The present application claims priority to and incorporates by reference the entire contents of Japanese Patent Application No. 2011-201205 filed in Japan on Sep. 14, 2011.
1. Field of the Invention
The present invention relates to a group 13 nitride crystal substrate, a method of manufacturing a group 13 nitride crystal, and a gallium nitride crystal.
2. Description of the Related Art
Semiconductor materials based on gallium nitride (GaN) are used for blue color LED (light-emitting diode) or white color LED, and a semiconductor device such as semiconductor laser (also called “LD: Laser Diode”). The white color LED is used for illumination purpose or back lighting of cell phones, LC (Liquid Crystal) display or the like. The blue color LED is used for traffic lights or other illumination purpose and so on. On the other hand, blue-violet semiconductor laser is used as light sources of Blu-ray discs. Presently, most of semiconductor devices based on GaN used as light sources of UV or violet-blue-green color are fabricated by using MO-CVD (Metalorganic Chemical Vapor Deposition) method or MBE (Molecular Beam Epitaxy) method to grow crystal on sapphire or SiC substrate.
There are problems in a case that sapphire or SiC is used as substrate. Crystal defects increases because of the significant difference of thermal expansion coefficient or lattice constant between the substrate and the group 13 nitride. Such a defect affects device properties. For example, it becomes harder to elongate the lifetime of emitting device. And, the operating power may increase. In order to address these problems, it is the most preferable way to use a gallium nitride substrate which is made of the same material as crystal to be grown on the substrate.
Presently, free-standing GaN substrates are manufactured in such a manner that a thick gallium nitride crystal is grown on a hetero-substrate such as sapphire substrate or GaAs substrate by HVPE (Hydride Vapor Phase Epitaxy) with employing ELO (Epitaxial Lateral Overgrowth) which is a method to reduce the dislocation density, and then the thick film of gallium nitride is separated from the hetero-substrate. The gallium nitride substrate manufactured as such has a dislocation density reduced to the order of 106 cm−2, and allows a size up to 2 inches in practical use mainly for laser device purpose. Recently, there is a further need for much larger diameter of substrate up to 4 inches or 6 inches for electronic devices, or cost saving of white color LEDs.
Warpage or cracks which may be induced by the difference of the thermal expansion coefficient or the lattice constant between the hetero-substrate and the gallium nitride hinders to enlarge the diameter of substrate. The aforementioned dislocation density still remains. There is also a problem of high manufacturing cost in processes of separating one thick film of gallium nitride from one hetero-substrate, and polishing it to form the gallium nitride substrate.
On the other hand, as one of liquid phase methods to realize the gallium nitride substrate, many efforts have been made for developing the flux method in which the gallium nitride crystal is formed by dissolving the nitrogen from a gaseous phase into a molten mixture of group 13 metal and alkali metal.
In the flux method, a molten mixture containing the alkali metal such as sodium (Na) and potassium (K) and the group 13 metal such as gallium (Ga) is heated to about 600 to 900 degrees Celsius under an atmosphere where the nitrogen pressure is 10 MPa or less. Thus, the nitrogen is dissolved from the gaseous phase and reacts with the group 13 metal in the molten mixture to form the group 13 nitride crystal. The flux method allows a crystal growth with a lower temperature and lower pressure in comparison with other liquid phase methods. The crystal formed by the flux method has a low dislocation density advantageously lower than 106 cm−2.
There is a report that gallium nitride crystal is formed under conditions that sodium azide (NaN3) and metal Ga which are used as source materials are put and sealed in a reactor vessel made of stainless steel (as for sizes inside of the vessel, inner diameter is 7.5 mm, length is 100 mm) under a nitrogen atmosphere, and the reactor vessel is retained at 600 to 800 degrees Celsius for 24 to 100 hours (Chemistry of Materials Vol. 9 (1997) 413-416).
Japanese Patent Application Laid-open No. 2008-94704 discloses a method of manufacturing a column-like crystal of gallium nitride by using a needle-like crystal of aluminum nitride (AlN) as seed crystal in order to provide a large crystal of gallium nitride. Japanese Patent Application Laid-open No. 2006-045047 discloses a method of manufacturing a needle-like crystal of aluminum nitride which becomes a seed crystal. Japanese Patent Application Laid-open No. 2009-126771 discloses a seed crystal of which a yellow emission effect is observed, and a gallium nitride crystal which is formed on the seed crystal and has a crystal layer of which a yellow emission effect is not observed.
In a case that gallium nitride crystal is formed from aluminum nitride as seed crystal, however, the difference of lattice constant between aluminum nitride and gallium nitride may arise dislocations due to the lattice mismatch. Since thermal expansion coefficient is also different between aluminum nitride and gallium nitride, thermal stress may arise new dislocations or even cracks, in the course of cooling from a crystal growth temperature to a room temperature.
Therefore, it is preferable to use gallium nitride crystal as seed crystal which has the same lattice constant or the same thermal expansion coefficient with the target crystal, in order to grow a high quality gallium nitride crystal with low dislocation density. However, it is difficult to grow a needle-like crystal of gallium nitride by the method disclosed in Japanese Patent Application Laid-open No. 2006-045047. Therefore, it is difficult to obtain a high quality bulk crystal by any conventional method.
It is an object of the present invention to at least partially solve the problems in the conventional technology.
A gallium nitride crystal having a hexagonal crystal structure, wherein a full width at half maximum (FWHM) of X-ray rocking curve in a region at a side of one edge in a c-axis direction is smaller than the FWHM in a region at a side of the other edge in the c-axis direction, in at least one of m-plane outer peripheral surfaces of the hexagonal crystal structure.
A method of manufacturing a group 13 nitride crystal includes a seed crystal installing process to install a portion of the gallium nitride crystal mentioned above where a full width at half maximum (FWHM) of a X-ray rocking curve in at least one of m-planes is 200 arcsec or less is installed as a seed crystal in a reactor vessel; a putting process to put an alkali metal and a material containing at least a group 13 element into the reactor vessel; a molten mixture forming process to form a molten mixture by heating the reactor vessel to melt the alkali metal and the material containing at least a group 13 element; a nitrogen dissolving process to bring a gas containing nitrogen into contact with the molten mixture to dissolve the nitrogen in the gas into the molten mixture; and a crystal growth process to obtain a group 13 nitride crystal by growing the group 13 nitride crystal from the seed crystal with the nitrogen and the group 13 element in the molten mixture.
A gallium nitride crystal, wherein a full width at half maximum (FWHM) of X-ray rocking curve in at least one of m-plane outer peripheral surfaces is 200 arcsec or less.
A method of manufacturing a group 13 nitride crystal includes a seed crystal installing process to install a portion of the gallium nitride crystal mentioned above where a full width at half maximum (FWHM) of a X-ray rocking curve in at least one of m-planes is 200 arcsec or less is installed as a seed crystal in a reactor vessel; a putting process to put an alkali metal and a material containing at least a group 13 element into the reactor vessel; a molten mixture forming process to form a molten mixture by heating the reactor vessel to melt the alkali metal and the material containing at least a group 13 element; a nitrogen dissolving process to bring a gas containing nitrogen into contact with the molten mixture to dissolve the nitrogen in the gas into the molten mixture; and a crystal growth process to obtain a group 13 nitride crystal by growing the group 13 nitride crystal from the seed crystal with the nitrogen and the group 13 element in the molten mixture.
A group 13 nitride crystal substrate having a c-plane or approximately c-plane as a main face, wherein the substrate contains a gallium nitride crystal having a c-plane where a full width at half maximum (FWHM) of X-ray rocking curve is 200 arcsec or less.
The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
Now an explanation will be made on a gallium nitride crystal, a group 13 nitride crystal, and a group 13 nitride crystal substrate, as well as a manufacturing method of them, according to an embodiment, with reference to the accompanying drawings. The accompanying drawings herein only schematically show shapes, sizes and arrangements of constituents, elements or components to an extent necessary for a clear understanding of the present invention. However, these drawings shall not be considered any limitation to the present invention. Identical reference numerals are given to the same or corresponding constituents, elements or components among the plurality of drawings, while the redundant explanation may be omitted as appropriate.
