozone, as will be described below, supplemented by a liquid phase reaction provided by a flow of hydrogen peroxide and preferable other hydroperoxides, described below. The ozone is trapped inside of micro bubbles produced from the air/ozone escaping microporous diffusers 50, 70 and being trapped in water from the aquifer. On the other hand, hydrogen peroxide or other hydroperoxides provide a thin film coating over the outer surfaces of the bubbles.


The hydroperoxides promote decomposition of chlorinated olefins by forming a secondary liquid-phase reactive interface to the contaminants such as volatile chlorinate olefins and volatile hydrocarbons including chlorinated hydrocarbons, chlorinated olefins such as tetrachloroethylene, trichloroethylene, c is 1,2-dichloroethane and vinyl chloride and other compounds e.g., aromatic ring compounds, propellants, explosives, and so forth that are found as contaminants compounds as the contaminants enter the gaseous phase within the bubbles. Suitable hydroperoxides can be as these listed in Table 1.











TABLE 1







Allen's Reagent




Rate Reaction


Structure
Name
Constant

















HCOOOH
Formic Peracid
218


H2O2
Hydrogen peroxide
0.27


HOCH2OOH
Hydroxymethyl Hydroperoxide
3.4 × 10−3


CH3CH(OH)OOH
1-Hydroxylethyl Hydroperoxide
  5 × 10−2


(CH3)2C(OH)OOH
Chloroformic Peracid
 ~2 × 10−5









These hydroperoxides or derivatives thereof react at different rates with the olefins, as shown for the Allen's Reaction Rate Constants in Table 1. The presence of the hydroperoxides as a coating over the gas bubbles contact contaminants such as compounds containing aromatic rings to break the rings into fragments that partition from liquid to gas phase bringing them more rapidly into contact with the gaseous ozone within the microfine bubbles. The presence of iron of a transition metal e.g., nickel or tin, or platinum or palladium solution can assist the reaction by becoming electron donors or act as catalyst agents.


In general, the hydroperoxides are intermediary compounds that are produced from a reaction of ozone with particular olefins. Thus, for other olefins the appropriate hydroperoxide would be the intermediary hydroperoxide that results from the reaction of the olefin with ozone.


The use of hydroperoxides and transition metals such as, iron, palladiuim, platinum, nickel and tin promote hydroxyl radical (OH.) formation at the reactive interface of the microbubble coating region. The formation of hydroxyl radicals further leads to the generation of additional free radicals resulting in Criegee-like degradation of non-halogenated double-bond structures such as aromatics and non-double bond compounds of ether such as MtBE. Certain organics may be decomposed more rapidly by OH• than by O3.


While ozone in high concentration is recognized as an agent for rapid decomposition of semi-volatile or poorly volatile polyaromatic ring compounds in soil, the combination of a slowly reacting hydroperoxides and ozone provides improved efficiency of delivery and reaction. This results since the gaseous partitioning pulls compounds through the hydroperoxide interface reducing extraneous secondary reactions that occur with soil components as observed when hydrogen peroxide is injected as a solution into fractured soil formations, as in so called Fenton's agent reactions.


As mentioned above, these hydroperoxides, formic peracid, hydrogen peroxide, hydroxymethyl hydroperoxide, 1-hydroxymethyl hydroperoxide, and chloroformic peracid, are intermediary products in reactions involving chlorinated olefins and ozone. As by-products of reactions of the chlorinated olefins with ozone the presence of the hydroperoxides as a coating on the bubbles serves to mitigate other competing reactions that can occur when the chlorinated olefins double bonded carbon atoms are attacked by the ozone as the chlorinated olefins enter the bubbles.


The coating on the bubbles provided by microporous diffusers 50, 70 can be consider to be a gas-liquid-emulsion since the micro bubbles are dispersed gases with film coatings. Rather than a foam, the material co-exists in liquid water and does not necessarily rise to the top surface. Moreover, the hydroperoxide coating is not technically in solution with the gas. A solution would have the ozone gas and hydroperoxide liquid dispersed homogeneously without chemical change. In this arrangement, the coating on the bubbles exist separate from the gas inside the bubbles.


Referring now to FIGS. 2A-2B, a first embodiment of microporous diffuser 50 is shown. Microporous diffuser 50 includes first cylindrical member 56 comprised of a hydrophobic material that provides an outer cylindrical shell for microporous diffuser 50. Cylindrical member 56 has sidewall 56a that is comprised of a large plurality of micropores. A second cylindrical member 60 is coaxially disposed within first cylindrical member 56. Second cylindrical member 60 is comprised of a hydrophobic material e.g., high density polyethylene or polyvinyl chloride etc. and has sidewall 60a that is comprised of a large plurality of micropores. Also disposed within the confines of first microcylinder 60 are a plurality of cylindrical members 58, here that have sidewalls 58a having a large plurality of micropores and also comprised of a hydrophobic material.


A proximate end of cylindrical member 60 is coupled to a first inlet port provided from first inlet cap 52 and proximate ends of the plurality of cylindrical members 58 are coupled to second inlet ports generally denoted as 52b. At the opposite end of microporous diffuser 50 is end cap 54 that covers distal ends of cylindrical members 56 and 58. Here distal ends of the plurality of cylindrical members are sealed by separate caps 59 but could be terminated by a common end cap as end cap 54. End cap 54, in conjunction with cap 52, seals ends of microporous diffuser 50.


Cylindrical members 56, 58 and 60 are cylindrical in shape and have a plurality of microporous openings constructed through sidewalls 56a, 58a and 60a, respectively thereof, having pore sizes matched to a porosity characteristic of the surrounding formation to produce a pore size effective for inducing gas-gas reactions in bubbles that emanate from the microporous diffusers into the surrounding soil formations and/or aquifer. The sidewalls can have pore diameters in a range of 1-200 microns, preferably 1 to 50 microns or more preferably 5 to 20 microns.


