The present invention relates to devices and methods associated with injecting additives into molten metal.
Injection of additives into molten metal baths is often accomplished by encasing the additives in a metal jacket or sheath to form a “cored wire,” and then adding the cored wire to the molten metal bath, where the metal jacket or the sheath component of the wire melts and releases the additives. For example, an additive that may be added to steel is calcium. The calcium may be provided in the form of a wire that is insulated with paper and an additional jacket/sheath of steel.
To add a cored wire to a metal bath, a feeder (often referred to as an “injector”) is used. The feeder pulls cored wire from a reel or cage, straightens the wire and pushes the straightened wire through a metal guide tube. A guide tube is generally a steel tube having a diameter between 25 millimeters and 150 millimeters, depending on equipment conditions. Often, recovery is best when the guide tube diameter is on the lower end of the range, for example, between 25 millimeters and 50 millimeters. The metal guide tube directs the cored wire on a trajectory so that the cored wire enters the molten metal bath to facilitate dissolving the cored wire in the molten metal.
For example, calcium is very reactive, has a low density relative to molten steel and forms a vapor at molten steel temperatures if it dissolves near the surface of the molten steel. To direct the wire deep into the metal bath, and thereby guard against dissolving near the surface of the molten steel bath, a guide tube may be used that is able to be positioned near the molten steel and survive the splashing of molten steel and slag while the calcium-cored wire is added to the molten steel. Usually, the cored wire is added to the molten steel for three to four minutes.
It has been shown that when the guide tube is placed close to the surface of the molten metal, more of the additive ends up in the molten metal. The “recovery” is the amount of additive measured in the molten metal divided by the amount of additive injected into the molten metal. Several factors determine the recovery of the additive. In almost all cases, greater recovery is desired. Factors which influence the recovery include the cored wire's angle of entry into the metal bath, the velocity at which the cored wire enters the metal bath, and the distance between the tip of the guide tube and the surface of the metal bath.
Recovery is usually improved if an end of the guide tube is placed close to the metal bath. However, experience shows that the end of the guide tube will be removed either by melting or oxidizing the guide tube, or the guide tube will become plugged if the guide tube is brought too close to the metal bath. Melting, oxidation and/or plugging have been observed when the distance between the guide tube and the metal bath is less than one meter. To avoid these conditions, a large, dense ceramic end-piece may be used on the end nearest the molten metal. However, such an end-piece is susceptible to metal and slag build-up on the ceramic end. Further, the weight of the end-piece makes handling difficult. In addition, build-up ultimately blocks the guide tube if the tube is lowered near the metal bath.
Consequently, there is a need for a new device that is able to withstand the temperatures and splashing of slag and metal, while reducing buildup, and at the same time is able to withstand mechanical abrasion and impact energy from the wire that is being added to the molten metal bath.
The invention may be embodied as an end-piece for an additive guide tube. Such an end piece may have a durable sleeve and a sloughable sleeve. The durable sleeve may have a first end and a second end, and an inner surface defining a through-hole extending from the first end to the second end. The sloughable sleeve may have a channel through which an additive may be delivered, and the sloughable sleeve may reside in the through-hole of the durable sleeve and may be secured to the durable sleeve.
The invention may be embodied as a guide tube assembly. Such a guide tube assembly may include a guide tube and an end-piece.
The invention may be embodied as a method. In one such method, a guide-tube assembly is provided. The guide tube assembly may have (a) a durable sleeve having a receiving end and a dispensing end, and having an inner surface defining a through-hole extending from the receiving end to the dispensing end, (b) a sloughable sleeve having a channel through which an additive may be delivered, the sloughable sleeve residing in the through-hole of the durable sleeve and being secured to the durable sleeve, and (c) an additive guide tube residing in the channel of the sloughable sleeve and being secured to the sloughable sleeve. The durable sleeve may be positioned proximate to molten metal, and an additive may be provided to the molten metal by feeding the additive through the sleeves from the receiving end toward the dispensing end.
For a fuller understanding of the nature and objects of the invention, reference should be made to the accompanying drawings and the subsequent description. Briefly, the drawings are:
The invention may be embodied as an end-piece 10 for an additive guide tube 46.