The reactor vessel 12 is for maintaining a molten mixture 24 obtained by melting source material(s) or additive(s) in order to grow the seed crystal 25. The configuration of the reactor vessel 12 will be described later.
To the outside pressure resistant vessel 28 and the inner vessel 11, gas pipes 34 and 32 are respectively connected to supply nitrogen (N2) gas which is source material of the group 13 nitride crystal and a diluent gas for controlling a whole pressure to an inner space 33 of the outside vessel 28 and an inner space 23 of the inner vessel 11. A gas supplying pipe 14 is branched into a nitrogen supplying pipe 17 and a diluent gas supplying pipe 20 via valves 15 and 18, respectively. These pipes 17 and 20 can be separated at valves 15 and 18, respectively.
Argon (Ar) gas which is inert gas is preferably used as the diluent gas. However, the embodiment is not limited to this. For example, other inert gas such as helium (He) may be used as the diluent gas.
The nitrogen gas is introduced from the nitrogen supplying pipe 17 which is connected to a gas canister or the like containing the nitrogen gas therein. The nitrogen gas from the pipe 17 is subjected to a pressure control by a pressure regulator 16 and then supplied to the gas supplying pipe 14 via the valve 15. On the other hand, the diluent gas (e.g. Ar gas) is introduced from the diluent gas supplying pipe 20 which is connected to a gas canister or the like containing the diluent gas therein. The diluent gas from the pipe 20 is subjected to a pressure control by a pressure regulator 19 and then supplied to the gas supplying pipe 14 via the valve 18. Thus, the pressure regulated nitrogen gas and the pressure regulated diluent gas are supplied to the gas pipe 14 to be mixed there.
The gas mixture of the nitrogen gas and the diluent gas is supplied to the outside vessel 28 and the inner vessel 11 from the pipe 14 via the valves 31 and 29. The inner vessel 11 can be removed from the apparatus 1 at the valve 29.
A pressure meter 22 is disposed on the pipe 14 for monitoring a whole pressure inside of the outside vessel 28 and the inner vessel 11 and controlling pressures inside of the outside vessel 28 and inner vessel 11.
In the embodiment, nitrogen partial pressure can be controlled by controlling the pressures of the nitrogen gas and the diluent gas by means of valves 15 and 18 and the pressure regulators 16 and 19. Since the whole pressure of the outside vessel 28 and the inner vessel 11 can be also controlled, it is possible to reduce evaporation of alkali metal (e.g. sodium) in the reactor vessel 12 by increasing the whole pressure of the inner vessel 11. In other words, it is possible to control separately the nitrogen partial pressure which becomes a nitrogen source affecting the crystal growth conditions of GaN and the whole pressure which affects the reduction of sodium evaporation.
As shown in
The manufacturing method according to the embodiment is a method of producing a seed crystal 25 of gallium nitride by the flux method. Incidentally, the seed crystal 25 may be simply referred to as gallium nitride crystal 25.
The manufacturing method of crystal according to the embodiment includes the first process to grow the first region of gallium nitride crystal containing boron, and the second process to grow, outside of the first region, the second region of gallium nitride crystal having the boron density lower than that of the first region.
In order to grow the crystal with different boron densities between the inner side and the outer side of the gallium nitride crystal 25, the manufacturing method of crystal according to the embodiment includes a boron melting process to melt the boron into the molten mixture 24, a boron taking process to take the boron into the crystal during the growth of the gallium nitride crystal 25, and a boron reducing process to reduce the boron density in the molten mixture 24 in the course of the crystal growth.
In the boron melting process, the boron is melted into the molten mixture 24 from boron nitride (BN) contained in the inner wall of the reactor vessel 12 or from a boron nitride component disposed inside of the reactor vessel 12. Then, a small amount of the melted boron is taken into the crystal while the gallium nitride crystal 25 grows (the boron taking process). An amount of boron taken into the gallium nitride crystal 25 is gradually reduced as the crystal grows (the boron reducing process).
Due to the boron reducing process, it is possible to reduce the boron density of the outer region in a cross section intersecting the c-axis in comparison with the boron density of the inner region in the cross section, while the gallium nitride crystal 25 grows with growing the m-planes ({10-10} planes). Thereby, the density of boron as an impurity can be reduced and the dislocation density which may be induced by the impurities can be reduced, at the outer circumference surface comprised of the m-planes (six side surfaces of the hexagonal column) of the gallium nitride crystal 25. Thus, the outer circumference of the gallium nitride crystal 25 can be made of the higher quality crystal in comparison with the inner region.
In a manufacturing method as described in the following [3] to grow the group 13 nitride crystal 27 from the seed crystal 25 to form the group 13 nitride crystals 80 to 83, the group 13 nitride crystal 27 is grown mainly from side surfaces of the seed crystal 25 (the outer circumference surface comprised of m-planes) as start points of the crystal growth. Thereby, if the outer circumference surface comprised of m-planes of the seed crystal 25 is of a good quality as described above, the crystal 27 grown from the surface becomes of a good quality. Therefore, according to the embodiment, it is possible to grow a large and high quality seed crystal 25 and thereby a high quality group 13 nitride crystal 27.
Next, a further detail explanation will be made on the boron melting process, the boron taking process and the boron reducing process.
(1) Method that Reactor Vessel 12 Contains Boron Nitride
In an example of the boron melting process, a reactor vessel 12 made of a sintered BN (sintered boron nitride) can be used as the reactor vessel 12. In the course of heating the reactor vessel 12 to a crystal growth temperature, boron is melted from the reactor vessel 12 into the molten mixture 24 (the boron melting process). Then, the boron in the molten mixture 24 is taken into the seed crystal 25 in the course of growing the seed crystal 25 (the boron taking process). The boron in the molten mixture is gradually reduced as the seed crystal 25 grows (the boron reducing process).
In the aforementioned example, the reactor vessel 12 made of the sintered BN is used. However, the reactor vessel 12 is not limited to this. In a preferred embodiment, it is sufficient that the reactor vessel 12 includes a BN-contained material (e.g. sintered BN) at a part at least of its inner wall contacting the molten mixture 24. The other part of the reactor vessel 12 may be made of nitride such as pyrolytic BN (P-BN) and the like, oxide such as alumina, YAG and the like, carbide such as SiC and the like.
(2) Method that BN-Contained Material is Placed in the Reactor Vessel 12
In another example of the boron melting process, a BN-contained material may be placed in the reactor vessel 12. For example, a sintered BN may be placed in the reactor vessel 12. Materials for the reactor vessel 12 are not limited to any particular one similarly to the process (1).
In this method, in the course of heating the reactor vessel 12 to a crystal growth temperature, boron is gradually melted from the material placed in the reactor vessel 12 into the molten mixture 24 (the boron melting process).
In the processes (1) and (2), crystal nuclei of GaN crystal 25 are likely to be formed on a surface of the BN-contained material contacting the molten mixture 24. Therefore, if the BN surface (i.e. the inner wall surface or the material surface) is gradually covered with the GaN crystal nuclei formed thereon, the amount of boron melted from the covered BN material into the molten mixture 24 gradually decreases (the boron reducing process).
Furthermore, in accordance with the growth of the GaN crystal, a surface area of the crystal gradually increases and thereby the density of boron which is taken into the GaN crystal decreases 25 (the boron reducing process).
In the processes (1) and (2), the boron-contained material is used for melting the boron into the molten mixture 24. A method or process for melting the boron into the molten mixture 24 is not limited to this. For example, boron may be added into the molten mixture 24, or any other process may be used. As for a method or process for reducing the boron density in the molten mixture 24, any other method or process may be used. The crystal manufacturing method according to the embodiment sufficiently includes the boron melting process, the boron taking process and the boron reducing process, as mentioned above at least.
An operation to put the source material, the flux material, additives or the like such as gallium (Ga), sodium (Na), and carbon (C) as dopant into the reactor vessel 12 is conducted in such a manner that the inner vessel 11 is put into a glove box under an inert gas atmosphere such as Ar. This operation may be conducted in a state that the reactor vessel 52 is set in the inner vessel 51.