The combination of the inlet cap and the end cap seals microporous diffuser 50 permitting liquid and gas to escape by the porous construction of sidewalls of the microporous diffusers. The microporous diffuser can be filled with a microporous material such as microbeads having mesh sizes from 20 to 200 mesh, or sand pack, or porous hydrophilic plastic to allow introducing a liquid into the porous spaces. In this arrangement, the liquid is one of the aforementioned hydroperoxides, formic peracid, hydrogen peroxide, hydroxymethyl hydroperoxide, 1-hydroxymethyl hydroperoxide, and chloroformic peracid or derivatives, and so forth.


Referring now to FIGS. 3A and 3B, an alternative embodiment 70 of the microporous diffuser is shown. Microporous diffuser 70 includes outer cylindrical member 76 having sidewall 76a within which is disposed inner cylindrical member 78 having sidewall 78a Inner cylindrical member 78 is spaced from the sidewall of the outer cylindrical member by space 77. Space 77 between inner and outer cylindrical members 76, 78 is filled with a packing material comprised of glass beads or silica particles (silicon dioxide) or porous plastic which is, in general, hydrophilic in nature. The space is coupled to input port 72 that receives a liquid and catalyst and/or promoters or nutrients from pump 39 (FIG. 2). The microporous diffuser has inner cylindrical member 78 disposed coaxial or concentric to cylindrical member 78.


Sidewalls of each of the cylindrical members can have a pore diameter in the range of 1 to 200 microns. Depending on soil conditions various ranges can be used exemplary ranges are 50 to 200 microns for very coarse gravel-like soils, 1 to 50 microns for sandy-type soils or 1-5 to 20 microns for more silty type soils. A proximate end of the cylindrical member is coupled to inlet port 72a that is fed an air-ozone mixture from pump 36. The microporous diffuser also includes end cap 74 which secures distal ends of cylinder 76, 78. The combination of inlet cap 72 and end cap 78 seals the microporous diffuser permitting liquid and gas to escape by the porous combination of construction of the sidewalls of the microporous diffusers. Also in this arrangement, the liquid is one of the aforementioned hydroperoxides, e.g., formic peracid, hydrogen peroxide, hydroxymethyl hydroperoxide, 1-hydroxymethyl hydroperoxide, and chloroformic peracid, etc.


Thus, when using microporous diffusers 50 or 70 in the arrangement of FIG. 1, an air-ozone mixture is injected through port 52a, 72a (microporous diffusers 50, 70, respectively) and produces bubbles of the diameters according to the pore size of the sidewalls of the cylinder. Liquid hydroperoxides e.g., formic peracid, hydrogen peroxide, hydroxymethyl hydroperoxide, 1-hydroxymethyl hydroperoxide, and chloroformic peracid etc., as set forth in Table 1 is introduced into microporous diffusers 50 and 70 via inlet ports 52b and microporous diffuser 50 or inlet port 72b and microporous diffuser 70. The presence of liquid in the microporous diffusers will coat microbubbles that emerge from the central portions of the microporous diffusers providing the liquid-gas emulsion referred to above. This liquid-gas emulsion exits the microporous diffusers 50, 70 and travels through the surrounding soil formation and aquifer.


The Criegee reaction of ozone in a water gas mixture is promoted by the microbubble emulsion. The hydroperoxide compounds and ozone produce reactions during the process of water to gas partitioning with volatile organic compounds or absorbed liquid/water to gas partitioning with semi-volatile organic compounds. The breakdown of chlorinated or halogenated solvents in an aqueous solution by Criegee decomposition involving ozone yields various hydroperoxide products such as those set forth in Table 1. To promote higher concentration of volatile organic and semi-volatile organic destruction, the organic hydroperoxides are injected with the laminated microporous diffusers 50, 70 as a coating for the microporous emulsions. The injection which occurs under pressure produces an aerosol in system 10 where water is reduced to particles of micron size. Therefore to practice the methods described below, any system that can produce an aerosol of the hydroperoxide coated bubbles may be used.


The peroxide acid solution becomes a coating of a microsize bubble occupying a fifth or less of the volume of the gas injected. It is believed that at this point, the coating is not in solution with the water or ozone. As used a solution can be considered as a gas, liquid or solid dispersed homogeneously in a gas, liquid or solid without chemical change. Rather, the hydroperoxide/water/ozone is a gas-liquid emulsion as referred to above. Attaching to the surface of a semi-volatile compound such as an olefin e.g., nitroaniline or nitrotoluene or polyaromatic ring compounds the coating reacts with the aromatic rings of such compounds to break the rings into fragments that partition from a liquid to gas phase bringing them even more rapidly into contact with the gaseous ozone content.


Referring to FIG. 4, a process 100 using arrangement 10 of FIG. 1 for treating groundwater and surface waters includes characterizing 102 a site. Characterizing the site includes determining the porosity characteristics of surrounding soil formations, depth to aquifers, thickness of aquifers, the hydraulic conductivity of the aquifer, and the nature and extent of contaminants, e.g., types and concentrations in aqueous solution and in the soils. After the site has been characterized, equipment of the arrangement shown in FIG. 1 or an equivalent arrangement are established 104 on the site. The equipment established 104 can be comprised of a large plurality of apparatuses of the type shown in FIG. 1 disposed in a corresponding plurality of wells provided on the site in accordance with the volume of subsurface soils and water that the apparatus can treat. Many different configurations of the equipment can be used such as placing multiple microporous diffusers 50, 70 into a single well or using one or more of the microporous diffusers in combination with microporous well screens and packers to produce a bubble chamber and so forth. Typically, an apparatus having single laminar point and double well screens can cover a radii of 30 ft. and 60 ft., respectively for 15-20 ft. thick aquifers.


