Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 C.F.R. § 1.57.
The present disclosure relates to patient specific shoulder apparatuses and methods.
Shoulder arthroplasty is an important solution to many shoulder joint ailments. The procedure can involve replacing or repairing the articular surface of one or both of the humerus and the glenoid to restore shoulder joint function, to eliminate shoulder joint pain, and to improve quality of life for patients with debilitating shoulder joint pain.
In shoulder arthroplasty, an articular implant can repair or replace the articular surface of the glenoid 18. The glenoid 18 is prepared by being reamed a suitable amount and thereafter the articular implant is attached to the reamed surface. The articular surfaces of the humerus 12 and the glenoid 18 can be reversed in some cases, providing a concave articular member on the humerus 12 and a convex member on the glenoid 18. In some cases the glenoid surface is worn away and the glenoid surface is enhanced to make up for worn bone. In these cases poor articular implant orientation can lead to poor results.
There is a need for improved surgical guides that can improve placement of articular implants of the glenoid. There is a need for improved surgical guides that can aid in orienting glenoid articular implants. There is a need for improved surgical guides that can aid in forming channels for screws and other anchors for glenoid articular implants. There is a need for surgical guides that have improved stability and for guides that can be placed on the glenoid without obstructing, interacting with and potentially being disrupted by or disrupting the position or operation of tissue retractors and other surgical tools. There is a need for patient specific surgical guides that can provide any or all of these and other improved characteristics.
In one embodiment, a patient specific shoulder guide is provided that includes a hub and a plurality of peripheral members. The hub has a first end configured to face a central glenoid surface, a second end opposite the first end, and an elongate hub body that extends from the first end to the second end. The elongate hub body defines a hub height dimension that extends between the first end and the second end. The peripheral members have an inner end coupled with the hub, an outer end disposed radially away from the hub, and a patient specific contact surface disposed at the outer end of the peripheral member. Each of the peripheral members has a peripheral member height dimension between the patient specific contact surface and a side of the peripheral member opposite the patient specific contact surface. At least one of the peripheral members is a low profile peripheral member in which the peripheral height dimension is less than the peripheral height dimension of at least one other of the peripheral members or is less than the hub height.
In another embodiment, a patient specific shoulder guide is provided. The patient specific shoulder guide includes a central member and a plurality of peripheral members. The central member is configured to contact a location of a glenoid surface located inward of a glenoid rim of a glenoid. The peripheral members each have a patient specific surface configured to contact points of the glenoid rim of the glenoid of a specific patient. The peripheral members and the central member provide for stable positioning of the patient specific shoulder guide. In use, all of the peripheral members contact an anterior portion of the glenoid rim. In this embodiment, there is optionally a side channel for securing the guide against rotation.
In another embodiment, a method is provided. A patient specific glenoid guide is placed on a surface of a scapula of a patient. The guide has a patient specific bone contact surface. The guide is placed such that the patient specific bone contact surface is in contact with a corresponding bone surface. A peripheral guide pin is advanced into the scapula near a peripheral region of a glenoid of the patient with reference to the patient specific glenoid guide.
In one variation of the foregoing method, an aperture of an anchor trajectory guide is advanced over the peripheral guide pin to a predefined position over the glenoid. A peripheral anchor channel is formed in the scapula from the glenoid surface toward an opposing cortical bone region. A reverse shoulder implant baseplate is secured on the glenoid surface by advancing a peripheral anchor through the peripheral anchor channel formed through the anchor trajectory guide.
In another embodiment, a method is performed in which an anchor trajectory guide is positioned in a predefined position over a glenoid surface of a patient. A peripheral anchor channel is formed in a scapula from the glenoid surface toward an opposing cortical bone region. A shoulder implant is secured on the glenoid surface by advancing a peripheral anchor into the peripheral anchor channel formed through the anchor trajectory guide.
In one variation, a patient specific glenoid guide is placed on a surface of the scapula of a patient with the patient specific glenoid guide in contact with a corresponding bone surface. A peripheral guide pin is advanced into the scapula near a peripheral region of a glenoid of the patient with reference to the patient specific glenoid guide. An aperture of the anchor trajectory guide is advanced over the peripheral guide pin.
The foregoing method can be employed to place a reverse shoulder implant baseplate. The method can include coupling the reverse shoulder implant baseplate to the anchor trajectory guide prior to positioning the anchor trajectory guide in the predefined position over the glenoid. A projection disposed on a bone facing side of the anchor trajectory guide can be coupled with a recess in the reverse shoulder baseplate to couple the reverse shoulder implant baseplate to the anchor trajectory guide. One or more peripheral members of the guide can be coupled with a corresponding one or more tooling interfaces of the reverse shoulder baseplate to couple the reverse shoulder implant baseplate to the anchor trajectory guide.
In a further variation, the reverse shoulder baseplate can be rotationally oriented such that an augmented portion thereof is oriented toward a portion of the glenoid for which the augmented portion has been configured.
The patient specific glenoid guide can be formed such that a central guide feature is disposed to be near a central region of the glenoid when the guide is used. In one case, the central guide feature is established, at least in part by, advancing over a central guide pin extending from the central region of the glenoid.
In some methods, a reamer is advanced with reference to one or both of the central guide pin or the peripheral guide pin to the glenoid surface. The glenoid surface is reamed with reference to the guide pin(s).
In another embodiment, a method of reaming a glenoid is provided. A patient specific glenoid guide having a patient specific bone contact surface is placed on a surface of a scapula of a patient. The guide is placed such that the patient specific bone contact surface is in contact with a corresponding bone surface. A central guide feature that extends from a central surface of the glenoid is established. The central guide feature is established by reference to the patient specific glenoid guide. A peripheral guide feature that extends from a surface of the scapula peripheral to the central surface of the glenoid is established. The peripheral guide feature is established by reference to the patient specific glenoid guide. A reaming guide is coupled to a reamer. After coupling the reaming guide to the reamer, the reaming guide is advanced over or into a proximal portion of the peripheral guide feature. The reamer is advanced to the glenoid surface by reference to the central guide feature and by reference to the peripheral guide feature. The glenoid surface is reamed by continued reference to the central guide feature and by reference to the peripheral guide feature.
In another embodiment, a patient specific shoulder guide is provided. The guide has a central hub, and a plurality of peripheral locating members. The central hub has a channel therethrough. The channel is positioned and oriented to define an axis along which a central guide pin can be placed in a glenoid of a patient. Each of the peripheral locating members is elongate with an inner end coupled with the central hub and an outer end. The outer end is disposed away from the central hub. A patient specific contact member is coupled with the outer end of the peripheral locating member. A peripheral member that has a peripheral channel therethrough is configured to direct a peripheral guide pin into a scapula adjacent to a rim of the glenoid outside the central region of the glenoid.
Any of the patient specific shoulder guides disclosed herein can include a surface configured to mate with a feature of a glenoid of a patient.
In some embodiments, one or more of the patient specific contact members are formed as a substantial negative of corresponding portions of the glenoid of the patient. The peripheral member can have the peripheral channel disposed in a portion of the shoulder guide configured to be disposed over a superior portion of the glenoid when the patient specific contact members are in contact with a surface of which they are a substantial negative.
The peripheral member can have a peripheral channel configured to be spaced away from the scapula when the patient specific contact members are in contact with a surface of which they are a substantial negative. The peripheral channel can have a trajectory that is patient specific. The peripheral channel(s) can be configured to direct a guide pin into a portion of the scapula outside the glenoid rim. The peripheral channel(s) can be configured to direct a guide pin into a portion of the scapula inside the glenoid rim.
One or more of the peripheral members can be a low profile member in which a peripheral height dimension is less than a height of a central hub. Two adjacent peripheral locating members can be disposed in a posterior portion of the shoulder guide and can be separated by an unobstructed region of at least 45 degrees, or of at least 90 degrees. The shoulder guide can be configured in a patient specific manner such that the peripheral channel will be disposed in a location outside of, e.g., opposite to, a region of the scapula to be reamed during a procedure to place an implant on the glenoid.
In another embodiment, a reaming guide is provided that includes a peripheral member configured to mate with a peripheral guide feature and a rigid body. The rigid body extends from the peripheral member to adjacent to a reaming head of a reamer in use. The rigid body is configured to be mounted to the reamer proximal of the reaming head. The reaming guide includes a depth stop coupled with the rigid body. The depth stop has a distal portion configured to contact a first reamed glenoid surface or other surface of the scapula when the reaming head has fully reamed a glenoid surface to a planned depth in preparation for an augmented glenoid component. The reaming guide can be used to control the preparation of a surface that can be disposed at an angle to a first reamed surface or that can be disposed at a non-orthogonal angle to a guide pin or at a non-orthogonal angle to a medial-lateral axis of the patient.