In a case that the seed crystal 25 is grown by the method (1), a material used as a flux, and source material(s) are put into the reactor vessel 12 as explained in the method (1).
In a case that the seed crystal 25 is grown by the process (2), a BN-contained material as explained in the method (2), a material used as a flux and source material(s) are put into the reactor vessel 12 as explained in the process (2).
The material used as flux may be sodium, or sodium compound (e.g. sodium azide). Any other material including other alkali metals such as lithium and potassium, or compounds of these alkali metals may be used as the flux. Furthermore, alkali earth metals such as barium, strontium, and magnesium, or compounds of these alkali earth metals may be used as the flux. A plurality kind of alkali metals or alkali earth metals may be used.
As the source material, gallium is used. Any other materials including without limitation other group 13 elements such as boron, aluminum and indium, or mixtures thereof may be used as source material(s) to be put into the reactor vessel 12.
After setting the source material(s) and others as mentioned above, the inner vessel 11 and the reactor vessel 12 inside of the inner vessel 11 are heated to a crystal growth temperature by turning on the heater 13. Then, the source material is melted with the material used as the flux in the reactor vessel 12 to form the molten mixture 24. Nitrogen as the source material of the seed crystal 25 can be supplied to the molten mixture 24 by bring the nitrogen having the aforementioned partial pressure into contact with the molten mixture 24 and thereby dissolving the nitrogen into the molten mixture 24. Furthermore, boron is melted into the molten mixture 24 as described above (the boron melting process and the molten mixture forming process).
Crystal nuclei of gallium nitride crystal 25 are formed on the inner wall of the reactor vessel 12 from source materials melted in the molten mixture 24. The source materials and boron in the molten mixture 24 are supplied to these nuclei to grow the nuclei to the needle-like gallium nitride crystal 25. In the course of the crystal growth of the gallium nitride crystal 25, as described above, boron in the molten mixture 24 is taken into the gallium nitride crystal 25 (the boron taking process), so that the “boron-rich” first region 25a (
Preferably, in the crystal manufacturing method according to the embodiment, the partial pressure of nitrogen in the pressure resistant vessel 11 is 5 MPa to 10 MPa.
Preferably, in the crystal manufacturing method according to the embodiment, the temperature in the molten mixture 24 (the crystal growth temperature) is 800 degrees Celsius to 900 degrees Celsius.
In a preferred embodiment, a mol ratio of alkali metal to the total mol number of gallium and alkali metal (e.g. sodium) is 75% to 90%, the crystal growth temperature of the molten mixture 24 is 860 degrees Celsius to 900 degrees Celsius, and the partial pressure of nitrogen is 5 MPa to 8 MPa.
In a further preferred embodiment, the mol ratio of gallium to alkali metal is 0.25:0.75, the crystal growth temperature is 860 degrees Celsius to 870 degrees Celsius, and the partial pressure of nitrogen is 7 MPa to 8 MPa (see Examples).
The gallium nitride crystal according to the embodiment is a seed crystal 25 manufactured by the method [1] as mentioned above.
As illustrated in
Incidentally, the first region 25a and the second region 25b are included in the c-plane cross section. However, the embodiment is not limited to the precise c-plane cross section. Thus, it is sufficient that the first region 25a and the second region 25b are included in at least a cross section intersecting the c-axis.
In the gallium nitride crystal 25 of a preferred embodiment, the boron density of the first region 25a at the inner side is preferably 4×1018 atms/cm3 or more, the boron density of the second region 25b at the outer side is preferably less than 4×1018 atms/cm3 (see Examples).
In a further preferred embodiment, the second region 25b at the outer side preferably surrounds an entire outer periphery (i.e. all outer circumferential surfaces of the hexagonal shape comprised of generally m-planes) of the first region 25a at the inner side in a cross section intersecting the c-axis of the gallium nitride crystal 25 (
In the gallium nitride crystal 25 of a preferred embodiment, the thickness “t” (
In a case that the group 13 nitride crystal is grown from GaN crystal as a seed crystal by a flux method, as described in Japanese Patent Application Laid-open No. 2009-126771, a melt-back of the seed crystal may arise. It is known that an amount of melt-back (melt-back amount) increases when the seed crystal has a low quality, especially the seed crystal includes an affected or damaged layer remained therein.
To the contrary, the gallium nitride crystal 25 according to the embodiment has 100 nm or more thickness of the second region 25b which is a high quality crystal layer at the outer side of the crystal. Thereby, even in a case that the melt-back arises in the course of growing the seed crystal 25, the second region 25b is likely to be remained. Therefore, the group 13 nitride crystal 27 of high quality can be easily formed.
<X-Ray Property of c-Plane Cross Section>
As mentioned above, according to the boron reducing process, the dislocation density in the crystal is reduced in the second region 25b formed at outer side in comparison with the first region 25a formed at inner side. The crystallinity of the second region 25b is improved and thus becomes higher quality than the first region 25a. Therefore, in a preferred embodiment, a half-value width (full width at half maximum, FWHM) of X-ray rocking curve is smaller in the second region 25b in comparison with the first region 25a.
The gallium nitride crystal 25 according to the embodiment includes the first region 25a at an inner side of the cross section intersecting the c-axis of the gallium nitride crystal having the hexagonal crystal structure, and includes the second region 25b surrounding at least a part of the first region 25a in the cross section. In emission spectrum of the first region 25a with electron beam or UV excitation, the first peak including the band edge emission of GaN has the peak intensity smaller than that of the second peak which appears in longer wavelength area than the first peak. In emission spectrum of the second region 25b with electron beam or UV excitation, the first peak has the peak intensity greater than that of the second peak.
The first peak refers to a peak which includes the band edge emission of GaN and which appears around about 365 nm in the measurement at a room temperature. The band edge emission of GaN is an emission due to a recombination of holes in an upper edge of the valence band and electrons in bottom of the conduction band in the gallium nitride crystal 25, and means that the light having energy (wavelength) equal to the band gap is emitted. In other words, the first peak is a peak due to a periodic structure of the crystal and a combination (status) of nitrogen and gallium in the gallium nitride crystal 25. The first peak may include an emission in the vicinity of the band edge in addition to the band edge emission.
The second peak refers to at least one peak which appears in a longer wavelength area than the first peak, refers to a peak of emission spectrum due to reasons other than the band edge emission or the emission in the vicinity of the band edge of GaN, and refers to a peak due to reasons other than the combination of nitrogen and gallium. For example, the second peak is a peak including an emission due to impurities or defects.
In a more preferred embodiment, the second peak appears in a range from 450 nm to 650 nm with respect to an emission spectrum with electron beam or UV excitation when measured at a room temperature.
In a still more preferred embodiment, the second peak appears in a range from 590 nm to 650 nm with respect to an emission spectrum with electron beam or UV excitation when measured at a room temperature.
The room temperature refers to about 20 degrees Celsius, and refers to a range of about 10 degrees Celsius to 30 degrees Celsius. When the emission spectra with electron beam or UV excitation was measured at a temperature lower than the room temperature (e.g. −270 degrees Celsius), the second peak may split into a plurality of peaks. The second peak according to the embodiment may split into a plurality peak when measured at a temperature other than the room temperature, insofar as the second peak appears as a broad peak when measured at the room temperature.
The emission spectra with electron beam or UV excitation can be obtained by measuring PL (Photoluminescence) using He—Cd laser (helium-cadmium laser) as exciting light source. However, the embodiment is not limited to this. It is possible to observe colors or intensities of spectra by using fluorescence microscope. The first region 25a and the second region 25b can be distinguished or identified by observed colors.
A fact that the second peak has a peak intensity greater than that of the first peak as shown in the emission spectrum of the first region 25a means that the first region 25a contains a relatively large amount of impurities or defects. On the other hand, a fact that the first peak has a peak intensity greater than that of the second peak as shown in the emission spectrum of the second region 25b means that the second region 25b contains less impurities or defects and thereby the second region 25b is a high quality crystal.