Once the equipment has been established on a site, process 100 initiates 106 a flow of air and ozone (O3) through microporous diffusers 50, 70. In response, the process 100 produces microbubbles of appropriate size determine in accordance with the porosity characteristics of the microporous diffusers that attempt to match that of the surrounding soil formation. As described above, generally this porosity characteristic is in a range of 5 to 200 microns. Other ranges may be used however. The flow of air and ozone continues through the microporous diffusers 50, 70 and produces a dispersed pattern of microfine bubbles through the treatment area. During process 100, the wells are monitored 108 to determine when a microfine bubble pattern of appropriate dispersion through the treatment zone has been established. Bubble dispersion can be determined by dissolved oxygen distribution, oxidative reduction potential measurements, or by direct measurement of micro-bubbles (bubble counters). Once this pattern has been established the process initiates 110 a flow of a suitable hydroperoxide(s) selected in accordance with the contaminant(s) being treated. The hydroperoxides are in the form of liquid that is provided in the outer portions of microporous diffusers 50, 70. Initiation 110 of the flow of hydroperoxides allows the hydroperoxides to coat the microbubbles as they emerge from the center of microporous diffusers 50, 70 producing the abovementioned hydroperoxide bubble emulsion. The process periodically samples 112 groundwater to determine the cleanup status of the site. Once contaminants in the groundwater have reached a certain level, process 100 can be terminated. Alternatively, the process can be used as a fence to continually and indefinitely pump air-ozone and a suitable hydroperoxide into a portion of a contaminated site to contain a migrating plume of contaminants from reaching a critical area such as residential wells, aquifers and so forth.


Typical conditions for the air/ozone flow are as follows:






















laminar





hydro-

micro-




Ozone
peroxide
recirculation
porous


Unit
Air
gm/day
gal/day
wells
diffuser







wall
 3-5 CFM
144-430 
5-50
1-4
1-8 


mount


pallettized
10-20 CFM
300-1000
20-200
1-8
1-16









The percent concentration of hydroperoxide in water is typically in a range of (2-20) percent although other concentrations can be used. The flow is adjusted to the total mass of the contaminants in the soil and water. If high concentrations (greater than 50,000 parts per billion in water or 500 mg/kg in soil) of the contaminants are present sufficient hydroperoxides should be added in insure efficient decomposition by the Criegee reaction mechanism. Preferably this would occur in the presence of an accelerant (e.g., transition metals iron, nickel or zinc, and/or catalysts palladium or platinum).


Further, when treating contaminants that have large number of double bonded carbon atoms or which are present in super-saturated concentrations e.g., (greater than 200,000 parts per billion in water or 5000 mg/kg in soil) the addition of the hydroperoxides is highly desirable to promote rapid and efficient Criegee reactions on the site. This is because, the mole volume or ratio of moles of the contaminant to moles of ozone becomes high in the presence large number of double bonded carbon atoms or high concentrations, while the concentration of the ozone is limited to that which can be suitable injected taking into consideration generation capacity, stress on the apparatus, site conditions and desire to maintain a Criegee mechanism.


Other embodiments are within the scope of the appended claims.

Claims
  • 1. An apparatus for treating subsurface water comprising: a microporous diffuser comprising: a first cylindrical member and a second cylindrical member, each of the first and second cylindrical members having sidewalls comprising a plurality of micropores, the second cylindrical member being coaxially disposed within the first cylindrical member, the first and second cylindrical members being disposed in the subsurface water to deliver at least a first fluid and a second fluid to the first and second cylindrical members, respectively, with one of the fluids forming a coating over the other of the fluids;an ozone generator;an air compressor; anda control mechanism to deliver an air and ozone (O3) mixture from the ozone generator and air compressor to one of the first and second cylindrical members as one of the fluids;
  • 2. The apparatus of claim 1 further comprising: a source of a liquid hydroperoxide.
  • 3. The apparatus of claim 2 wherein the liquid hydroperoxide is selected from the group consisting of formic peracid, hydroxymethyl hydroperoxide, 1-hydroxylethyl hydroperoxide, and chloroformic peracid or their derivatives.
  • 4. The apparatus of claim 1, the microporous diffuser further comprising a plurality of third cylindrical members disposed within confines of the first cylindrical member and having sidewalls comprising a plurality of micropores.
  • 5. The apparatus of claim 4 wherein air and ozone is delivered to the second cylindrical member and a liquid hydroperoxide is delivered to the plurality of third cylindrical members.
  • 6. The apparatus of claim 4 wherein the plurality of third cylindrical members disposed within confines of the first cylindrical member have a porosity characteristic that permits bubbles in a range of 50 to 200 microns to be released from the apparatus.
  • 7. The apparatus of claim 1 further comprising a feed mechanism to deliver a selected liquid hydroperoxide to at least one of the first and second cylindrical members as the second one of the fluids.
  • 8. The apparatus of claim 7 wherein the feed mechanism is a pump.
  • 9. The apparatus of claim 1 wherein the air and ozone mixture is delivered to the second cylindrical member and a liquid hydroperoxide is delivered to the first cylindrical member.
  • 10. The apparatus of claim 9 wherein when the air and ozone mixture is delivered to the second cylindrical member, bubbles are produced that tend to travel upwards through soil surrounding the apparatus.
  • 11. The apparatus of claim 1 wherein a sidewall of the first and second cylindrical member has a porosity characteristic that permits bubbles of between 5-200 microns in diameter to be released into a surrounding formation.
  • 12. The apparatus of claim 1 further being disposed through a vadose zone and an underlying aquifer in a soil formation.
  • 13. The apparatus of claim 12 further being coupled to appropriate piping to connect to the air and ozone mixture and the apparatus.
  • 14. The apparatus of claim 1 further comprising a well having a casing.
  • 15. The apparatus of claim 14, the casing further comprising an inlet well screen and an outlet well screen to promote recirculation of water into the casing and through surrounding ground area.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 11/409,892 filed Apr. 24, 2006, now U.S. Pat. No. 7,666,313 which is a continuation of U.S. patent application Ser. No. 10/602,256, filed Jun. 23, 2003, now U.S. Pat. No. 7,033,492, which is a divisional of U.S. patent application Ser. No. 09/610,830, filed Jul. 6, 2000, now U.S. Pat. No. 6,582,611. Each of these patents and applications are hereby incorporated by reference in their entirety.