In another embodiment, a patient-specific screw anchor trajectory guide is provided. The screw anchor trajectory guide includes a body, a locating aperture, and a plurality of peripheral screw apertures. The body is configured to be placed over a reverse shoulder assembly baseplate. The locating aperture is disposed through the body and is configured to be advanced over a guide pin to locate the body relative to a glenoid. The plurality of peripheral screw apertures are disposed through the body and located inferior of the locating aperture at positions corresponding to pre-defined peripheral screw locations. The peripheral screw channel apertures are located and oriented to provide good purchase in scapular bone around the glenoid for a specific patient.
In some embodiments, a screw anchor trajectory guide can have a body that has a first side configured to face toward the glenoid surface in use and a second side opposite the first side. The first side can have a projection configured to be received in a recess of a glenoid baseplate to facilitate positioning the baseplate at the same time the screw guide is positioned to form peripheral screw channels.
One or more peripheral members can be provided on the first side of a guide body. The peripheral members can be configured to engage tooling interfaces of a baseplate to facilitate positioning the baseplate at the same time the screw guide is positioned to form peripheral screw channels. The peripheral members can be disposed circumferentially between adjacent holes of the plurality of peripheral screw apertures. The peripheral members can be disposed in an inferior portion and in a superior portion of the body of the screw guide.
In some embodiments, a distance from a locating aperture of a guide to a central portion of a medial projection of a body of the guide can be configured for a specific patient. One or more of the peripheral screw apertures can be configured for a specific patient. The peripheral screw apertures can comprise a superior hole, an inferior hole, an anterior hole, and a posterior hole.
At least one of a plurality of peripheral screw apertures can be disposed along an axis selected to cause a peripheral screw directed along the axis to reach cortical bone through cancellous bone beneath the glenoid.
At least two opposite peripheral screw apertures of a guide can be disposed through a body of the guide along diverging axes.
In other embodiments, a surgical instrument is provided for implanting an augmented glenoid implant. The instrument includes an outer shell, an inner shell, and a rotation guide. The outer shell has an elongate body that has a first end and a second end. The outer shell has a glenoid implant component retention feature disposed on the first end. The inner shell is slideably disposed in the outer shell. The inner shell has a first position and a second position within the outer shell. The first position is closer to the first end of the outer shell than is the second position. The inner shell is configured to actuate the glenoid implant component retention feature to a retention configuration when in the first position relative to the outer shell. The rotation guide has an instrument interface and a bone interface portion disposed on another end thereof. The rotation guide has a rigid body disposed between the instrument interface and the bone interface portion. The shape and/or length of the rigid body optionally is/are configured for a specific patient to control the rotational position of the glenoid implant component. In some embodiment, the shape of the rigid body is configured for a specific patient to control the rotational position of the glenoid implant component. In some embodiments the length of the rigid body is configured for a specific patient to control the rotational position of the glenoid implant component. In some embodiments the shape and the length of the rigid body is configured for a specific patient to control the rotational position of the glenoid implant component. The surgical instrument comprises an interface portion configured to releaseably engage the rotation guide.
In some cases, the shape and/or length of the rigid body is/are not patient specific but rather are generic. For example, a kit of rotation guides can be provided where each rigid body includes a generic body to suit a small, a medium, or a large glenoid. The kit can further include for each size option a plurality of rotation guides with rigid bodies configured to align an instrument, such as a reamer or implant driver, with specific anatomy requiring augmentations, such as with posterior, inferior, anterior, or superior regions of the glenoid and any region therebetween.
In another embodiment a patient specific glenoid guide has a hub and a plurality of peripheral members. The hub has a first end configured to face a central glenoid surface, a second end opposite the first end, and an elongate hub body that is disposed between the first end and the second end. The elongate hub body has a central channel therethough. The peripheral members have an inner end coupled with the hub, an outer end disposed radially away from the hub, and a patient specific contact surface at the outer end. At least one of the peripheral members has a rotation control feature forming channel configured for forming a visual indicator on a scapula of a specific patient in a prescribed position relative to a portion of the glenoid of the specific patient to be augmented by an augmented glenoid implant.
In another embodiment a method is provided for aligning a rotationally asymmetric glenoid component to a glenoid of a specific patient. The glenoid is exposed. A glenoid guide is applied to the glenoid. The glenoid guide has a rotation control feature forming member. A rotation control feature is formed with reference to the rotation control feature forming member in or on the scapula at or adjacent to the glenoid. The rotation control feature can be used for guiding a reamer to form a surface ready to receive a rotationally asymmetric glenoid component. The surface can be disposed at a non-orthogonal angle to a guide pin or to the orientation of a longitudinal axis of the reamer and/or at an acute angle to another reamed glenoid surface. Whether or not the rotation control feature is used to control the reamer, the rotationally asymmetric glenoid component can be advanced onto the glenoid with reference to the rotation control feature to align the rotationally asymmetric glenoid component to the glenoid in a prescribed rotational orientation for the specific patient. The rotationally asymmetric glenoid component is secured to the glenoid in the prescribed rotational orientation for the specific patient.
The rotation control feature forming member can include a superior peripheral member with an aperture and/or a guiding peripheral member with a channel. The rotation control feature can be configured to guide advancement of a reamer to form a surface ready to receive a rotationally asymmetric glenoid component. The surface can be disposed at a non-orthogonal angle to a guide pin or to the orientation of a longitudinal axis of the reamer and/or at an acute angle to another reamed glenoid surface. Whether or not the rotation control feature is used to control the reamer, the rotation control feature can be configured to guide placement of a rotationally asymmetric glenoid component. The channel in the guiding peripheral member can be a slot or other open sided channel or can be a lumen or other closed periphery channel.
Any feature, structure, or step disclosed herein can be replaced with or combined with any other feature, structure, or step disclosed herein, or omitted. Further, for purposes of summarizing the disclosure, certain aspects, advantages, and features of the inventions have been described herein. It is to be understood that not necessarily any or all such advantages are achieved in accordance with any particular embodiment of the inventions disclosed herein. No aspects of this disclosure are essential or indispensable.
These and other features, aspects and advantages are described below with reference to the drawings, which are intended for illustrative purposes and should in no way be interpreted as limiting the scope of the embodiments. Furthermore, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure. In the drawings, like reference characters denote corresponding features consistently throughout similar embodiments. The following is a brief description of each of the drawings.
This application is directed to shoulder joint arthroplasty apparatuses and methods, which in some cases are patient specific. Section I discusses glenoid implants and the positioning of the same, addressing some sub-optimal outcomes that can be improved by the surgical guides disclosed herein. Section II discusses methods and apparatuses for enhanced control of bone preparation for glenoid implants. Section II also discusses methods and apparatuses for enhanced control of the mating of articular implant with the glenoid. Surgical guides are discussed that enhance control of the rotational orientation of glenoid implant components. Section III discusses methods and apparatuses for enhanced control of reaming of a glenoid surface. Reaming guides are discussed that enhance the control of the process of reaming of a glenoid surface. Section IV discusses apparatuses and methods for providing enhanced rotational position control during implantation of rotationally asymmetric glenoid components, such as in certain augmented glenoid components. Section V discusses low profile surgical guides for preparation of the glenoid. Low profile glenoid guides are configured to be less obstructive of other tools in the surgical field, such as retractors used to expose the joint space for procedures, and methods of using the same.
Glenoid devices are implanted through an incision over the shoulder joint. The incision is enlarged with one or more retractors 16. The glenoid 18 is prepared through the enlarged incision to mate with an implant. Preferably the glenoid implant is oriented properly on the glenoid for a good joint replacement outcome. Patient specific techniques can enhance glenoid implant positioning.
A. Example Glenoid Implants
The glenoid implant 50 includes an anchor member 52 for anchoring the glenoid implant 50 in the glenoid, a baseplate 54, and a locking structure 56 that limits rotation between the anchor member 52 and the baseplate. The implant 50 also includes a glenosphere 58 that has an articular surface 59. The glenosphere 58 is couple to a concave humeral component anchored to the humerus of the shoulder joint to provide joint motion.
A longitudinal axis 60 is aligned with a central longitudinal axis 61 of anchor member 52. The glenosphere 58 is disposed toward a proximal end of the glenoid implant 50 along the longitudinal axis 60 and the anchor member 52 is disposed toward the distal end of the glenoid implant 50 along the axes 60, 61. An element of the glenoid implant 50 is proximal to another element if it is between the articular surface 59 and the other element and an element is distal to another element if it is between a distal tip 62 of the anchor member 52 and the other element. At some points below, reference may be made to the anatomical location. In use when the implant 50 coupled with a patient's scapula, the distal tip 62 is more medial on the patient, whereas the articular surface 59 of the glenosphere 58 is more lateral on the patient.
The baseplate 54 is oriented substantially perpendicular to the longitudinal axis 60 of the glenoid implant 50. The baseplate 54 has a proximal end 66 and a distal end 68. The proximal end 66 comprises a proximal surface and the distal end 68 comprises a distal surface, which can include a bone engaging surface 74. The bone engaging surface 74 is planar in some applications.