The peak intensity of the first peak and the peak intensity of the second peak with respect to the first region 25a and second region 25b are not limited to any particular one, insofar as the aforementioned relationships are satisfied. In a preferred embodiment, the peak intensity of the first peak of the second region 25b is greater than the peak intensity of the first peak of the first region 25a. And, the peak intensity of the second peak of the second region 25b is smaller than the peak intensity of the second peak of the first region 25a.
Thus, in the embodiment, the second region 25b having less impurities or defects is located at an outer side in the cross section intersecting the c-axis of the gallium nitride crystal 25. Thereby, it is possible to manufacture the high quality group 13 nitride crystals 80 to 83, in a case that the group 13 nitride crystal 27 is grown from the gallium nitride crystal 25 as seed crystal.
The gallium nitride crystal 25 is not limited to the double-layered structure made of the first region 25a and the second region 25b. The gallium nitride crystal 25 may have a multi-layered structure more than double-layered (e.g. three-layered). Specifically, the gallium nitride crystal 25 may include other regions different from the first region 25a and the second region 25b in its structures or properties. Alternatively, the gallium nitride crystal 25 may include a plurality of first regions or second regions. Alternatively, the gallium nitride crystal 25 may include a region whose emission spectrum with electron beam or UV excitation has a weak intensity.
<X-Ray Property of m-Plane Outer Periphery>
According to the manufacturing method mentioned in [1], the crystal growth rate in the c-axis direction of the gallium nitride crystal 25 is promoted, and the gallium nitride crystal 25 is elongated in the c-axis direction. Although the detail mechanism is not unveiled, it is considered that the crystallinity of the gallium nitride crystal 25 changes when the gallium nitride crystal 25 grows in the c-axis direction.
With regard to the term “c-axis direction” herein, the [0001] direction refers to Ga surface side of the c-axis, the [000-1] direction refers to N surface side of the c-axis, and the <0001> does not specify either Ga surface side and N surface side of the c-axis.
Generally, the half-value width (full width at half maximum, FWHM) of X-ray rocking curve is affected by the crystallinity of the crystal. If the crystallinity is good, the FWHM is small. If the crystallinity is not relatively good, the FWHM is large. Therefore, by comparing FWMHs of the X-ray rocking curve, it is possible to select a portion of better crystallinity in one seed crystal 25.
The X-ray enters the inside of the crystal from the surface to a certain extent of depth. Therefore, the FWHM is affected not only by the crystallinity of just a very surface of m-plane but also by the crystallinity of a deeper region than the m-plane surface of the crystal. Therefore, the FWHM of the X-ray rocking curve is affected by the crystallinity of the crystal surface and the vicinity thereof.
Hereinafter, the property of the gallium nitride crystal 25 will be explained with respect to a m-plane located at a center part of the elevation in
In at least one of the outer peripheral surfaces comprised mainly of m-planes of the hexagonal crystal structure of the gallium nitride crystal 25 according to the embodiment, a FWHM of the X-ray rocking curve in a region closer to one edge in the c-axis direction is smaller than that of a region closer to the other edge in the c-axis direction.
The c-axis direction may be a Ga surface side of the c-axis that is a [0001] direction, or may be a N surface side of the c-axis that is a [000-1] direction. Specifically, the aforementioned “one edge” may be an edge 251c of the m-plane indicated by the [0001] direction, or may be an edge 251d of the m-plane indicated by the [000-1] direction, as shown in
Therefore, in an preferred example of the suitable gallium nitride crystal 25, the FWHM measured in the region 252c closer to the edge 251c is smaller than the FWHM measured in the region 252d closer to the edge 252d. To the contrary, the FWHM in the region 252d may be smaller than the FWHM in the region 25c.
In a preferred embodiment, the FWHM of the X-ray rocking curve gradually reduces from the aforementioned “other” edge to the “one” edge (see Examples).
A portion of the gallium nitride crystal 25 where the FWHM is smaller than a predetermined value 25 is cut out to obtain a seed crystal from which a group 13 nitride crystal grows according to the method described later in [3]. Thus, the obtained group 13 nitride crystal is likely to be high quality.
In a preferred embodiment, in order to obtain a seed crystal including a portion where the FWHM is 200 arcsec or less, only the portion where the FWHM is 200 arcsec or less is cut out and this cut portion is used as the seed crystal. Specifically, in an example of
Specifically, in the seed crystal 25c or 25d according to the preferred embodiment, at least one of the outer peripheral surfaces mainly comprised of m-planes includes a portion where the FWHM is 200 arcsec or less. More preferably, it includes a portion where the FWHM is 100 arcsec or less. Still more preferably, the FWHM of all the outer peripheral surfaces comprised of m-planes is 200 arcsec or less. Still more preferably, the FWHM of all the outer peripheral surfaces comprised of m-planes is 100 arcsec or less.
Additives may be doped to the gallium nitride crystal 25 (the first region 25a and the second region 25b) according to the embodiment. Additives may be a doping impurity such as germanium (Ge), oxygen (O), silicon (Si) and the like, an acceptor impurity such as magnesium (Mg), lithium (Li), strontium (Sr), calcium (Ca), zinc (Zn) and so on, a transition metal for providing magnetic property such as iron (Fe), manganese (Mn), chromium (Cr) and the like, a rare earth element or the like for providing magnetic property or fluorescence such as europium (Eu), erbium (Er), terbium (Tb), thulium (Tm) and the like, congeners such as aluminum (Al), indium (In) and the like. Other additives may de selected and doped depending on the purpose.
In
[3] Manufacturing Method of Bulk Crystal from Seed Crystal
The manufacturing method of crystal according to the embodiment is a method of manufacturing a group 13 nitride crystal (e.g. gallium nitride crystal) by a flux method in which the gallium nitride crystal 25 mentioned in [2] is used as a seed crystal (seed crystal 25) to grow the group 13 nitride crystal.
The crystal manufacturing method according to the embodiment includes a performing a X-ray diffraction measurement with respect to at least one of the outer peripheral surfaces mainly comprised of m-planes of the gallium nitride crystal 25 mentioned in [2]. The crystal manufacturing method according to the embodiment further includes a seed crystal processing process to select and cut out a portion where the FWHM of X-ray rocking curve is equal to or less than a predetermined value. The X-ray diffraction may be measured with respect to more than one of six-sided outer peripheral surfaces.
In a preferred embodiment, the obtained seed crystal contains a portion where the FWHM is 200 arcsec or less in the gallium nitride crystal 25. More preferably, the obtained seed crystal contains a portion where the FWHM is 100 arcsec or less in the gallium nitride crystal 25. Still more preferably, only a portion where the FWHM is 200 arcsec or less is cut out, and more preferably only a portion where the FWHM is 100 arcsec or less is cut out.
In a preferred embodiment, the diffraction from the {10-10} plane of the gallium nitride crystal includes a portion where the FWHM of the X-ray rocking curve is 200 arcsec or less. More preferably, it includes a portion where the FWHM is 100 arcsec or less.
In a preferred embodiment, the diffraction from the {10-11} plane of the gallium nitride crystal includes a portion where the FWHM of the X-ray rocking curve is 200 arcsec or less. More preferably, it includes a portion where the FWHM is 100 arcsec or less.
More preferably, both the diffraction from the {10-10} plane of the gallium nitride crystal 25 and the diffraction from the {10-11} plane of the gallium nitride crystal 25 include a portion where the FWHM of the X-ray rocking curve is 200 arcsec or less, more preferable 100 arcsec or less.
After the cutting process mentioned above, the obtained seed crystal 25c or 25d may be further subjected to various processing including a cutting or grinding for changing an outer shape, a mechanical processing such as a surface polishing, and a surface processing with chemicals, and so on.
Thus, according to the method of the embodiment, the X-ray measurement of the outer periphery of the gallium nitride crystal 25 allows to select a suitable region for the seed crystal. Therefore, a more suitable region can be selected for the seed crystal by a non-destructive inspection. Thus, the quality of the group 13 nitride crystals 80 to 83 can be improved by a simple inspection.
The reactor vessel 52 is for maintaining the seed crystal 25c or 25d with a molten mixture 24 of alkali metal and group 13 element-contained material in order to grow the seed crystal 25c or 25d (to grow the bulk crystal from seed crystal is referred to as SG or Seed Growth).