US Referenced Citations (188)
Number Name Date Kind
1920719 Stich Aug 1933 A
2517525 Cummings Aug 1950 A
2845185 Winderweedle, Jr. Jul 1958 A
2946446 Herbert Jul 1960 A
3027009 Price Mar 1962 A
3206178 Lamb Sep 1965 A
3219520 Box Nov 1965 A
3276994 Andrews Oct 1966 A
3441216 Good Apr 1969 A
3545731 McManus Dec 1970 A
3570218 Finney Mar 1971 A
3669276 Woods Jun 1972 A
3670817 Saucier Jun 1972 A
3708206 Hard et al. Jan 1973 A
3808123 Neel Apr 1974 A
3814394 Murray Jun 1974 A
3823776 Holmes Jul 1974 A
3997447 Breton et al. Dec 1976 A
4007118 Ciambrone Feb 1977 A
4021347 Teller et al. May 1977 A
4048072 McCullough Sep 1977 A
4049552 Arff Sep 1977 A
4064163 Drach et al. Dec 1977 A
4118447 Richter Oct 1978 A
4178239 Lowther Dec 1979 A
4203837 Hoge et al. May 1980 A
4268283 Roberts May 1981 A
4298467 Gartner et al. Nov 1981 A
4310057 Brame Jan 1982 A
4351810 Martinez et al. Sep 1982 A
4360234 Hsueh et al. Nov 1982 A
4614596 Wyness Sep 1986 A
4622139 Brown Nov 1986 A
4639314 Tyer Jan 1987 A
4684479 D'Arrigo Aug 1987 A
4695447 Shultz Sep 1987 A
4696739 Pedneault Sep 1987 A
4730672 Payne Mar 1988 A
4780215 Carlson Oct 1988 A
4804050 Kerfoot Feb 1989 A
4832122 Corey et al. May 1989 A
4837153 Laurenson, Jr. Jun 1989 A
4838434 Miller et al. Jun 1989 A
4844795 Halwani Jul 1989 A
4849114 Zeff et al. Jul 1989 A
4883589 Konon Nov 1989 A
4941957 Zeff et al. Jul 1990 A
4943305 Bernhardt Jul 1990 A
4960706 Bliem et al. Oct 1990 A
4966717 Kern Oct 1990 A
4971731 Zipperian Nov 1990 A
5006250 Roberts Apr 1991 A
5025113 Sanderson et al. Jun 1991 A
5078921 Zipperian Jan 1992 A
5080805 Houser Jan 1992 A
5116163 Bernhardt May 1992 A
5120442 Kull et al. Jun 1992 A
5122165 Wang Jun 1992 A
5126111 Al-Ekabi et al. Jun 1992 A
5133906 Louis Jul 1992 A
5160655 Donker et al. Nov 1992 A
5167806 Wang et al. Dec 1992 A
5178491 Graves et al. Jan 1993 A
5178755 Lacrosse Jan 1993 A
5180503 Gorelick et al. Jan 1993 A
5205927 Wickramanayake Apr 1993 A
5215680 D'Arrigo Jun 1993 A
5221159 Billings et al. Jun 1993 A
5227184 Hurst Jul 1993 A
5238437 Vowles et al. Aug 1993 A
5246309 Hobby Sep 1993 A
5248395 Rastelli et al. Sep 1993 A
5254253 Behmann Oct 1993 A
5259962 Later Nov 1993 A
5269943 Wickramanayake Dec 1993 A
5277518 Billings et al. Jan 1994 A
5302286 Semprini et al. Apr 1994 A
5332333 Bentley Jul 1994 A
5348664 Kim et al. Sep 1994 A
5362400 Martinell Nov 1994 A
5364537 Paillard Nov 1994 A
5375539 Rippberger Dec 1994 A
5389267 Gorelick et al. Feb 1995 A
5398757 Corte et al. Mar 1995 A
RE34890 Sacre Apr 1995 E
5402848 Kelly Apr 1995 A
5403476 Bernhardt Apr 1995 A
5406950 Brandenburger et al. Apr 1995 A
5425598 Pennington Jun 1995 A
5427693 Mausgrover et al. Jun 1995 A
5430228 Ciambrone et al. Jul 1995 A
5431286 Xu et al. Jul 1995 A
5451320 Wang et al. Sep 1995 A
5464309 Mancini et al. Nov 1995 A
5472294 Billings et al. Dec 1995 A
5480549 Looney et al. Jan 1996 A
5482630 Lee et al. Jan 1996 A
5520483 Vigneri May 1996 A
5525008 Wilson Jun 1996 A
5545330 Ehrlich Aug 1996 A
5560737 Schuring et al. Oct 1996 A
5588490 Suthersan et al. Dec 1996 A
5609798 Liu et al. Mar 1997 A
5615974 Land et al. Apr 1997 A
5620593 Stagner Apr 1997 A
5622450 Grant et al. Apr 1997 A
5624635 Pryor Apr 1997 A
5663475 Elgal Sep 1997 A
5664628 Koehler et al. Sep 1997 A
5667690 Doddema et al. Sep 1997 A
5667733 Waldron, Sr. Sep 1997 A
5676823 McKay et al. Oct 1997 A
5698092 Chen Dec 1997 A
5741427 Watts et al. Apr 1998 A
5827485 Libal et al. Oct 1998 A
5833388 Edwards et al. Nov 1998 A
5851407 Bowman et al. Dec 1998 A
5855775 Kerfoot Jan 1999 A
5860598 Cruz Jan 1999 A
5879108 Haddad Mar 1999 A
5925257 Albelda et al. Jul 1999 A
5954452 Goldstein Sep 1999 A
5967230 Cooper et al. Oct 1999 A
5975800 Edwards et al. Nov 1999 A
6007274 Suthersan Dec 1999 A
6017449 Eriksson et al. Jan 2000 A
6083403 Tang et al. Jul 2000 A
6083407 Kerfoot Jul 2000 A
6086769 Kilambi et al. Jul 2000 A
6136186 Gonzalez-Martin et al. Oct 2000 A