The baseplate 54 has a peripheral surface 76 between the proximal surface of the baseplate 54 and the bone engaging surface 74 of the baseplate 54. In some embodiments, the peripheral surface 76 is configured to form a Morse taper with the glenosphere 58. Further details of such mating and other variations can be found in US2015/0305877, which is hereby incorporated by reference in its entirety.
The baseplate 54 has a central protrusion 78 that projects distally from the bone engaging surface 74 to the distal end 68. The central protrusion 78 has an outer surface that extends from the bone engaging surface 74 to a distal end of the baseplate 54. The central protrusion 78 can include a first aperture 80. The first aperture 80 can include a groove and a locking clip 83 to secure the anchor member 52 in the central protrusion 78. Further details of such securement and alternatives can be found in US2015/0305877, which is hereby incorporated by reference in its entirety. The baseplate 54, like the baseplate 54A (shown in
The baseplate 54 and the baseplate 54A can include a plurality of peripheral holes 84 (e.g., two holes 84 as in
In various embodiments discussed further below surgical guides and methods using the same aid in aligning a wedge portion 394 of the baseplate 54A with a bone segment in need of augmentation.
B. Example of Sub-Optimal Orientation of the Glenoid Implant
As discussed herein, improved surgical guides which can be patient specific can be used to reduce, minimize or prevent these sub-optimal outcomes in the implantation of the glenoid implant 50 and other glenoid implants and components thereof such as the baseplate 54 and the baseplate 54A.
A. Guide for Forming Superior Peripheral Guide Channel
The guide 100 can be patient specific by having the gross dimensions thereof (e.g., height in the inferior-superior direction, width in the anterior-posterior direction) matching the size of a glenoid of or other portion of the scapula of a specific patient. The matching of the overall size of the guide and the forming of specific portions thereof to match a specific patient result from a pre-planning process for the guide, which is followed by a manufacturing process to make a specific guide for a specific patient, as discussed further below. The guide 100 can be patient specific in having one or more portions located centrally and peripheral members or legs that extend radially outward from the central portion, the length, width, and/or separation between the peripheral members being patient specific. The peripheral members or legs can also be patient specific in providing a contact portion for engaging in a patient specific manner a specific portion of the scapula of a specific patient. For example, the peripheral members or legs can have medial surfaces that are contoured to match, e.g., are complementary to or substantial negatives of, a segment of bone that can be selected by a surgeon or that can be identified by a process as providing optimal or enhanced fit for the guide 100. The contoured surfaces can have, for example, simple or complex shaped concavities that can be nested over similar or same shaped convexities of the bone, e.g., of the glenoid rim of the patient. When the contact surface or surfaces is or are coupled with the anatomy to which they were formed to match the guide 100 can provide further functions. For example, the central portion if provided can be coupled with the peripheral members or legs in a patient specific manner. For example, the central portion can be coupled with the peripheral members such that it is at a patient specific orientation or angle. The angle at which the central member is coupled can enable a channel therethrough to be at a patient specific orientation to enable a pin to be guided into a central portion of the glenoid whereby the pin can guide other instruments at a pre-planned patient specific trajectory. The configuration of the hub, peripheral members, contact surfaces, pin guide orientation or trajectory and other patient specific features can be generated using a processor and computing system implementing a method that takes as inputs one or more of pre-operative patient imaging, selection of bone portions to form contact surfaces in relation to, nature and type of implant to be applied to the patient following the surgery and other factors. More details of acquisition of pre-operative images or data and processing of the same into plans for making and the patient specific shoulder guide 100 are discussed in WO 2015071757 and WO 2015052586 which are hereby incorporated by reference herein.
Although the shoulder guide 100 generally is patient specific, it could be configured more generically in some embodiments. When patient specific, the shoulder guide 100 can be formed following acquisition of pre-operative imaging or data describing the actual bone anatomy of the patient to be treated. CT or MRI scan images or the like can be obtained, digitized and analyzed using software. The software is preferably combined with a manufacturing facility that allows the physical structures of the patient specific shoulder guide 100 to be made responsive to clinical judgements about the pre-operative images or data. The manufacturing facility can employ or include additive manufacturing such as three dimensional printing. Examples of three dimensional printing include direct metal laser sintering (DMLS), fused deposition modeling (FDM), fused filament fabrication (FFF), and electron beam melting (EBM). Any one or a combination of these or other additive manufacturing processes can be used in to manufacture the guide 100 or any of the other patient specific devices disclosed herein. In these processes a three dimensional object is formed by sequentially forming individual layers of the object on top of previously formed individual layers. These processes can closely control the gross dimensions of the object and also can form complex features and shapes such as contours. As discussed further below, these processes can be used to form and located the complementary surface on the guide such that the surface can mate with specific anatomy of a specific patient, e.g., concave surfaces that can nest on top of corresponding convex surfaces. More details of techniques for manufacturing of the patient specific shoulder guide 100 are discussed in WO 2015071757 and WO 2015052586 which are hereby incorporated by reference herein.
The hub 104 can have medial and lateral ends and a body that extends therebetween. The medial end faces the glenoid 18 when the guide 100 is mounted to the scapula 14. The medial end can be disposed adjacent to but may or may not contact the surface of the glenoid 18 when the guide 100 is mounted to the scapula 14. The lateral end of the hub 104 is located opposite the medial end of the hub 104. The lateral end of the hub 104 can be at the top side of the guide 100, e.g., an upper-most portion or at least a local top portion of the guide 100.
The patient specific shoulder guide 100 can have a central channel that extends through the hub 104. The central channel can extend from the lateral end to the medial end of the hub 104. The central channel of the hub first side 104 can be coupled with a pin guide 140 in some embodiments. In one embodiment, the central channel of the hub 104 has a tapered profile, e.g., a profile that is circular in cross-section and that has a larger diameter or circumference toward the lateral (proximal) end and a smaller diameter or circumference toward the medial (distal) end. The diameter or circumference can gradually but continuously decrease along a length between the lateral end and the medial end of the tapered profile. The diameter or circumference can decrease continuously from the lateral end toward the medial end of the tapered profile. The hub 104 can be formed or integrated into the guide 100 by the manner in which the hub connects to the peripheral members 108, 108S, 108P such that the orientation of the hub and the channel therethrough are oriented to a direction selected by the surgeon or by a process that identifies an optimal or otherwise appropriate direction.
Other approaches to making the patient specific shoulder guide 100 low profile in the posterior portion 112 are discussed below, including making at least a portion of the peripheral members 108 in the posterior portion 112, e.g., the elongate member 166P, with a lower height than the height of the peripheral members 108 in the anterior portion 116.
The patient specific shoulder guide 100 includes a guide feature 192 coupled with the hub 104. The guide feature 192 includes an inner end coupled with the hub 104 an outer end disposed away from the inner end of the guide feature 192. The guide feature 192 includes an aperture 198 disposed at or adjacent to the outer end thereof. The aperture 198 can be used to secure the guide 100 against rotation, e.g., rotation about the longitudinal axis through the hub 104, when the guide 100 is applied to the patient. Other guides herein with peripheral apertures also can use the peripheral apertures to secure such other guides against rotation. The guide feature 192 can be configured as the peripheral member 108S, e.g., can be located at a position of the patient specific shoulder guide 100 such that when the patient specific shoulder guide 100 is properly placed on the scapula 14, e.g., on the glenoid 18 the aperture 198 is positioned at an appropriate position superior to the glenoid 18 to control aspects of methods that follow the stage depicted in
The use of the superior peripheral member 108S to place the pin 208 can advantageously be applied to other guides described herein, such as the guides of
In one variation, one of the central guide pin 204 and the peripheral guide pin 208 is placed using the patient specific shoulder guide 100. The guide 100 can be used to form the peripheral aperture 212 or another guide feature but not to place the peripheral guide pin 208 initially. After the central guide pin 204 and/or the peripheral guide pin 208 are placed or after the peripheral aperture 212 or a central aperture are formed or other reference provided in the glenoid 18 the patient specific shoulder guide 100 can be removed from the glenoid 18 as indicated by the arrow C. The patient specific shoulder guide 100 and the pin guide 140 can be removed together through the incision (not shown) which is provided in the tissue over the glenoid 18 to provide access to the glenoid as discussed above. The patient specific shoulder guide 100 and the pin guide 140 can be removed over the central guide pin 204 which may be sufficiently long to extend out of the proximal end of the tubular body 144 and out of the incision in some cases. In another method, the pin guide 140 is decoupled from the patient specific shoulder guide 100 and is removed first along the direction indicated by the arrow C. After the pin guide 140 is removed, the patient specific shoulder guide 100 is removed along the direction indicated by the arrow C. If the peripheral aperture 212 is formed and a corresponding central aperture is formed through the tubular body 144 or the hub 104 the pin guide 140 and the patient specific shoulder guide 100 can be removed in an unguided manner.