Materials for the reactor vessel 52 are not limited to any particular material. For example, nitrides such as sintered BN, P-BN and the like, oxides such as aluminum, YAG and the like, carbides such as SiC and the like, and so on may be used. An inner wall of the reactor vessel 52, that is, a portion or portions of the reactor vessel 52 which contact(s) the molten mixture 24 is/are preferably made of material(s) insensitive to the molten mixture 24. As examples of materials allowing the crystal growth of gallium nitride, there may be nitrides such as boron nitride (BN), pyrolytic BN (P-BN), aluminum nitride and the like, oxides such as alumina, yttrium-aluminum-garnet (YAG) and the like, stainless steel (SUS) and so on.
To the outside pressure resistant vessel 50 and the inner vessel 51, gas pipes 65 and 66 are respectively connected to supply nitrogen (N2) gas which is source material of the group 13 nitride crystal and a diluent gas for controlling a whole pressure to an inner space 67 of the outside vessel 50 and an inner space 68 of the inner vessel 51. A gas supplying pipe 54 is branched into a nitrogen supplying pipe 57 and a diluent gas supplying pipe 60 via valves 55 and 58, respectively. These pipes 57 and 60 can be separated at valves 55 and 58, respectively.
Argon (Ar) gas which is inert gas is preferably used as the diluent gas. However, the embodiment is not limited to this. For example, other inert gas such as helium (He) may be used as the diluent gas.
The nitrogen gas is introduced from the nitrogen supplying pipe 57 which is connected to a gas canister or the like containing the nitrogen gas therein. The nitrogen gas from the pipe 57 is subjected to a pressure control by a pressure regulator 56 and then supplied to the gas supplying pipe 54 via the valve 55. On the other hand, the diluent gas (e.g. Ar gas) is introduced from the diluent gas supplying pipe 60 which is connected to a gas canister or the like containing the diluent gas therein. The diluent gas from the pipe 60 is subjected to a pressure control by a pressure regulator 59 and then supplied to the gas supplying pipe 54 via the valve 58. Thus, the pressure regulated nitrogen gas and the pressure regulated diluent gas are supplied to the gas pipe 54 to be mixed there.
The gas mixture of the nitrogen gas and the diluent gas is supplied to the outside vessel 50 via the pipe 65 and the inner vessel 51 via the pipe 66. The inner vessel 51 can be removed from the apparatus 2 at the valve 61.
A pressure meter 64 is disposed on the pipe 54 for monitoring a whole pressure inside of the outside vessel 50 and the inner vessel 51 and controlling pressures inside of the outside vessel 50 and inner vessel 51.
In the embodiment, nitrogen partial pressure can be controlled by controlling the pressures of the nitrogen gas and the diluent gas by means of valves 55 and 58 and the pressure regulators 56 and 59. Since the whole pressure of the outside vessel 50 and the inner vessel 51 can be controlled, it is possible to reduce evaporation of alkali metal (e.g. sodium) in the reactor vessel 52 by increasing the whole pressure of the inner vessel 51. In other words, it is possible to control separately the nitrogen partial pressure which becomes a nitrogen source affecting the crystal growth conditions of GaN and the whole pressure which affects the reduction of sodium evaporation.
As shown in
An operation to put the seed crystal 25c or 25d, the source material and the like into the reactor vessel 52 is conducted in such a manner that the inner vessel 51 is put into a glove box under an inert gas atmosphere such as Ar.
In the reactor vessel 52, the seed crystal 25c or 25d obtained through the aforementioned seed crystal processing process is installed (the seed crystal installing process). Specifically, the seed crystal 25c or 25d to be installed in this process includes or is cut out to include a region where the EWHM of X-ray rocking curve is 200 arcsec or less in at least one of the outer peripheral surfaces mainly of m-planes.
Into the reactor vessel 52, a material containing at least a group 13 element (e.g. gallium) as source material or the like, and a material to be used as flux are also put (the putting process).
Material used as flux may be sodium or compound thereof (e.g. sodium azide). Other alkali metals such as lithium, potassium and the like, or compounds of these alkali metals may be used as flux. Alkali earth metals such as barium, strontium, magnesium and the like, or compounds of these alkali earth metals may be used as flux. Plurality kinds of alkali metals or alkali earth metals may be used.
The material containing at least group 13 element as source material may be gallium which is one of group 13 elements. Any other materials including without limitation other group 13 elements such as boron, aluminum and indium, or mixtures thereof may be used as source material(s).
A mol ratio of the material containing or including the group 13 element to alkali metal is not limited to any particular one. However, the mol ratio of alkali metal to the total mol ratio of the alkali metal and the group 13 element is preferably 40% to 95%.
After the materials are set as mentioned above, the heater 53 is turned on to heat the inner vessel 51 and the reactor vessel 52 inside of the inner vessel 51 to a crystal growth temperature. Then, the material containing at least a group 13 element, the alkali metal, other additives and the like are melted in the reactor vessel 52 to form the molten mixture 24 (the molten mixture forming process).
By bring the nitrogen having the aforementioned partial pressure into contact with the molten mixture 24 and thereby dissolving the nitrogen into the molten mixture 24, the nitrogen which is a source material of the group 13 nitride crystal 27 can be supplied to the molten mixture 24 (the nitrogen dissolving process).
Source materials melted in the molten mixture 24 are supplied onto the outer circumference surface of the seed crystal 25c or 25d, so that the group 13 nitride crystal 27 is grown from the outer circumference surface of the seed crystal 25c or 25d with the source materials. The source materials are further supplied onto the outer peripheral surface of the group 13 nitride crystal 27 to promote the crystal growth of the group 13 nitride crystal 27. Thus, by growing the group 13 nitride crystal 27 from the seed crystal 25c or 25d, the group 13 nitride crystals 80 (
In a preferred embodiment, the partial pressure of nitrogen gas in the inner space 68 of the inner vessel 51 and the inner space 67 of the outer pressure resistant vessel 50 is at least 0.1 MPa or more. In a more preferred embodiment, the partial pressure of nitrogen gas in the inner space 68 of the inner vessel 51 and the inner space 67 of the outer pressure resistant vessel 50 is in a range of 2 MPa to 5 MPa.
In a preferred embodiment, the temperature of the molten mixture 24 (the crystal growth temperature) is at least 700 degrees Celsius or more. In a more preferred embodiment, the crystal growth temperature is in a range of 850 degrees Celsius to 900 degrees Celsius.
In a case that the group 13 nitride crystal 27 is grown from the seed crystal 25c or 25d, the dislocation density of the group 13 nitride crystal 27 grown mainly from the outer periphery comprised of m-planes of the seed crystal 25c or 25d is considered to be affected by the quality of the outer periphery comprised of m-planes of the seed crystal 25c or 25d. As aforementioned in [2], the outer periphery comprised of m-planes of the seed crystal 25c or 25d is of high quality with low dislocation density. Thereby, by growing the group 13 nitride crystal 27 from the seed crystal 25c or 25d, it is possible to reduce the propagation of the dislocation from the seed crystal 25c or 25d to the group 13 nitride crystal 27. Therefore, the dislocation density of the group 13 nitride crystal 27 can be restricted to a small extent, and thereby the group 13 nitride crystals 80 to 83 can be more readily manufactured with higher quality and larger sized.
In the crystal manufacturing method according to the embodiment, the same material (e.g. gallium nitride) may be used for the seed crystal 25c or 25d and the group 13 nitride crystal 27 grown from the seed crystal 25c or 25d. Therefore, different from a case that hetero material such as aluminum nitride (AlN) is used as the seed crystal, the lattice constant and the thermal expansion coefficient can be matched and thereby the occurrence of the dislocation due to the difference in the lattice constant or thermal expansion coefficient can be suppressed.
As aforementioned, according to the crystal manufacturing method of embodiment, it is possible to manufacture the group 13 nitride crystals 80 to 83 of high quality with low dislocation density and of practical size.