6139755 Marte et al. Oct 2000 A
6149819 Martin et al. Nov 2000 A
6210955 Hayes Apr 2001 B1
6214240 Yasunaga et al. Apr 2001 B1
6217767 Clark Apr 2001 B1
6221002 James Apr 2001 B1
6254310 Suthersan Jul 2001 B1
6283674 Suthersan Sep 2001 B1
6284143 Kerfoot Sep 2001 B1
6306296 Kerfoot Oct 2001 B1
6312605 Kerfoot Nov 2001 B1
6352387 Briggs et al. Mar 2002 B1
6357670 Ganan-Calvo Mar 2002 B2
6364162 Johnson Apr 2002 B1
6391259 Malkin et al. May 2002 B1
6403034 Nelson et al. Jun 2002 B1
6428694 Brown Aug 2002 B1
6436285 Kerfoot Aug 2002 B1
6447676 Kerfoot Sep 2002 B1
6488850 Perriello Dec 2002 B2
6533499 Breeding Mar 2003 B2
6582611 Kerfoot Jun 2003 B1
6596161 Kerfoot Jul 2003 B2
6596177 Sherman Jul 2003 B2
6623211 Kukor et al. Sep 2003 B2
6645450 Stoltz et al. Nov 2003 B2
6733207 Liebert, Jr. et al. May 2004 B2
6736379 Wegner et al. May 2004 B1
6745815 Senyard Jun 2004 B1
6773609 Hashizume Aug 2004 B1
6780329 Kerfoot Aug 2004 B2
6787038 Brusseau et al. Sep 2004 B2
6805798 Kerfoot Oct 2004 B2
6818136 Marek Nov 2004 B1
6827861 Kerfoot Dec 2004 B2
6866781 Schindler Mar 2005 B2
6872318 Kerfoot Mar 2005 B2
6913251 Kerfoot Jul 2005 B2
6921477 Wilhelm Jul 2005 B2
6984329 Kerfoot Jan 2006 B2
7022241 Kerfoot Apr 2006 B2
7033492 Kerfoot Apr 2006 B2
7131638 Kerfoot Nov 2006 B2
7156984 Kerfoot Jan 2007 B2
7208090 Applegate et al. Apr 2007 B2
7264419 Bowman et al. Sep 2007 B2
7264747 Kerfoot Sep 2007 B2
7300039 Kerfoot Nov 2007 B2
7442313 Kerfoot Oct 2008 B2
7537706 Kerfoot May 2009 B2
7547388 Kerfoot Jun 2009 B2
20020029493 Baek Mar 2002 A1
20020109247 Jager et al. Aug 2002 A1
20030029792 Kerfoot Feb 2003 A1
20030222359 Jager Dec 2003 A1
20040045911 Kerfoot Mar 2004 A1
20050067356 Bowman et al. Mar 2005 A1
20060243668 Miller et al. Nov 2006 A1
Foreign Referenced Citations (17)
Number Date Country
3805200 Sep 1998 DE
0402158 Dec 1990 EP
0546335 Jun 1993 EP
2005655 Apr 1979 GB
2185901 Aug 1987 GB
1-304838 Dec 1989 JP
3267196 Nov 1991 JP
4-171036 Jun 1992 JP
6-023378 Jan 1994 JP
407178391 Jul 1995 JP
40931314 Dec 1997 JP
WO 9821152 May 1998 WO
WO 9954258 Oct 1999 WO
WO9956894 Nov 1999 WO
WO0235908 May 2001 WO
WO0226640 Apr 2002 WO
WO 2005063367 Jul 2005 WO
Non-Patent Literature Citations (140)
Entry
Civil Action No. 1:08-cv-11711-GAO, Groundwater & Environmental Services, Inc.'s Supplemental Response to Plaintiff's Interrogatory Three, Jun. 25, 2009, 36 pages.
Civil Action No. 1:08-cv-11711-GAO, Groundwater & Environmental Services, Inc.'s Supplemental Response to Plaintiff's Interrogatories Three and Four, Jul. 6, 2009, 164 pages.
ThinkVillage-Kerfoot LLC v. Groundwater & Environmental Services, Inc., Complaint for Patent Infringement, US District Court for the District of Massachusetts, Oct. 7, 2008, 5 pages.
ThinkVillage-Kerfoot LLC v. Groundwater & Environmental Services, Inc., Answer and Counterclaims, Civil Action No. 1:08-cv-11711-GAO, Dec. 5, 2008, 7 pages.
ThinkVillage-Kerfoot LLC v. Groundwater & Environmental Services, Inc., Amended Answer and Counterclaims, Civil Action No. 1:08-cv-11711-GAO, Dec. 15, 2008, 7 pages.
ThinkVillage-Kerfoot LLC v. Groundwater & Environmental Services, Inc., Plaintiff's Response to Defendant Groundwater & Environmental Services, Inc.'s Amended Counterclaims, Civil Action No. 1:08-cv-11711-GAO, Dec. 30, 2008, 5 pages.
Civil Action No. 1:08-cv-11711-GAO, Groundwater & Environmental Services, Inc.'s Objections and Responses to Plaintiff's Requests for Production of Documents and Things, Mar. 4, 2009, 54 pages.
Civil Action No. 1:08-cv-11711-GAO, Groundwater & Environmental Services, Inc.'s Objections and Answers to Plaintiffs Interrogatories, Mar. 4, 2009, 10 pages.
Civil Action No. 1:08-cv-11711-GAO, ThinkVillage-Kerfoot, LLC's Responses to Defendant's Interrogatories (Nos. 1-11) Apr. 9, 2009, 12 pages.
Civil Action No. 1:08-cv-11711-GAO, ThinkVillage-Kerfoot, LLC's Objections and Responses to Defendant's First Set of Requests for Production (Nos. 1-98) Apr. 9, 2009, 37 pages.