If the peripheral guide pin 208 is provided as illustrated in
Because the patient bony anatomy is characterized by CT or scan images or the like pre-operatively, using the sizer 240 to confirm the size the glenoid 18 and/or to pick an appropriate baseplate 54 or baseplate 54A is optional or can be merely confirmatory. In some embodiments, the step illustrated in
As discussed below in connection with
B. User of Peripheral Guide Feature to Control Formation of Peripheral Anchor Channels
The peripheral guide pin 208 is used to control the position of an anchor trajectory guide 290 in one embodiment. The anchor trajectory guide 290 has an aperture 294 that can be advanced over the peripheral guide pin 208 along a medial direction, as indicated by the arrow F. The aperture 294 can be disposed through a projection 298 of a body 302 of the anchor trajectory guide 290. The body 302 can have a first side configured to face toward a glenoid surface in use and a second side opposite the first side. The projection 298 of the anchor trajectory guide 290 can comprise part of a superior portion 306 of the body 302 of the anchor trajectory guide 290. An inferior portion 310 of the body 302 of the anchor trajectory guide 290 can include one or more, e.g., a plurality of, peripheral screw apertures 320.
Similarly the inferior peripheral screw aperture 320I is positioned on the body 302 of the anchor trajectory guide 290 to enable the inferior peripheral screw aperture 320I to direct a drill, a punch or similar tool to form a channel in the glenoid 18. The inferior peripheral screw aperture 320I can provide access to a channel 324I disposed through the body 302. The channel 324I defines a central longitudinal axis A2 along which the drill or punch can be directed. The central longitudinal axis A2 can be oriented in a patient specific manner, e.g. along an angle β0 relative to the normal axis N2. The angle β is selected such that the trajectory directed through the body 302 and through the baseplate 54A causes the peripheral anchors 86 to reach cortical bone through the cancellous bone beneath the glenoid 18 but not to protrude therefrom or to protrude only a prescribed amount for a specific patient.
In addition, one or a plurality of peripheral members 344 can be provided on the distal side 332 of the body 302. The members 344 are peripheral in that they are disposed in positions generally anterior and posterior to the protrusion 328, which is central compared to the position of the members 344. The members 344 are circumferentially between adjacent screw apertures 320 and in some cases are radially farther from the projection 328 than are the apertures 320. The members 344 can be offset in superior and inferior directions from each other. If an anterior-posterior line intersecting the projection 328 is provided, one of the members can be seen to be disposed inferior to this line and one can be seen to be disposed superior to this lien in one embodiment. Each of the peripheral member(s) 344 can be configured to be received in a corresponding tooling interface 348 on the lateral side of the baseplate 54A. The engagement of the peripheral members 344 with the tooling interface 348 assures that the baseplate 54A and the anchor trajectory guide 290 can be coupled along a specific axis. The members 344 facilitate positioning the baseplate 54A. The baseplate 54 is rotationally symmetrical so the baseplate 54 can be coupled in one of two rotational positions or at any rotational position. The baseplate 54A is asymmetric in one embodiment where the wedge portion 394 is provided. The baseplate 54A is oriented such that the wedge portion 394 is aligned with a location of the glenoid 18 to be augmented. The baseplate 54A is then coupled with the anchor trajectory guide 290. The baseplate 54A and the anchor trajectory guide 290 can then be mounted to the peripheral guide pin 208. In one patient wear pattern, the portion to be augmented is the posterior portion of the glenoid 18. The baseplate 54A is asymmetric so that the baseplate 54A is attached in the orientation in which the wedge portion 394 is aligned with a posterior side of the anchor trajectory guide 290 (e.g., to the right as viewed from the lateral side for a left shoulder and to the left as viewed from the lateral side for a right shoulder).
In a different approach, the baseplate 54A is held in place on the glenoid 18 and the anchor trajectory guide 290 is aligned with the baseplate 54A and then mounted thereto or separately supported.
A drill or punch can be directed through each one of the peripheral screw apertures 320 and when so directed can also be direct through the holes 84A of the baseplate 54A. When so directed channels or pilot holes are formed in the scapula 14 from the reamed surface of the glenoid 18. The channels or pilot holes control the trajectory of the peripheral anchors 86 that are advanced through the holes 84.
The baseplate 54A has a proximal end 66 that is configured to be received in the glenosphere 58. A connection can be formed between an internal surface of the glenosphere 58 and a peripheral surface of the baseplate 54A just distal to the proximal end 66. The baseplate 54A has a bone engaging surface 74A having a non-planar shape. In particular, the bone engaging surface 74A has a planar portion 390 that extends away from approximately a mid-portion of the central protrusion 78 of the baseplate 54A and a wedge portion 394 that extends away from the planar portion 390. The planar portion 390 can rest on a reamed surface of the glenoid 18 that has been reamed in a traditional manner. The wedge portion 394 is configured to fill in a portion of the scapula 14 of the patient. The portion filled in can be a portion that has been worn away or can be just a relatively low area of the glenoid 18 that is desired to be filled. The location and extent of the bone of the glenoid 18 to be filled by the wedge portion 394 is determined via pre-operative CT scan, MRI images or the like. That information can be supplied to a manufacturing facility to custom make a patient specific baseplate 54A. Alternatively, the baseplate 54A can be in a kit with a range of sizes, shapes and angles of the wedge portion 394. A reaming process can be used to form a surface in the glenoid 18 to receive the wedge portion 394.
The reaming guide 432 is configured to be patient specific and to provide advantages in preparing the glenoid of the specific patient. For example, as discussed further below the guide 432 is configure to mate with a specific side of the reamer 404, e.g., the side of the reamer opposite the side toward which the head 412 can be oriented to provide the angled surface AS in the glenoid. The position of the angled surface AS can be different for each patient. In the illustrated treatment the angled surface AS will be on the posterior side of the glenoid. So, the rigid body 436 is made patient specific in being configured such that the reaming guide 432 extends from a superior position coupled with the pin 202 to an anterior position for coupling with the reamer 404. Other patients may require the angled surface AS to be formed in an inferior position, so the rigid body 436 should be configured in a patient specific manner to enable the reaming guide 432 to couple with the pin 202 at a superior position and also with the reamer 404 in a superior position. Other patients may require the angled surface AS to be formed in an anterior position, so the rigid body 436 should be configured in a patient specific manner to enable the reaming guide 432 to couple with the pin 202 at a superior position and to extent posteriorly to couple with the reamer 404 in a posterior position. Other patients may require the angled surface AS to be formed in a superior position, so the rigid body 436 should be configured in a patient specific manner to enable the reaming guide 432 to couple with the pin 202 at a superior position and to extend anteriorly or posteriorly around the reamer to couple with the reamer in an inferior position. In some cases, the reaming guide 432 is patient specific in providing a depth stop for the reamer 404. Thus the medial-lateral length of a portion thereof can be configured for the specific patient to define the extent of the reaming that is appropriate based upon pre-operative imaging. Also, the medial end can include a bone contacting surface that is patient specific, e.g., has a complementary contour which can be concave to nest on or receives a convex bone portion.
In one embodiment, the reaming guide 432 is configured to be removeably attached to the angle surface reamer 404 by the reamer interface 460 and the guide interface 462. The reamer interface 460 can include an actuator 480 that is moveable along the longitudinal axis of the cannulated handle 408. The actuator 480 can be retracted in the direction of the arrow H. The guide interface 462 includes an axial member or other mating structure on a distal end thereof that translates with the cannulated handle 408. The angle surface reamer 404 can include a lateral peg 472 that is fixed thereon and is not moveable with the actuator 480. Retracting the actuator 480 moves the axial member or mating structure proximal of the lateral peg 472. The reaming guide 432 can then be moved laterally such that a first aperture 464 thereof receives the lateral peg 472. After the first aperture 464 is fully received the actuator 480 can be released allowing the axial member or mating structure to move back into the second aperture 468 to secure the reaming guide 432 to the angle surface reamer 404. Movement of the actuator 480 to secure the reaming guide 432 to the angle surface reamer 404 can be in the direction opposite to that illustrated by the arrow H. The movement can be upon action of a spring that is compressed when the actuator 480 moves in the direction of the arrow H. Further details of the guide interface 462 are discussed in US2015/0374502, which is hereby incorporated by reference herein in for this purpose and in its entirety.
The advancement of the reaming guide 432 over the peripheral guide pin 208 enables the angle surface reamer 404 to remain in a proper, prescribed rotational position over the central guide pin 204. This position can assure that the head 412 acts as was intended based upon CT scan images or the like. As a result, the angled surface AS can be in the position that was intended and the reamer 404 can be prevented from operating in other areas of the glenoid 18. By keeping the cannulated handle 408 in a proper rotational orientation relative to the central guide pin 204 the location of the angled surface AS can be assured.