In the above embodiment, the explanation was focused on the flux method for the crystal manufacturing method. However, the crystal manufacturing method is not limited to any particular one. For example, a vapor phase growth method such as HVPE, or any other liquid phase growth method than flux method may be used for the crystal growth.
The group 13 nitride crystal according to the embodiment is any of group 13 nitride crystals 80 to 83 manufactured by the manufacturing method as mentioned in [3]. Therefore, each of the group 13 nitride crystals 80 to 83 according to the embodiment includes, at the inner side thereof, at least a part of the gallium nitride crystal 25c or 25d mentioned in [2].
It is sufficient that the seed crystal 25c or 25d is located inside of the group 13 nitride crystal 80 to 83. Thus, the seed crystal 25 may be located around the center (around the center of the hexagonal cross section) of the group 13 nitride crystals 80 to 83, as shown in
In an example of
In the group 13 nitride crystals 80 to 83, additives may be doped in the group 13 nitride crystal 27. Examples of additives include a doping impurity such as germanium (Ge), oxygen (O), silicon (Si) and the like, an acceptor impurity such as magnesium (Mg), lithium (Li), strontium (Sr), calcium (Ca), zinc (Zn) and the like, a transition metal for providing magnetic property such as iron (Fe), manganese (Mn), chromium (Cr) and the like, a rare earth element or the like for providing magnetic property or fluorescence such as europium (Eu), erbium (Er), terbium (Tb), thulium (Tm) and the like, congeners such as aluminum (Al), indium (In) and the like. Other additives may de selected and doped depending on the purpose.
In the crystal manufacturing method according to the embodiment, the group 13 nitride crystal 27 grown from the seed crystal and the gallium nitride crystal 25c or 25d used as the seed crystal can be of the same gallium nitride. Different from a case that hetero material such as sapphire or aluminum nitride is used as the seed crystal, the lattice constant or thermal expansion coefficient can be matched, and thereby the occurrence of the dislocation due to the difference in the lattice constant or the thermal expansion coefficient can be suppressed. Furthermore, according to the embodiment, the second region 25b having less impurities or defects is disposed at outer side in the cross section intersecting the c-axis of the gallium nitride crystal 25c or 25d. Thereby, the high quality group 13 nitride crystal 27 can be manufactured when the group 13 nitride crystal 27 is grown from the gallium nitride crystal 25c or 25d as seed crystal. Namely, it is further possible to suppress the dislocation which may occur at a boundary surface of the gallium nitride crystal 25c or 25d used as seed crystal.
Next, an explanation will be made on the dislocation in the crystal with reference to
In the embodiment, the group 13 nitride crystal 27 grown from the seed crystal 25c or 25d is grown mainly from m-planes comprising the outer periphery of the seed crystal 25c or 25d toward the m-axis direction (i.e. a direction in which the c-plane cross section of the hexagon enlarges). Therefore, the dislocations occurred at the growth boundary surface of the seed crystal 25c or 25d are likely to be oriented in <11-20> direction parallel to the crystal growth direction and are not likely to be oriented in <11-23> direction unparallel to the crystal growth direction.
With regard to the dislocation direction intersecting the c-plane cross section of the group 13 nitride crystal having a hexagonal crystal structure, there are <0001> direction and <11-23> direction. In the embodiment, however, the dislocation in the <0001> direction does not occur and the dislocation in the <11-23> direction occurs quite a few.
Therefore, in a preferred embodiment, the dislocation density of the group 13 nitride crystal 27 (a region other than the seed crystal 25c or 25d in the group 13 nitride crystal 80) is smaller than that of the gallium nitride crystal 25c or 25d contained inside of the group 13 nitride crystal 27.
According to the manufacturing method mentioned in [3], a portion or region of the gallium nitride crystal 25 where the FWHM of X-ray rocking curve is equal to or less than a predetermined value is used as a seed crystal. Therefore, in comparison with a case that the seed crystal 25 whose FWHM is larger than 200 arcsec, it is possible to reduce the dislocation density in the group 13 nitride crystal 27.
The fabrication method of the crystal substrate according to the embodiment is a method of fabricating the crystal substrate 100 from the group 13 nitride crystals 80 to 83 mentioned in [4].
The fabrication method according to the embodiment includes a process of cutting out the crystal substrate 100 so as to include at least a part of the seed crystal 25c or 25d when the group 13 nitride crystals 80 to 83 are sliced. For example, the crystal substrate 100a as shown in
The crystal substrate 100 as shown in
According to the fabrication method of the embodiment, it is possible to obtain a large area of main face of the substrate, since the crystal substrate 100 is cut out from the group 13 nitride crystals 80 to 83 enlarged in the c-axis direction as mentioned above, whether the substrate is cut out along the c-plane or along a plane other than the c-plane. Namely, according to the embodiment, it is possible to fabricate the crystal substrate 100 having a large area and a main face comprised of any crystal plane such as c-plane, m-plane, a-plane, {10-11} plane, {20-21} plane, {11-22} plane and so on. Therefore, it is possible to fabricate the crystal substrate 100 of practical size applicable to various semiconductor devices.
According to the fabrication method of the embodiment, the crystal substrate 100 is fabricated by slicing the bulk crystal of the group 13 nitride (the group 13 nitride crystals 80 to 83). Different from the prior art, the method does not include a process of separating a thick crystal film from the hetero material substrate on which the crystal is grown and which has a thermal expansion coefficient and a lattice constant considerably different from that of the crystal thereon. Thereby, cracks hardly occur in the crystal substrate 100 according to the fabrication method of the embodiment. Therefore, it is possible to fabricate the crystal substrate 100 of higher quality in comparison with the prior art.
The crystal substrate according to the embodiment is a crystal substrate 100 fabricated by the fabrication method mentioned in [5]. Namely, the crystal substrate 100 of the embodiment characteristically includes at least a part of the seed crystal 25 mentioned in [2].
As shown in
In a more preferred embodiment, an entire outer periphery comprised of m-planes of the seed crystal 25c or 25d is surrounded by the group 13 nitride crystal 27.
Insofar as the seed crystal 25c or 25d is included inside of the group 13 nitride crystal 27, the position thereof is not limited to any particular one. For example, as shown in
As shown in
In a preferred embodiment, the c-plane of the hexagonal crystal structure becomes a main face of the crystal substrate 100.
As mentioned above, the dislocation extending through the c-plane (line defect) is likely to be reduced in the group 13 nitride crystal 27 according to a preferred embodiment. Therefore, when the crystal substrate 100 having a main face comprised of c-plane is fabricated from the group 13 nitride crystal 80, the line defect extending in the c-axis direction can be reduced and a high quality crystal substrate 100 can be obtained.
In a crystal substrate 100 according to a preferred embodiment, a main face is the c-plane or generally the c-plane, and the substrate 100 includes therein a gallium nitride crystal having a c-plane whose FWHM of X-ray rocking curve is 200 arcsec or less.
In a preferred embodiment, the crystal substrate 100 has a main face mainly comprised of the c-plane and includes therein at least a part of the gallium nitride crystal 25c or 25d where the FWHM of X-ray rocking curve of at least one of the outer peripheral surfaces mainly comprised of m-planes is 200 arcsec or less.
Next, an explanation will be made on preferred shapes of the group 13 nitride crystals 80 to 83. Hereinafter, the group 13 nitride crystal 80 will be explained with reference to
Hereinafter, it is explained a case that the seed crystal 25c or 25d has a six-sided pyramid-like part at an upper part thereof. Such a shape will be explained. In a case that the seed crystal 25c or 25d does not have the six-sided pyramid-like part, the group 13 nitride crystal 27 may grow into a different shape through a different growth process. However, the following explanation will be focused on a case that the seed crystal 25c or 25d has a six-sided pyramid-like shape at one edge, as one example.
As shown in
In the region 27b, the growth rate of forming {10-11} plane is considered to be the slowest or rate controlling. Thereby, the group 13 nitride crystal 27 grown around the upper part of the seed crystal 25c or 25d is considered to often become a six-sided pyramid-like shape.