Civil Action No. 1:08-cv-11711-GAO, ThinkVillage-Kerfoot, LLC's Supplemental Responses to Defendant's Interrogatories (Nos. 7 and 8) Jun. 2, 2009, 9 pages.
PCT/US04/43634 International Search Report mailed May 18, 2005, 1 page.
PCT/US04/43634 International Preliminary Report on Patentability, Jun. 26, 2006, 5 pages.
Makarov , A. M. & Sorokin, S.S., “Heat Exchange of a Bubble Coated with a Liquid Film on the Rear Surface,” Chemical and Petroleum Engineering, vol. 30, No. 2, 1994, pp. 78-81.
Abstract JP 6-238260, Aug. 30, 1994, Karuto.
U.S. Appl. No. 09/470,167 (U.S. 6,436,285).
U.S. Appl. No. 09/860,659.
U.S. Appl. No. 09/943,111.
U.S. Appl. No. 09/993,152.
U.S. Appl. No. 10/223,166 (U.S. 6,596,161).
U.S. Appl. No. 10/354,584.
U.S. Appl. No. 10/365,027.
U.S. Appl. No. 10/602,256.
U.S. Appl. No. 10/745,939.
U.S. Appl. No. 10/794,994.
U.S. Appl. No. 10/895,015.
U.S. Appl. No. 10/910,441.
U.S. Appl. No. 10/916,863.
U.S. Appl. No. 10/963,361.
U.S. Appl. No. 10/963,353.
U.S. Appl. No. 10/994,960.
U.S. Appl. No. 10/997,452.
U.S. Appl. No. 11/145,871.
U.S. Appl. No. 11/145,871, Response to Office Action filed Dec. 16, 2008, 12 pages.
U.S. Appl. No. 11/145,871, Office Action mailed Mar. 18, 2009, 16 pages.
U.S. Appl. No. 11/145,871 Response to Office Action filed Jun. 18, 2009, 10 pages.
U.S. Appl. No. 11/146,722.
U.S. Appl. No. 11/272,446.
U.S. Appl. No. 11/272,446 Supplemental Notice of Allowance May 1, 2009, 2 pages.
U.S. Appl. No. 11/328,475.
U.S. Appl. No. 11/485,080.
U.S. Appl. No. 11/485,080, Response to Office Action filed May 8, 2009, 4 pages.
U.S. Appl. No. 11/849,413.
U.S. Appl. No. 11/849,413 Notice of Allowance mailed Mar. 10, 2009, 4 pages.
U.S. Appl. No. 11/594,019.
U.S. Appl. No. 12/177,467.
U.S. Appl. No. 12/254,359, Notice of Allowance dated Apr. 1, 2009, 7 pages.
U.S. Appl. No. 12/259,051, Office Action dated Mar. 24, 2009, 6 pages.
U.S. Appl. No. 12/259,051, Response to Office Action filed Jun. 23, 2009, 8 pages.
U.S. Appl. No. 12/272,462, Restriction Requirement mailed Jun. 2, 2009, 6 pages.
U.S. Appl. No. 12/272,462, Response to Restriction Requirement filed Jul. 2, 2009, 12 pages.
U.S. Appl. No. 11/485,080, Notice of Allowance dated Jul. 9, 2009, 4 pages.
PCT/US05/25478, International Search Report & Written Opinion, mailed Feb. 15, 2006, 4 pages.
PCT/US05/25478, International Preliminary Report on Patentability, Jan. 23, 2007, 4 pages.
U.S. Appl. No. 12/177,467 Notice of Allowance dated Sep. 2, 2009, 8 pages.
U.S. Appl. No. 12/259,051 Notice of Allowance dated Aug. 24, 2009, 7 pages.
U.S. Appl. No. 11/485,223 Response to Office Action filed Mar. 11, 2009, 13 pages.
U.S. Appl. No. 11/485,223 Office Action mailed Nov. 12, 2008, 9 pages.
U.S. Appl. No. 11/485,223.
U.S. Appl. No. 11/145,871 Notice of Allowance dated Sep. 9, 2009, 7 pages.
U.S. Appl. No. 12/272,462 Notice of Allowance dated Sep. 21, 2009, 8 pages.
U.S. Appl. No. 12/254,359, Notice of Allowance dated Jul. 6, 2009, 4 pages.
Canadian Application No. 2,441,259 Office Action dated Oct. 14, 2009, 7 pages.
Advanced Oxidation Processes for Treating Groundwater Contaminated with TCE and PCE, Aieta AXXX et al., 1988, Pilot-Scale Evaluations., Journal of American Water Works Association, JAWWAS, vol. 80, pp. 64-72.
Echegaray, D.F. et al, “Biologically Resistant Contaminants, Primary Treatment with Ozone”, Water Science and Technology, A Journal of the International Association on Water Quality, vol. 29, No. 8, 1994, pp. 257-261.
Alternate Technologies for Wastewater Treatment, J. Hauck wt al.. Polluting Engineering, May 1990, pp. 81-84.
Analysis of Selected Enhancements for Soil Vapor Extraction, U.S. Environmental Protection Agency, Sep. 1997, pp. 1-5 to 7-39.
Aquifier Remediation Wells, EPA, vol. 16, Sep. 1999, pp. 1-80.
Chemical Degradation of Aldicarb in Water Using Ozone, F.J. Beltran et al., Journal of Chemical Technology & Biotechnology, 1995, pp. 272-278.