The rigid body 436 between the reamer interface 460 and the projection 440 can be configured to locate the angled surface AS. In the illustrated embodiment, the rigid body 436 between the reamer interface 460 and the projection 440 is curved to extend from a superior position to locate the reamer interface 460 at an anterior position of the glenoid 18 when the guide lumen 456 is over the peripheral guide pin 208. If it is desired to ream the angled surface AS in an inferior position, the rigid body 436 between the reamer interface 460 and the projection 440 could be arranged to extend straight inferiorly to locate the reamer interface 460 at a superior position when the guide lumen 456 is over the peripheral guide pin 208. If it is desired to ream the angled surface AS in an anterior position, the rigid body 436 between the reamer interface 460 and the projection 440 can be curved to extend from a superior position to locate the reamer interface 460 at a posterior position of the glenoid 18 when the guide lumen 456 is over the peripheral guide pin 208. If it is desired to ream the angled surface AS in a superior position, the rigid body 436 between the reamer interface 460 and the projection 440 can be curved to extend from a superior position anteriorly or posteriorly to locate the reamer interface 460 at a position opposite the superior position, e.g., second end 180 degrees from the superior position of the glenoid 18 when the guide lumen 456 is over the peripheral guide pin 208. The rigid body 436 can have other patient specific configurations to locate the reamer interface 460 at a position relative to, e.g., second end 180 degrees offset from a location of the glenoid 18 to be reamed. Further to the discussion above, the rigid body 436 can be patient specific in a circumferential extent, such that it is configured to extend about 90 degrees counterclockwise from a superior position when applied. In one embodiment the rigid body 436 is patient specific in a circumferential extent, such that it is configured to extend about 180 degrees counterclockwise from a superior position when applied. In one embodiment the rigid body 436 is patient specific in a circumferential extent, such that it is configured to extend about 90 degrees clockwise from a superior position when applied. In one embodiment the rigid body 436 is patient specific in extending radially from a first superior position to a second superior position, e.g., not extending circumferentially.
In on further variations discussed more fully below in connection with
The reaming guide assembly 432A is advantageous in enabling a lower cost approach to providing patient specific reaming control. Cost is reduced because a portion of the reaming guide assembly 432A need not be patient specific. That is, the rigid body 498 need not be patient specific so long as the peg 490 is patient specific. Only the peg 490 need be made for a specific patient in some embodiments. In more detail, the peg 490 can be configured in terms of length, surface geometry of patient contact surface, size of contact surface, for example. The rigid body 498 and the rest of the reaming assembly 430A can be universal and used for many different patients. To ensure that the reaming assembly 430A operates in a patient specific manner, in various embodiments a rotation control interface 514 can be provided between the peg 490 and the rigid body 498. The rotation control interface 514 can include a slot 518 disposed on the superior portion 510. The slot 518 can extend from an outside surface of the superior portion 510 to the guide channel 506. The slot 518 can be U-shaped as shown whereby a distal end thereof is open. The open end of the slot 518 can be initially inserted over a proximal end of the peg 490 and advanced over the proximal portion 502 until the slot 518 reaches the ridge 522. The ridge 522 can extend proximally from the enlarged body 500. In one embodiment, a stepped profile is provided between the proximal portion 502 and the enlarged body 500. The stepped profile can have a height (e.g., a change in diameter from the enlarged body 500 to the proximal portion 502) that is approximately equal to the wall thickness of the superior portion 510 of the rigid body 498. The ridge 522 can have a length in the direction between the proximal and distal ends of the peg 490 that is approximately the same as the length in the same direction as the slot 518. The ridge 522 can be fully received in the slot 518 when the rigid body 498 is placed over the proximal portion 502 of the peg 490. When the ridge 522 is received in the slot 518 rotation between the rigid body 498 and the peg 490 (and thus between the angle surface reamer 404 and the bone) is limited, reduced or eliminated.
By at least limiting or reducing or in some cases by eliminating rotation of the cannulated handle 408 while permitting rotation of the head 412, the location of the angled surface that is reamed at an angle is more precisely controlled.
While the driver 540 can provide for adequate placement and control of certain implants, it may be advantageous in certain instances to more precisely control one or more components. Examples of components that could benefit from more precise control include rotationally asymmetric components that perform most optimally when aligned to an intended rotational position. The baseplate 54A is one such component in that the thicker wedge portion 394 is intended to be placed at the angled reamed surface R2 which is a surface that has been prepared for such placement.
A. Surgical Instrument for Enhanced Position Control of Glenoid Implant
In one embodiment, the glenoid implant component retention feature 558 with one or more tines 558A located on each of two peripheral members 558B for engaging a tooling interface 348 of the baseplate 54A. The peripheral members are able to flex such that the tines 558A can be moved away from and toward a longitudinal axis of the elongate body 552. The peripheral members can each comprise a semi-circular arc 558C. Each of the tines 558A can be disposed in the approximate center of one of the arcs 558C. The ends of one of the arcs 558C can face but be spaced apart by gaps from the ends of the other arcs 558C. The gaps 558C between the ends of the arcs allow the arcs to move away from each other and toward each other.
An inner shell 560 is disposed within the outer shell 544. In certain embodiments the inner shell 560 is configured to slide within the outer shell 544. For example, the outer shell 544 can have a lumen that is larger than an outer periphery of the inner shell 560 at least along a length thereof adjacent to the second end 556. This allows a first end 570 of the inner shell 560 to be inserted into the second end 556 of the elongate body 552. The first end 570 can then slide toward the first end 554 of the elongate body 552. The lumen of the elongate body 552 can be smaller than an outer periphery of the inner shell 560 at least adjacent to the first end 570 of the inner shell 560. Further advancement of the inner shell 560 within the lumen of the outer shell 544 can result in retention of the baseplate 54A or other component to be placed.
In certain embodiments, the inner shell 560 can have a first position and a second position within the outer shell 544. The first position can be somewhat retracted from the first end 554 such that the tines 558A of the glenoid implant component retention feature 558 can be allowed to deflect or can be located toward the longitudinal axis of the elongate body 552. The second position can be one in which the first end 570 of the inner shell 560 is advanced relative to the first end 554 of the outer shell 544 such that the first end 570 is located within the glenoid implant component retention features 558. In some embodiments, the second position is one in which the first end 570 is within or adjacent to a portion of the glenoid implant component retention feature 558 which causes the tines 558A to expand into a retention configuration with the baseplate 54A.
Certain embodiments are configured for maintaining the retention configuration without continued surgeon manipulation of the surgical instrument 550. For example, a threaded interface can include threads 575 disposed on an elongate body of the inner shell 560. The first position of the inner shell 560 can be provided by sliding or longitudinal translation, e.g., without requiring rotation. The second position can be achieved by engaging through rotation the threads 575 with corresponding threads in the lumen 576 of the elongate body 552. The threaded interface can enhance the force applied to the glenoid implant component retention feature 558 to provide greater security of the baseplate 54A (or other component) to the surgical instrument 550. Rotation of the inner shell 560 can be enhanced by a knob disposed at the second end 572 thereof. Upon complete rotation of the inner shell 560 the first end 570 is fully disposed in and fully actuates the glenoid implant component retention feature 558 to provide secure retention. The threaded interface also has sufficient friction against counter-rotation that the position of the inner shell 560 within the outer shell 544 can be maintained even after the surgeon releases the inner shell 560.
The surgical instrument 550 can include a rotation guide 561 configured to provide increased control of the surgical instrument 550 and thereby of a rotationally asymmetric glenoid implant, such as the baseplate 54A. The rotation guide 561 can have the same configuration as the reaming guide assembly 432A but of course is incorporated into the surgical instrument 550. The rotation guide 561 can include a rigid body 498. The rigidity of the rigid body 498 prevents the surgical instrument 550 from moving out of an intended position, as discussed further below. The rotation guide 561 can include an instrument interface, such as the first aperture 464 and/or the aperture 559B, and a bone interface portion. The first aperture 464 (or other instrument interface) is used to connect the rotation guide 561 with another part of the surgical instrument 550. The connection of the rotation guide 561 to another part of the surgical instrument 550 can be temporary. The instrument interface can engage the interface portion 559. In certain embodiments the interface portion 559 is the same as or similar to the lateral peg 472, discussed in connection with
The interface portion 559, e.g., the lateral peg 472, can be configured to releasable engage the outer shell 544 with the rotation guide 561. This configuration enables the rotation guide 561 to be used only one time and to enable the rest of the surgical instrument 550 to be cleaned and used again with another patient.