The region 27a is a region whose crystal growth is started from the outer periphery comprised of m-planes of the seed crystal 25c or 25d. As mentioned relating to
In
On the other hand, if the crystal substrate 100 is fabricated by using the group 13 nitride crystal 80 as shown in
Therefore, in a preferred embodiment, the group 13 nitride crystal 80 is of a shape including a hexagonal column-like part at the lower part of the crystal. However, the preferred shape is not limited to examples of
Next, an explanation will be made on the shape of the seed crystal 25c or 25d suitable for manufacturing the group 13 nitride crystals 80 to 83 having the suitable shapes mentioned in [7]. Firstly, an explanation will be made on a preferable shape of the seed crystal to be manufactured in [2]. The gallium nitride crystal 25 has a hexagonal crystal shape in which an angle formed between the “a+c”-axis (<11-23> direction) and the c-plane is 58.4 degrees. If the ratio L/d of the length L (
As mentioned in [7], in order to obtain the good quality of the group 13 nitride crystals 80 to 83, the group 13 nitride crystal 27 is preferably grown mainly from the outer surface comprised of m-planes of the seed crystal 25. In a preferred embodiment, the seed crystal 25 includes m-planes as the outer periphery.
Therefore, in a preferred embodiment, the ratio L/d is greater than 0.813 in the seed crystal 25, in which L is the length in the c-axis direction and d is a crystal diameter in the c-plane.
The practical size of the crystal substrate 100 is preferably a half-inch (12.7 mm) or 2 inches (5.08 cm). In the following explanation, the explanation will be made on the size of the seed crystal 25 required in a case that group 13 nitride crystal substrate 100 having the c-plane as main face has a diameter of half-inch (12.7 mm) or more, or a diameter of 2 inches or more.
In the following explanation, as an example of the minimum thickness required for the practical substrate, a case that the thickness of the crystal substrate 100 is 1 mm is simulated. However, the required minimum thickness is not limited to this, and can be simulated as appropriate.
In order for the diameter of the crystal substrate 100 to be 12.7 mm, that is, for the diameter d of the group 13 nitride crystals 80 to 83 to be 12.7 mm, the group 13 nitride crystal 27 is required to be grown to a radius direction (the m-axis direction) by 6.35 mm, if the diameter of the seed crystal 25 is neglected as zero.
For example, if the crystal growth rate Vm in the m-axis direction is assumed to be twice of the crystal growth rate Vc in the c-axis direction, the crystal is grown about 3.2 mm in the c-axis direction while grown 6.35 mm in the m-axis direction. As mentioned above, the ratio L/d is greater than 0.813 (L/d>0.813). Therefore, in order for the crystal diameter d (the diameter of the bottom surface of the hexagonal column-like part) to be 12.7 mm, the length L in the c-axis direction (the height of the six-sided pyramid-like part) is 11.9 mm. Therefore, the required length of the seed crystal 27 is calculated as “11.9-3.2=8.7” mm. That is, the minimum length of the seed crystal 25 required for obtaining the group 13 nitride crystal 80 having the six-sided pyramid-like shape as shown in
Thus, in a preferred embodiment, the length L in the c-axis direction of the seed crystal 25 is preferably 9.7 mm or more.
In a more preferred embodiment, as for the seed crystal 25, the ratio L/d (the ratio of the length L in the c-axis direction to the diameter d in the c-plane) is preferably greater than 0.813, and the length L is preferably 9.7 mm or more. More preferably, L/d is greater than 7, and still more preferably, L/d is greater than 30.
With regard to the seed crystal 25c or 25d cut out from the seed crystal 25, the length L in the c-axis direction is preferably 9.7 mm or more, similarly to the aforementioned case. More preferably, as for the seed crystal 25c or 25d, the ratio L/d (the ratio of the length L in the c-axis direction to the diameter d in the c-plane) is greater than 0.813, and the length L in the c-axis direction is 9.7 mm or more.
As described above, according to the preferred embodiment, it is possible to fabricate the crystal substrate 100 having the diameter of the c-plane that is half-inch. As mentioned above, since the group 13 nitride crystals 80 to 83 grown from the m-plane of the seed crystal 25c or 25d is of high quality, a large and high quality crystal substrate 100 can be fabricated.
In order to obtain the crystal substrate 100 having the diameter of 2 inches (5.08 cm), the required length L in the c-axis direction of the seed crystal 25c or 25d is estimated as 37.4 mm or more.
Therefore, in a preferred embodiment, the length L in the c-axis direction of the seed crystal 25 or the seed crystal 25c or 25d is preferably 37.4 mm or more. Thereby, it is possible to fabricate the crystal substrate 100 having the diameter in the c-plane that is 2 inches. As mentioned above, since the group 13 nitride crystals 80 to 83 grown from the m-plane of the seed crystal 25c or 25d are of high quality, a large diameter and high quality crystal substrate 100 of the gallium nitride can be fabricated.
Examples will be shown below for further understanding the invention. However, the invention is not limited to these examples.
In this Example, the gallium nitride crystal 25 (the seed crystal) was manufactured by using the crystal manufacturing apparatus 1 illustrated in
In a glove box, the reactor vessel 12 was placed into the inner vessel 11 under a high purity Ar gas atmosphere. The valve 31 was closed to shut out the inner space of the reactor vessel 12 from the outer atmosphere, so that the inner vessel 11 was sealed under the state filled with Ar gas. Then, the inner vessel 11 was taken out from the glove box and then assembled into the crystal manufacturing apparatus 1. Specifically, the inner vessel 11 was installed at a predetermined position with respect to the heater 13 and connected to the gas supplying pipe 14 of nitrogen gas and argon gas at the valve 31 portion.
Next, after argon gas was purged from the inner vessel 11, the nitrogen gas was introduced from the nitrogen supplying pipe 17. The nitrogen gas was subjected to the pressure control by the pressure regulator 16, and the valve 15 was opened, so that the nitrogen pressure in the inner vessel 11 was 3.2 MPa. Then, the valve 15 was closed and the pressure regulator 16 was set at 8 MPa. Then, the heater 13 was turned on to heat the reactor vessel 12 to a crystal growth temperature. In this Example, the crystal growth temperature was 870 degrees Celsius.
At the crystal growth temperature, gallium and sodium in the reactor vessel 12 were melted to form a molten mixture 24. The temperature of the molten mixture 24 was the same as the temperature of the reactor vessel 12. Until heated to this temperature, in the crystal manufacturing apparatus 1 of this Example, gas in the inner vessel 11 was heated so that the whole pressure was 8 MPa.
Next, the valve 15 was opened so that the pressure of nitrogen gas was 8 MPa, and the pressure equilibrium state was established between the inside of the inner vessel 11 and the inside of the nitrogen supplying pipe 17.
After a crystal of gallium nitride was grown while maintaining the reactor vessel 12 for 500 hours under this state, the heater 13 was controlled to cool the inner vessel 11 to a room temperature (around 20 degrees Celsius). After decreasing the gas pressure in the inner vessel 11, the inner vessel 11 was opened. In the reactor vessel 12, many gallium nitride crystals 25 were formed. Grown gallium nitride crystals 25 were colorless and transparent, had the crystal diameter d of about 100 to 1500 μm, had the length L of about 10 to 40 mm, and had the ratio L/d of the length L to the crystal diameter d was about 20 to 300. The gallium nitride crystals 25 were grown generally parallel to the c-axis, and had the m-planes (see
The gallium nitride crystal 25 manufactured in this Example was subject to various measurements. The measurement results were shown below.
Photoluminescence (PL) was measured at a room temperature (25 degrees Celsius) with respect to the gallium nitride crystal manufactured in the Example. Photoluminescence was measured by using LabRAM HR-800 fabricated by HORIBA, Ltd. As an exciting light source, helium-cadmium (He—Cd) laser having a wavelength of 325 nm was used. Photoluminescence was measured with respect to the first region 25a which was an inner region of the seed crystal 25 and with respect to the second region 25b which was an outer region of the seed crystal 25, respectively.