Clare Water Supply, EPA, http://www.eoa.gov/region5/s11ocrfund/nnl/michillan/MID980002273.htm, pp. 1-3, date unknown.
Leonard, B., Cleaning up, Forbes, Jun. 1, 1987, pp. 52-53.
Completed North American Innovative remediation Technology Demonstration Projects, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Aug. 12, 1996, pp. 1-35.
Design of a Packed Bed Ozonation Reactor for Removal of Contaminants from Water, Billing, Dissertation Abstracts International, vol. 57, No. 10, Apr. 1997, pp. 6398-B.
Effect of Organic Substances on Mass Transfer in Bubble Aeration, M. Gurol et al., Journal WPCF, vol. 57 No. 3, pp. 235-240.
Environmental Management:, DON Environmental Restoration Plan for Fiscal years 1997-2001, Sep. 30, 1996, pp. 4-1 to 4-8.
Factors Controlling the Removal of Organic Pollutants in an Ozone Reactor, M.D. Gurol, AWWA 1984 Annual Conference, Dallas, TX, Jun. 10-14, 1984, pp. 2-21.
Field Applications of In Situ Remediation Technologies: Chemical Oxidation, U.S. Environmental Protection Agency, Sep. 1998, pp. 1-31.
Gas Partitioning of Dissolved Volatile Organic Compounds in the Vadose Zone: Principles, ABBB Temperature Effects and Literature Review, J.W. Washington, Groundwater, vol. 34, No. 4, Jul.-Aug. 1996, pp. 709-718.
Ground Water Issue, H.H. Russell et al., u.s. Environmental Protection Agency, Jan. 1992, pp. 1-10.
Ground Water, Surface Water. and Leachate, http://www.frtr.gov/mlltrix2/section 4/4-30.html, Jul. 22, 2003, pp. 1-4.
How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites, U.S. Environmental Protection Agency, May 1995, 37 pages.
In Situ Air Sparging System, Tech Data Sheet. Naval Facilities Engineering Service Center, Mar. 1997, pp. 1-4.
In Situ Chemical Oxidation for Remediation of Contaminated Soil and Ground Water, EPA, Sep. 2000, Issue No. 37; pp. 1-6.
Yin, Y, PhD, In Situ Chemical Treatment, Technology Evaluation Report, GWRTAC, Jul. 1999, pp. 1-74.
J. Dablow et al, In Situ Ozonation to Remediate Recalcitrant Organic Contamination, IT Corporation, .pp. 1-2, date unknown.
In Situ Remediation with Chemical Oxidizers: Ozone, Peroxide and Permanganate, Environmental Bio-systems, Inc., pp. 1-5, date unknown.
R. Schaffner Jr., et al., In-Situ Air Sparging Without Inorganic Nutrient Amendment: An Effective Bioremediation Strategy for Treating Petroleum-Contaminated Groundwater Systems http://www.bioremediationgroup.org/BioReferences/Tier—1—Papers/insitu.htm, Jul. 30, 203, pp. 1-14.
Beltran-Heredia, Kinetics of the Bentazone Herbicide Ozonation, Journal of Environmental Science and Health, vol. A31, No. 3, 1996, pp. 519-537.
Beltran,. Modelling Industrial Wastewater Ozonation in Bubble Contactors, Ozone Science & Engineering, vol. 17, 1995, pp. 355-378.
Beltran. Modelling Industrial Wastewater Ozonation in Bubble Contactors, Ozone Science & Engineering, vol. 17, 1995, pp. 379-398.
Newark Brownfield Site to Increase Student Housing, Environmental Alliance Monitor, http://www.envalliance.com/monitor&pubs/1998fall.htm, 1998, pp. 1-8.
“RCC RemedOzone Mobile Remediation System”, RCC, 2 pages, date unknown.
Santa Barbara I Manufactured Gas Plant Site, California EPA, Jan. 2002, pp. 1-6.
P.V. Shanbhag, et al., Single-phase Membrane Ozonation of Hazardous Organic Compounds ill Aqueous Streams. Journal of Hazardous Materials 41, 1995, pp. 95-104.
Strategies to Protect Your Water Supply from MTBE, Komex Industries, http://www.komex.com/industries/remediation.htm, 2002, pp. 1-8.
Technology Status Review in Situ Oxidation, Environmental Security technology Certification Program, Nov. 1999, pp. 1-42.
The Ultrox System: USEPA Ultrox International Ultraviolet Radiation/Oxidation Technology, Applications Analysis Report, EPN540/A5-89/012, Sep. 1990.
P. Dowideit et al, Reaction of Ozone With Ethene and Its Methyl-and Chlorine-Substituted Derivatives in Aqueous Solution, Environmental Science & Technology, vol. 32, No. 8, pp. 1112-1999.