In one embodiment, the interface portion 559 is disposed on a side opposite to where the wedge portion 394 of the baseplate 54A is to be positioned when properly aligned to and coupled with the glenoid implant component retention feature 558. As a result, the surgeon knows without any visual confirmation that the baseplate 54A is properly aligned when the interface portion 559 is coupled with the rigid body 498 at the instrument interface, e.g., at the first aperture 464 and the guide channel 506 is coupled with the peg 490 placed in the peripheral aperture 212. The bone interface portion of the rotation guide 561, e.g., the guide channel 506, could be placed over the peg 490 which is placed inferiorly. The rigid body 498 could then extend anteriorly and superiorly to an anterior position to align the wedge portion 394 with the angled reamed surface R2 if that surface is located in the posterior portion of the glenoid. The bone interface portion, e.g., the guide channel 506 could be placed over the peg 490 when placed in the peripheral aperture 212 at a superior position. The rigid body 498 of the rotation guide 561 could then extend anteriorly and inferiorly to an anterior position to align the wedge portion 394 with the angled reamed surface R2 if that surface is located in the posterior portion of the glenoid. Many other variations can be employed to place the wedge portion 394 in any angular position around the glenoid, e.g., inferior, anterior, superior, posterior, or any location between these angular positions.
Although the rotation guide 561 is illustrated as an assembly of the peg 490 and the rigid body 498, the rotation guide 561 could be configured similar to or the same as the reaming guide 432 in which the elongate body 452 is adapted to be advanced over a guidewire until the distal opening 444 is abutting the surface of the glenoid. In such embodiments the wire can be considered a portion of the rotation guide 561. The elongate body 452 can include a patient specific medial face for contacting the patient. The length of the elongate body 452 can be such that the glenoid 18 when the medial face contacts the glenoid. The rigid body 436 extends to the first aperture 464 which can engage the interface portion 559 (e.g., receive the spring loaded ball 559a of the lateral peg 472 in the aperture 464A).
The inner shaft 548 can freely rotate within the lumen 574 when the inner shell 560 is in the first position and when the inner shell 560 is in the second position within the outer shell 544. As a result, the baseplate 54A can be held stationary on the glenoid implant component retention feature 558 while the inner shaft 548 rotates. The surgeon can hold the knob at the second end 572 of the inner shell 560 while rotating the handle 566 at the first end 564 of the inner shaft 548. In one embodiment, the inner shaft 548 is solid with no lumens. The trajectory of advancement of a screw 577 (see
Having described the structure of the surgical instrument 550, the following provides examples of how the surgical instrument 550 can be used. After the glenoid 18 is exposed, a peripheral aperture 212 can be formed in the scapula 14, e.g., at a superior position of the glenoid 18. The peripheral aperture 212 is one example of a rotation control feature as discussed herein. The peripheral aperture 212 can be placed anywhere around the glenoid 18 in variations of the method. The peripheral aperture 212 can be formed using a glenoid guide, such as the patient specific shoulder guide 100. For example, a drill or punch can be directed through the aperture 198 in the peripheral member 108S.
A rotationally asymmetric glenoid component, such as the baseplate 54A, can be advanced onto the glenoid 18. The advancement of the baseplate 54A can be with reference to the peripheral aperture 212 or to another rotation control feature. Such advancement can align the rotationally asymmetric glenoid component to the glenoid 18 in a prescribed rotational position for the specific patient. The reference to the peripheral aperture 212 can be in any suitable manner.
Further rotation of the screw 577 draws the baseplate 54A into engagement with the lateral surface of the glenoid 18. The amount of advancement of the screw 577 can be patient specific. For example, the distal facing shoulder 505 of the peg 490 can be patient specific in mating with the glenoid 18 in a specific manner. The medial-lateral distance from the glenoid 18 to the interface portion 559 can determine for the specific patient how far the screw 577 is advanced. For example, the position of the rigid body 498 from the distal end of the inner shell 560 can determine how close the torque interface 562 is to the glenoid 18 when the distal facing shoulder 505 contacts the scapula 14 preventing further medial motion of the surgical instrument 550.
In one variation, part of advancing the baseplate 54A onto the glenoid 18 includes coupling a rigid body 436 with the baseplate 54A and with the peripheral aperture 212. This can be done by first mating the peg 490 with the peripheral aperture 212. Thereafter the screw 577 is advanced until the guide channel 506 is disposed adjacent to the proximal portion 502 of the peg 490. The guide channel 506 can be configured as a lumen in a cylindrical member and can be formed to slide over the proximal portion 502. Further advancement of the screw 577 causes the guide channel 506 to be advanced over the proximal portion 502 until the slot 518 mates with the ridge 522 that projects laterally of the proximal facing shoulder 504 of the peg 490. The peg 490 provides a direct bone interface portion. The guide channel 506 provides an indirect bone interface portion, e.g., through the peg 490.
In one variation, a peripheral wire is used in place of the peg 490. The guide 432 can mate with the outer shell 544 of the surgical instrument 550 and can slide over the wire. The guide 432 can be configured to contact the glenoid 18 of the specific patient when the screw 577 has been advanced an amount prescribed prior to the surgery. The guide 432 can be non-specific as to the depth of the screw 577 but be patient specific in other ways. For example, the guide 432 can be shaped or sized to couple with the interface portion 559 to retain the surgical instrument 550 and thereby the baseplate 54A in a prescribed rotational position relative to the glenoid 18 of the specific patient.
Once the screw 577 is fully advanced, additional peripheral screws can be placed. Prior to placing the peripheral screws the surgical instrument 550 is disengaged from the lateral side of the baseplate 54A. This can be achieved by retracting the inner shell 560 such that the first end 570 is spaced further away from the glenoid implant component retention feature 558 allowing the tines 558A to slip out of the tooling interface 348 of the baseplate 54A. Thereafter peripheral screws can be advanced through the peripheral holes 84 in the baseplate 54A. The placement of the peripheral screws can be made patient specific by any suitable method, such as any of the patient specific methods described herein. For example, the anchor trajectory guide 290 can be mated with the baseplate 54A to direct a punch or drill to form the peripheral screw apertures in a patient specific manner.
B. Surgical Instrument For Enhanced Position Control of Glenoid Implant
While a surgical instrument with a patient specific rotation guide can be used to advance and secure an implant to the glenoid without requiring direct visualization of the scapula,
The glenoid guide 1000 includes a posterior portion 1002 and an anterior portion 1004. The glenoid guide 1000 is configured such that when coupled with the glenoid 18 of a specific patient, the posterior portion 1002 is disposed over the posterior portion of the glenoid 18 and the anterior portion 1004 is disposed over the anterior portion of the glenoid. The glenoid guide 1000 includes a hub 104 that is disposed in a central region of the glenoid guide 1000, e.g., where the posterior portion 1002 and the anterior portion 1004 come together. Although generally centrally located, the hub 104 can be off-set from the geometric center of the glenoid 18 depending on the specific patient needs. The location of the hub 104 should correspond to the location of the geometric center of the baseplate 54 or the baseplate 54A to be placed on the glenoid 18. The location of the hub 104 and a central channel therethrough can be shifted superiorly of the geometric center of the glenoid 18 for a specific patient. The location of the hub 104 and a central channel therethrough can be shifted inferiorly of the geometric center of the glenoid 18 for a specific patient. The location of the hub 104 and a central channel therethrough can be shifted anteriorly of the geometric center of the glenoid 18 for a specific patient. The location of the hub 104 and a central channel therethrough can be shifted posteriorly of the geometric center of the glenoid 18 for a specific patient. The glenoid guide 1000 includes a plurality of peripheral members 108. The posterior portion 1002 includes one peripheral members 108 and the anterior portion 1004 includes three peripheral members 108. Each of the peripheral members 108 includes an inner end 160 coupled with the hub 104 and an outer end 164 disposed radially away from the hub 104.
The glenoid guide 1000 has height in a medial-lateral direction.
The glenoid guide 1000 can be configured with a central channel 136 and a channel 1010 that is located peripherally. The central channel 136 extends through the hub 104. The peripheral channel 1010 extends through the outer end 164 of one of the peripheral members 108. More specifically, the glenoid guide 1000 includes a peripheral member 108R having an enlarged radially outer end with a patient specific contact surface 168 on the medial side thereof. The peripheral channel 1010 extends through the enlarged outer end from the lateral side to the medial side of the glenoid guide 1000. The central channel 136 is configured for forming a channel and or placing a central guide pin 204 as discussed above. The peripheral channel 1010 is configured for forming a rotation control feature, e.g., a visual indicator on the scapula 14 of a specific patient in a prescribed position. The prescribed position is with reference to a portion of the glenoid 18 of the specific patient to be augmented by an augmented glenoid implant, such as the baseplate 54A. For example, the position can be at an angular position spaced away from a portion of the glenoid of the specific patient to be augmented. The position can be opposite, e.g., 180 degrees offset from, a position of the glenoid to be augmented by an augmented implant. In one embodiment the peripheral member 108R is located on the anterior portion 1004 of the glenoid guide 1000. The peripheral member 108R can be located in other parts of the glenoid guide 1000, e.g., in the posterior portion 1002 or in an inferior or superior portion, or at any positions between these locations. The angular position can be based on the imaging data and analysis, e.g., upon a study of one or more CT scans, MRI scans, X-rays or the like.