The durable sleeve 13 may be a ceramic material, such as for example alumina or alumina-graphite. The durable sleeve 13 may have a first end 19 and a second end 22. The durable sleeve 13 may have an inner surface 25 defining a through-hole 28 extending from the first end 19 to the second end 22.
The sloughable sleeve 16 may be paperboard, such as cardboard. Alternatively, the sloughable sleeve 16 may be a ceramic blanket, either woven or non-woven. An example of a ceramic blanket is BTU-Block produced by Thermal Ceramics of Augusta, Ga. The sloughable sleeve 16 may define a channel 31 through which an additive 34 may be delivered. When molten metal or slag contacts such a sloughable sleeve 16, a portion of the sloughable sleeve 16 may burn or melt, depending on the material. When the sloughable sleeve 16 burns or melts, the molten metal or slag falls back into the molten metal bath 37, thereby preventing the molten metal and slag from sticking to the end-piece 110, which in turn prevents buildup of metal and slag.
The sloughable sleeve 16 may reside in the through-hole 28 of the durable sleeve 13 and may be attached to the durable sleeve 13. A bonding material 40, such as ceramic-mortar, may reside between the sloughable sleeve 16 and the durable sleeve 13 in order to secure the sloughable sleeve 16 to the durable sleeve 13. One ceramic-mortar that may be suitable is sold under the tradename “Super G 3000”, which is available from Vesuvius USA Corp.
In lieu of or in addition to the bonding material 40, a first fastener 43 may be used to secure the sloughable sleeve 16 to the durable sleeve 13. For example, the first fastener 43 may be a staple that extends from the durable sleeve 13 to the sloughable sleeve 16 in a manner such that the first fastener 43 secures the sloughable sleeve 16 to the durable sleeve 13. The first fastener 43 may extend through the durable sleeve 13.
A second fastener 52 may extend through the sloughable sleeve 16 but not the durable sleeve 13.
An end-piece 10 according to the invention may be used with an additive guide tube 46 to form an assembly 55. The guide tube 46 may be made from metal. The guide tube 46 may be positioned to reside in the channel 31, and may be secured to the sloughable sleeve 16 by first fasteners 43 and/or second fasteners 52 that extend from the sloughable sleeve 16 into the channel 31. Alternatively, or in addition, the guide tube 46 may be secured to the sloughable sleeve 16 by making the channel 31 a size that will provide a friction fit or an interference fit with the guide tube 46. When an interference fit is provided, the sloughable sleeve 16 may be compressed between the guide tube 46 and the durable sleeve 13. In this manner, the guide tube 46 may be fixed relative to the end-piece 10, without applying forces to the durable sleeve 13 that might fracture the durable sleeve 13. Furthermore, the sloughable sleeve 16 may protect the durable sleeve 13 from impacts, such as from the cored wire additive 34, and therefore may prevent fracturing of the durable sleeve 13.
In this arrangement, the first end 19 of the durable sleeve 13 may be considered a receiving end, and the second end 22 of the durable sleeve 13 may be considered a dispensing end. The guide tube 46 may be received in the receiving end 19, and the additive 34 may be dispensed through the dispensing end 22. The dispensing end 22 of the durable sleeve 13 may extend beyond a dispensing end 58 of the guide tube 46. In this manner, the durable sleeve 13 may serve to protect the guide tube 46 from molten metal and slag that may splash in the vicinity of the guide tube 46. When used near a molten metal bath 37, the durable sleeve 13 and guide tube 46 may be positioned relative to each other so that the dispensing end 22 of the durable sleeve 13 will be closer to the molten metal bath 37 than the dispensing end 58 of the guide tube 46. The relative position of the durable sleeve 13 and guide-tube 46 of an embodiment of the invention is best seen in
The invention may be embodied as a method of dispensing an additive.
U.S. provisional patent application No. 60/658,660 discloses additional details about the invention and additional embodiments of the invention. The disclosure of that patent application is incorporated by this reference.
Although the present invention has been described with respect to one or more particular embodiments, it will be understood that other embodiments of the present invention may be made without departing from the spirit and scope of the present invention. Hence, the present invention is deemed limited only by the appended claims and the reasonable interpretation thereof.
This application claims the benefit of priority to U.S. provisional patent application Ser. No. 60/658,660, filed on Mar. 4, 2005.
Number | Date | Country | |
---|---|---|---|
60658660 | Mar 2005 | US |