As shown by a solid line in
On the other hand, as shown by a dotted line in
Thus, with respect to the seed crystal 25 manufactured by the Example, it was confirmed that the peak intensity of the first peak was smaller than the peak intensity of the second peak in the first region 25a contained at inner side of the seed crystal 25. It was also confirmed that the peak intensity of the first peak was greater than the peak intensity of the second peak in the second region 25b located at outer side of the seed crystal 25.
Next, with reference to
Therefore, according to the mapping result of
Also, as a result of PL measurement as for the c-plane cross section of the seed crystal 25 manufactured by the Example, it was confirmed that the second region 25b surrounds a whole outer periphery of the first region 25a in some gallium nitride crystals 25, as shown in
Boron density in the crystal was measured by using a secondary ion mass spectrometer (SIMS) with respect to the gallium nitride crystal 25 manufactured by the Example. As SIMS, IMS 7f (model name) fabricated by CAMECA was used. As primary ion beam, Cs+ ion was used. The primary ion accelerating voltage was 15.0 kV, and the detection area was 30 μmφ. In this measurement, the boron density was measured at a plurality of points with respect to the inner region (i.e. the first region 25a) and with respect to the outer region (i.e. the second region 25b) in the c-plane cross section of the gallium nitride crystal 25, respectively, as shown in
Although there were some variations depending on the measurement points, the boron density in the first region 25a was approximately 5×1018 cm−3 to 3×1019 cm−3, and the boron density in the second region 25b was approximately 1×1016 cm−3 to 8×1017 cm−3.
Thus, with respect to the gallium nitride crystal 25 manufactured by the Example, it was confirmed that the boron density in the second region 25b at outer side was lower than that of the first region 25a at inner side in the c-plane cross section. Thus, it was confirmed that there was a double layered structure made of the first region 25a and the second region 25b.
X-ray rocking curve of the gallium nitride crystal 25 was measured by using a micro-measurement optical system in an X-ray diffractometer X′ Pert PRO MRD fabricated by PANalytical. The measurement was conducted in a thin film method with respect to the diffraction from (10-10) plane and the diffraction from (10-11) plane.
Specifically, as shown in
As shown in
Thus, with respect to the gallium nitride crystal 25 (the seed crystal 25) manufactured by the Example, it was confirmed that the FWHM of X-ray rocking curve in a region at one edge (the edge 251c) side intersecting the c-axis direction was smaller than the FWHM in a region at the other edge (251d) side, in at least one of the outer peripheral surfaces mainly comprised of m-planes.
In this Example, a group 13 nitride crystals 80 was formed by growing the seed crystal 25 in the crystal manufacturing apparatus 2 as illustrated in
Firstly, the inner vessel 51 was separated from the crystal manufacturing apparatus 2 at the valve 61 portion, and placed into the glove box under Ar atmosphere. Next, the seed crystal 25 was placed in the reactor vessel 52 made of alumina and having an inner diameter of 140 mm and a depth of 100 mm. The seed crystal 25 was retained by inserting the crystal 25 into a hole having a depth of 4 mm made at the bottom of the reactor vessel 52.
Next, sodium (Na) was heated to be liquid and then put into the reactor vessel 52. After the sodium became solidified, gallium was input. In this Example, a mol ratio of gallium to sodium was 0.25:0.75.
Then, in the glove box, the reactor vessel 52 was placed into the inner vessel 51 under a high purity Ar gas atmosphere. Then, the valve 61 was closed to seal the inner vessel 51 filled with Ar gas, and shut out the inner space of the reactor vessel 52 from the outside atmosphere. Next, the inner vessel 51 was taken out from the glove box and then assembled into the crystal manufacturing apparatus 2. Specifically, the inner vessel 51 was installed at a predetermined place with respect to the heater 53, and connected to the gas supplying pipe 54 at the valve 61 portion.
Next, after argon gas was purged from the inner vessel 51, nitrogen gas was introduced from the nitrogen supplying pipe 57. The nitrogen gas was subjected to the pressure control by the pressure regulator 56, and the valve 55 was opened, so that the nitrogen pressure in the inner vessel 51 was 1.2 MPa. Then, the valve 55 was closed and the pressure regulator 56 was set at 3 MPa.
Next, the heater 53 was turned on to heat the reactor vessel 52 to a crystal growth temperature. In this Example, the crystal growth temperature was 870 degrees Celsius. Then, similarly to the above Example, the valve 55 was opened so that the nitrogen gas pressure became 3 MPa. Gallium nitride crystal 27 was formed by maintaining the reactor vessel 52 for 1300 hours under this state.
As a result, in the reactor vessel 52, a gallium nitride crystal 80 (single crystal) having a larger crystal diameter increased in a direction orthogonal to the c-axis was formed from the gallium nitride crystal 25 as the seed crystal. The obtained gallium nitride crystal 80 was generally colorless and transparent, and had the crystal diameter d of 51 mm, the length L in the c-axis direction of 54 mm including the seed crystal part 25 which were inserted into the hole at the bottom of the reactor vessel 52. The gallium nitride crystal 80 had a shape in which the upper part was a six-sided pyramid-like shape and the lower part was a hexagonal column-like shape, as shown in
The property of the c-plane cross section of the gallium nitride crystal 80 obtained in Example 2 will be described in the following Example 3.
A gallium nitride crystal substrate 100 (see
The dislocation density was obtained in such a manner that the c-plane surface of the crystal substrate 100 was etched with acid (mixed acid of phosphoric acid and sulfuric acid, 230 degrees Celsius) to obtain the etch pit density. The obtained etch pit density was evaluated as the dislocation density. As a result, the dislocation density of the seed crystal 25 was 6×107 cm−2 or less. The dislocation density of the gallium nitride crystal 27 grown from the seed crystal 25 was in the order of 102 cm−2. According to the microscopic observation, it was confirmed that the crystal substrate 100 had no crack.
Thus, it was confirmed that the gallium nitride crystal 27 grown from the seed crystal 25 having the first region 25a and the second regions 25b1, 25b2 exhibited the dislocation density smaller than 106 cm−2 and had no crack, and thereby the obtained crystal 27 was of high quality crystal.
Half-value width (full width at half maximum, FWHM) of X-ray rocking curve was measured with respect to the c-plane crystal substrate 100. As an X-ray diffractometer, an X-ray diffractometer X′ Pert PRO MRD fabricated by PANalytical was used. As a result, FWHM in the c-plane was 30 to 80 arcsec. FWHM in the c-plane of the seed crystal portion located around the center of the obtained crystal was 35 arcsec.
The crystal growth was conducted under the same condition as Example 1 except that the reactor vessel made of sintered BN was used, the crystal growth temperature was 870 degrees Celsius, the partial pressure of nitrogen was 10 MPa, and the crystal growth time was 300 hours. As a result, needle-like crystals each having a crystal diameter d of approximately 100 to 800 μm, and a length L of 3 to 18 mm. However, the appearance of the crystals were of skeleton crystals, and the color was slightly yellowish and the transparency was low in comparison with the crystal of Example 1.
FWHM of X-ray rocking curve of the gallium nitride crystal 25 manufactured by Comparative Example 1 was measured similarly to Example 1. The FWHM was larger than 200 arcsec in all m-planes.
The crystal growth was conducted similarly to Example 4 except that the gallium nitride crystal 25 manufactured by Comparative Example 1 was used as seed crystal, and the crystal growth time was 300 hours. As a result, unnecessary crystals (zassho, spontaneous nucleation or secondary nucleation) are attached to the obtained crystal, or the obtained crystal was polycrystal. Thus, a high quality large crystal was not obtained.
According to the invention, the FWHM of X-ray rocking curve in a region closer to one edge intersecting the c-axis direction is smaller than a region closer to the other edge, in at least one of the outer peripheral surfaces mainly comprised of m-planes of the gallium nitride having a hexagonal crystal structure. Therefore, if this gallium nitride crystal is used as the seed crystal to grow a group 13 nitride crystal, a high quality group 13 nitride crystal with low dislocation density can be obtained. From this group 13 nitride crystal, a high quality crystal substrate can be fabricated.
Although the invention has been described with respect to specific embodiments for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2011-201205 | Sep 2011 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 13603703 | Sep 2012 | US |
Child | 15455339 | US |