The mark 1014 is illustrated as being used to rotationally orient the baseplate 54A during insertion thereof. The mark 1014 can also be used to guide the advancement of the reamer 404 either free-hand or over the guide pin 204. A pointer on the reamer 404 can be aligned with the mark 1014 to cause the reaming head 412 to be in a desired position, e.g., a pre-determined amount off-set therefrom e.g., 180 degrees off-set therefrom. In further variations, the guide pin 208 can be placed through the channel 1010 and the reaming guides 432, 432A can be configured to mate with the pin 208 so placed.
One advantage of the glenoid guide 1050 is that by providing an open channel 1060, the mark 1064 can be elongate. For example, the mark 1064 can be formed by directing a marker along the enclosed wall of the channel 1060 until the marker contacts the scapula 14. The marker can then be moved in a direction along the axis of the peripheral member 108R as shown by the arrow 1066 to configure the mark 1064 as elongated in the direction of the arrow 1066. The elongated form of the mark 1064 can enhance the ability of the surgeon to accurately align the pointer 1020 with the mark 1064, further enhancing the alignment of the wedge portion 394 of the baseplate 54A (or more generally the thickest portion) with the angled reamed surface R2 or other portion of the glenoid 18 that would benefit from the greatest amount of augmentation.
The mark 1064 can also be used to guide the advancement of the reamer 404 either free-hand or over the guide pin 204. A pointer on the reamer 404 can be aligned with the mark 1064 to cause the reaming head 412 to be in a desired position, e.g., 180 degrees off-set therefrom. In further variations, the guide pin 208 can be placed through the channel 1060 and the reaming guides 432, 432A can be configured to mate with the pin 208 so placed.
As discussed above, in connection with the patient specific shoulder guide 100, the glenoid guide 1000 and the glenoid guide 1050 can be formed using a protocol in which patient specific imaging information is gathered and processed. The processing can include inputs from the surgeon such as whether the surgeon wishes to use a bovie pen, drill bit, pin or the like to create a visual reference opposite the portion of the glenoid to be most augmented. The processing can include determining whether features can be formed in one of the peripheral members 108 configured to make patient specific contact with the glenoid rim 17 or should be disposed in a separate peripheral member. In one approach, the rotational position of one of the peripheral members 108 can be selected to be opposite to, e.g., 180 degrees off-set from the portion of the glenoid to be most augmented. Next either the surgeon or the protocol determines whether to form an enclosed channel, as in the peripheral channel 1010, or an open sided channel or slot, as in the channel 1060, in the peripheral member 108R. Next the protocol can output plans for forming the glenoid guide 1000 or the glenoid guide 1050. Upon outputting the plans, the glenoid guide 1000 or the glenoid guide 1050 can be produced using a preferred facility such as additive manufacturing or other guide forming process. In some embodiments a kit including at least the glenoid guide 1000 and the glenoid guide 1050 can be formed such that the surgeon can select whether to use a closed channel or an open channel, e.g., a slot to form a bovie mark on or a channel in or to place a pin in the bone.
A. Low Profile Glenoid Guides Having Reduced Proximal Height Features
The patient specific shoulder guide 600 includes a hub 604 and a plurality of peripheral members 608. The peripheral members 608 can be dispersed into a posterior portion 612 and an anterior portion 616 of the patient specific shoulder guide 600. In one embodiment, there is a plurality of (e.g., three) peripheral members 608 in the anterior portion 616 and there is at least one (e.g., only one) one peripheral member 608 in the posterior portion 612. The posterior portion 612 can be defined as the portion of the patient specific shoulder guide 600 that would align with a posterior side of the glenoid 18 when applied to a specific patient. The posterior portion 612 can be to the posterior side of a plane intersecting the hub 604 and extending generally superior and inferior when the patient specific shoulder guide 600 is applied to a patient. The patient specific shoulder guide 600 that is depicted would be suitable for a left shoulder joint of a specific patient.
As discussed further below, some embodiments can have as few as three contact points, e.g., three peripheral members 608 to define a stable position. Also in some embodiments, the shoulder guide 600 has no more than three peripheral members 608. A fourth contact point, e.g., a fourth peripheral member 608 of a fourth contact point in the articulating surface of the glenoid, provides an advantage of confirming that the patient specific shoulder guide 600 is properly positioned. For example, in an embodiment having four peripheral members, if a user were to find that only three of four contact points made contact one can conclude that a problem has arisen, such as the patient specific shoulder guide 600 is not properly positioned, has been distorted, etc.
The peripheral members 608 can each include an inner end 650, an outer end 654 and an elongate member 656 extending therebetween. A structure forming a patient specific contact surface 658 can be coupled with or can extend from or comprise a portion of the outer end 654.
In one embodiment, the patient specific shoulder guide 600 is formed by additive manufacturing. A high profile portion of the shoulder guide 600 provides a co-planar relationship between the second end 624 of the hub 604 and adjacent sides of each of a plurality of the peripheral members 608. These co-planar portions can be disposed on the same side 666. In one embodiment, the entire sided side 666 of the patient specific shoulder guide 600 is on a common plane other than a low profile portion. The low profile portion can include a low profile peripheral member 670. The low profile peripheral member 670 can include an inner portion 674 and outer portion 678 and an elongate member 682 that extends therebetween. At least the outer end 678 and preferably the entire low profile peripheral member 670 has a peripheral height dimension 690 that is less than, e.g., 75% lower than, in some cases 50% lower than, and in some cases 25% lower than, the peripheral member height dimension 662. As shown in
The peripheral members 708 can each include an inner end 712 and an outer end 716. The inner ends 712 can be directly coupled with the hub 706. The outer end 716 can be disposed away from the inner end 712 and away from the hub 706. In the illustrated embodiment, the posterior side 702 includes one peripheral member 708 and the anterior side 704 includes a plurality of, e.g., three, peripheral members 708. Other numbers of peripheral members 708 can be provided. Other distributions of peripheral members 708 can be provided. As in other guides herein, more than one peripheral member 708 can be provided in the posterior side 702 and fewer than three peripheral members 708 can be provided in the anterior side 704 of the patient specific shoulder guide 700.
The hub 706 can have a central channel 736 that extend therethrough. The central channel 736 can provide access for the pin guide 590 as discussed above in connection with the patient specific shoulder guide 600. The patient specific shoulder guide 700 also can have a side member 740 through which a side channel 744 is disposed. The side channel 744 can be configured to allow a pin to be placed therethrough into the glenoid 18. The side channel 744 thus allows access for a device to control rotation of patient specific shoulder guide 700 while in use.
In one embodiment, one or more of the hub 706, the side member 740, and the peripheral members 708 disposed on the anterior side 704 of the patient specific shoulder guide 700 have proximal portions that are disposed in a common plane. In other words, height dimension of each of these components are measured from a common proximal plane. In one variation the proximal portion of each of the hub 706, the side member 740, and the peripheral members 708 is disposed in a common plane. The peripheral member 708 disposed in the posterior side 702 of the patient specific shoulder guide 700 has a low profile. The low profile is similar to the low profile of the peripheral members 608 in the posterior portion 612 of the patient specific shoulder guide 600 as discussed above. That is the peripheral height dimension 690 of the peripheral members 708 in the posterior side 702 is much less than the peripheral member height dimension 662 of the peripheral members 708 in the anterior side 704 of the patient specific shoulder guide 700.
In one variation the peripheral member 708 in the posterior side 702 includes an elongate member 720 disposed between the inner end 712 and the outer end 716. A peripheral elongate member 722 can be disposed at or adjacent to the outer end 716 of the peripheral members 708 on posterior side 702 of the patient specific shoulder guide 700. The peripheral elongate member 722 can have a patient specific contact surface 724 that is formed by reference to CT scan images or the like that can be obtained pre-operatively, as discussed above. The patient specific contact surface 724 preferably is a substantial negative of an elongate zone of the rim of the glenoid 18. In one embodiment, the peripheral elongate member 722 includes an inferior end 728 and a superior end 732. The peripheral elongate member 722 can span a large portion of the rim of the glenoid 18 compared to the contact features of the peripheral members 708 on the anterior side 704 of the patient specific shoulder guide 700. In one embodiment, the peripheral elongate member 722 has an inferior-superior extent that is at least three times the largest dimension of, e.g., the diameter of, the contact feature of the other peripheral members 708. In one embodiment, the peripheral elongate member 722 has an angle between lines centered on the center of the central channel 736 and tangentially contacting the inferior end 728 and the superior end 732 is greater than 5 degrees, or is greater than 10 degrees, or is greater than 15 degrees, or in some cases greater than 20 degrees. The angle between lines centered on the center of the central channel 736 and tangentially contacting the inferior end 728 and the superior end 732 can be between about 5 degrees and about 60 degrees, e.g., between about 10 and about 45 degrees, between about 15 and about 35 degrees.