K.K. Wiegner, Toxins, toxins everywhere, Forbes, Jul. 22, 1991, pp. 298.
Bellamy, W.D et al., Treatment of VOC-Contaminated Groundwater by Hydrogen Peroxide and Ozone Oxidation, Res. J. Water Pollution Control Fed. 63, 120., 1991.
Typical Applications of Ozone, ARCE Systems, Inc., http://www.arcesystems.com/products/ozone/applications.htm, Feb. 2000, pp. 1-2.
Wheeler, K.P et al., Who's Afraid of MTBE?, http://www.rccnet.com/Wheels.htm, Jul. 2000, pp. 1-5.
Yuma Pilot-Testing Ozone Sparging, Stripping, Pasha Publications, Defense Cleanup, Nov. 8, 1996, pp. 5-6.
Transfer Rate of Ozone Across the Gas-Water Interface, S. Okouchi et al., The Chemical Society of Japan, No. 2, 1989, pp. 282-287.
Canadian Patent Application No. 2,351,257, Office Action dated May 1, 2009, 4 pages.
Substantive examination report Application No. 01305133.9, Jul. 16, 2003.
Further Substantive examination report Application No. 01305133.9, Sep. 13, 2005.
U.S. Appl. No. 12/483,048 Office Action dated Jan. 13, 2010 , 18 pages.
Wilkins (ed.) et al. “Workshop on Monitoring Oxidation-Reduction Processes for Ground-water Restoration,” EPA, (2000), 148 pages.
U.S. Appl. No. 11/409,892, Notice of Allowance dated Oct. 1, 2009, 5 pages.
U.S. Appl. No. 11/409,892.
U.S. Appl. No. 12/483,048, Response to Office Action filed Jan. 7, 2011, 10 pages.
U.S. Appl. No. 12/483,048, Office Action mailed Mar. 30, 2011, 18 pages.
U.S. Appl. No. 12/847,931, Office Action mailed Feb. 9, 2011, 11 pages.
U.S. Appl. No. 12/483,048, Response to Office Action filed Apr. 13, 2010, 20 pages.
U.S. Appl. No. 12/483,048, Office Action mailed Jul. 12, 2010, 19 pages.
U.S. Appl. No. 12/483,048, Response to Office Action filed May 31, 2011, 6 pages.
U.S. Appl. No. 12/483,048, Advisory Action mailed Jun. 27, 2011, 4 pages.
U.S. Appl. No. 12/847,931 Response to Office Action filed Aug. 22, 2011, 8 pages.
U.S. Appl. No. 12/847,931 Office Action mailed Jun. 20, 2011, 10 pages.
U.S. Appl. No. 12/847,931 Response to Office Action filed Apr. 25, 2011, 18 pages.
U.S. Appl. No. 12,483,048 Response to Office Action filed Sep. 30, 2011, 9 pages.
U.S. Appl. No. 12/483,048, Response to Office Action filed Sep. 10, 2010, 13 pages.
U.S. Appl. No. 12/483,048, Office Action mailed Oct. 7, 2010, 21 pages.
U.S. Appl. No. 12/847,931 Notice of allowance mailed Oct. 14, 2011, 5 pages.
U.S. Appl. No. 12,483,048 Office Action mailed Oct. 12, 2011, 22 pages.
European Application No. 05793889.6 Extended European Search Report dated Dec. 15, 2011, 7 pages.
U.S. Appl. No. 12/534,662, Office Action mailed Nov. 10, 2011, 9 pages.
U.S. Appl. No. 12,483,048 Response to Office Action filed Jan. 12, 2012, 6 pages.
U.S. Appl. No. 12,483,048 Office Action Mailed Jan. 30, 2012, 6 pages.
U.S. Appl. No. 12/534,662 Response to Office Action filed Mar. 12, 2012, 12 pages.
U.S. Appl. No. 12/534,662 Office Action Mailed Apr. 6, 2012, 13 pages.
U.S. Appl. No. 12/847,931 Notice of allowance mailed Feb. 15, 2012, 8 pages.
U.S. Appl. No. 12/483,048, Advisory Action mailed Apr. 13, 2012, 4 pages.
U.S. Appl. No. 12/483,048, Response to Final Rejection filed Mar. 30, 2012, 9 pages.
U.S. Appl. No. 12/631,596 Notice of Allowance mailed Jul. 5, 2012, 8 pages.
U.S. Appl. No. 12/483,048 Response to Final Office Action filed Jul. 30, 2012, 10 pages.
U.S. Appl. No. 12/483,048 Office Action mailed Nov. 28, 2012, 14 pages.
U.S. Appl. No. 12/534,662 Response to Office Action filed Aug. 6, 2012, 14 pages.
U.S. Appl. No. 12/534,662 Office Action Mailed Jan. 24, 2013, 8 pages.
Related Publications (1)
Number Date Country
20100116725 A1 May 2010 US
Divisions (1)
Number Date Country
Parent 09610830 Jul 2000 US
Child 10602256 US
Continuations (1)
Number Date Country
Parent 10602256 Jun 2003 US
Child 11409892 US
Continuation in Parts (1)
Number Date Country
Parent 11409892 Apr 2006 US
Child 12688816 US