The patient specific shoulder guide 700 can perform similar to the patient specific shoulder guide 600 in being low profile and not interfering with the retractors 16 and other instruments in the surgical field. The patient specific shoulder guide 700 can provide an additional advantage in reducing unwanted movement of the patient specific shoulder guide 700 on the glenoid 18. The surface area of contact of the peripheral elongate member 722 is much greater than that in the outer end 678 of the elongate member 682 of the patient specific shoulder guide 600. This is achieved without additional elongate members 720, which allows the access to the glenoid 18 to remain relatively open and unobstructed. Also, by increasing the surface area of contact forces applied to the patient specific shoulder guide 700 are spread out more lessening the pressure on the contact area on the rim of the glenoid 18.
The patient specific shoulder guide 770 includes a hub 772 from which the peripheral members 774 extend radially. Each of the peripheral members 774 has an inner end 776, an outer end 778 and an elongate member 780 therebetween. At least one of the peripheral members 774 is adapted for enhanced patient specific contact. For example, a peripheral member 774 in the posterior side of the patient specific shoulder guide 770 can include a rim engaging portion 782 and a glenoid surface engaging portion 784. The rim engaging portion 782 can be similar to the rim engaging portions discussed above in various other guides. The glenoid surface engaging portion 784 can comprise a portion of the elongate member 780 between the inner end 776 and the outer end 778. In one embodiment, the peripheral members 774 are configured based on CT scan images or the like obtained pre-operative with a continuous patient specific contact zone that extends from the rim engaging portion 782 to the glenoid surface engaging portion 784. The continuous patient specific contact zone can extend up to one-half the distance from the rim of the glenoid 18 to the hub 772. The continuous patient specific contact zone can extend at least sixty percent of the distance from the hub 772 to a portion of the patient specific shoulder guide 770 adapted to contact an outside of the rim of the glenoid 18 when applied. The continuous patient specific contact zone can extend at least seventy percent of the distance from the hub 772 to a portion of the patient specific shoulder guide 770 adapted to contact an outside of the rim of the glenoid 18 when applied.
The patient specific shoulder guide 770 can be configured such that the entire distal surface of at least one of the peripheral members 774, e.g., of the posterior side peripheral member 774, is in contact with the glenoid rim or surface in a patient-specific manner, e.g., as a negative of those natural surfaces. In one variation, one peripheral member 774 is configured in this manner and two additional peripheral members 774 for a total of only three peripheral members 774 are provided to provide patient specific contact with the glenoid rim. Where the peripheral member 774 is configured to be in contact with the glenoid 18, the peripheral member 774 can be configured to contact the sub-chondral surface. The peripheral member 774 can be configured to contact a cartilage surface over the articular surface of the glenoid 18.
The patient specific shoulder guide 770 can include aside member 792 having a side channel 794 therethrough for placement of a pin for stabilizing the patient specific shoulder guide 770 in rotation.
The patient specific shoulder guide 770 is advantageous in that the amount of surface area of contact is greatly increased due to some or all of the length of the elongate member 780 on the posterior side of the patient specific shoulder guide 770 being in contact with the glenoid 18. The contact can allow the patient specific shoulder guide 770 to be made of a wider range of materials because the contact near the hub 772 reduces flexing of the patient specific shoulder guide 770 when the pin guide 590 is docked with the central channel 790. By reducing or eliminating flexing the trajectory of a guide pin through a pin guide 590 mated along the central longitudinal axis of the central channel 790 is better controlled, e.g., closer to the true trajectory that prescribed based on CT scan imaging or the like taken preoperative.
An outer end of the peripheral members 808 includes or is coupled with a member providing a patient specific contact surface 812. The patient specific contact surface 812 can be configured to mate with specific portions of the glenoid 18 or the scapula 14 based on preoperative characterization by CT scan or the like, as discussed above. The hub 806 defines a central channel 820. The central channel 820 is configured to mate with the pin guide 590 as discussed above in connection with other guides. The patient specific shoulder guide 800 includes a side channel 828 that extends therethrough from a proximal side to a distal portion thereof. The side channel 828 can be formed in aside member 824 of the hub 806. The side channel 828 can be configured to receive an anchor pin or member. The patient specific shoulder guide 800 can be stabilized by the placement of a pin through the side channel 828. In a variation, the side member 824 is elongated to enable placement of a peripheral pin such as the peripheral guide pin 208.
B. Low Profile Glenoid Guides with Reduced Glenoid Rim Contact
1. Glenoid Guides with Shortened Peripheral Members
The patient specific shoulder guide 850 has been discussed in some detail above. Further unique features of the patient specific shoulder guide 850 include providing diverse configurations of peripheral members thereof. The patient specific shoulder guide 850 includes one or a plurality of glenoid rim members 858. The glenoid rim members 858 are adapted to contact a rim of a glenoid 18 of a specific patient, in much the same way as other guides described above.
The patient specific shoulder guide 850 includes more than three contact surfaces which provides several advantages. Three contact surfaces, e.g., the glenoid rim contact surfaces 862, provide sufficient stability of a guide on a natural surface like the glenoid 18. By adding the fourth contact surface at glenoid surface contact surface 870 the surgeon can confirm that the procedure should continue with the patient specific shoulder guide 850. Furthermore,
As in other guides herein, the patient specific shoulder guide 850 can optionally have aside member 880 disposed adjacent to the central channel 878. The side member 880 can have a side channel 884 disposed therethrough. The side channel 884 can be configured to receive a pin or other structure configured to manage or help to maintain minimal rotation of the patient specific shoulder guide 850 relative to the glenoid 18.
The patient specific shoulder guide 850 is also advantageous in that even the hub 856 is made low profile while maintaining the control of the pin guide 590. As a result, the hub 856 does not interfere with the retractor 16 or other instruments that are passed between the posterior portion 852 and the anterior portion 854 or between a superior and an inferior side of patient specific shoulder guide 850 or of the glenoid 18. The lower profile nature of the patient specific shoulder guide 850 can also enable the surgeon to retract the tissue less and to shorten the incision used to access the glenoid 18.
2. Glenoid Guides with Restricted Rim Contact Zones
In some variations, the shoulder guide 900 or other guides disclosed herein can be configured with no more than 3 peripheral legs, such as for example in connection with
The patient specific shoulder guide 900 can also include a central member 914. The central member 914 is coupled with or can be an extension of the hub 906. The central member 914 can surround a longitudinal axis of a central channel 924 that is disposed through the patient specific shoulder guide 900, e.g., through the hub 906 and the central member 914. The central member 914 includes a patient specific contact surface 918. The distal face of the central member 914 can be patient specific. The central member 914 can include an annular contact face that is formed based on a specific patient's anatomy toward the central region of the glenoid 18 of the patient. The distal face of the central member 914 can be generally convex to follow the generally concave surface of sub-chondral bone. The distal face of the central member 914 can be formed to follow cartilage if mating the central member 914 to the cartilage is preferred. In one embodiment the glenoid rim members 908 and the central member 914 are configured to conform to bone, e.g., as negatives of the natural bone anatomy, including osteophytes. In one embodiment one or more of the glenoid rim members 908 and the central member 914 can be configured to conform with cartilage while the other of the glenoid rim members 908 and the central member 914 can be configured to conform to bone, e.g., as negatives of the natural bone anatomy, including osteophytes.
The central member 914 can include a circular contact profile. The patient specific contact surface 918 can extend from an outer periphery of the central channel 924 to an outer periphery of the central member 914. The outer periphery of the central member 914 can be circular. The diameter of the outer periphery can be sized to provide sufficient stability of the patient specific shoulder guide 900 to tipping.
The patient specific shoulder guide 900 can include an side member 926. The side member 926 can have a side channel 928 disposed therethrough. The side channel 928 can be used to place an anti-rotation device such as a pin into the glenoid. The central channel 924 can be used to place the central guide pin 204. In one modified embodiment, the side member 926 is eliminated. The modified embodiment may be configured with a larger diameter outer periphery of the central member 914 to provide greater stability in the absence of a pin which could be placed through the side member 926.
The patient specific shoulder guide 900 is advantageous in leaving a large span 930 of the surgical field un-obstructed. For example, a span 930 of more than 120 degrees can be unobstructed by the presence of a glenoid rim member 908. In some embodiments, a span 930 of more than 130 degrees can be unobstructed by the presence of a glenoid rim member 908. In some embodiments, a span 930 of more than 140 degrees can be unobstructed by the presence of a glenoid rim member 908. In some embodiments, a span 930 of more than 150 degrees can be unobstructed by the presence of a glenoid rim member 908. In some embodiments, a span 930 of more than 160 degrees can be unobstructed by the presence of a glenoid rim member 908. In some embodiments, a span 930 of more than 170 degrees can be unobstructed by the presence of a glenoid rim member 908. In some embodiments, a span 930 of more than 180 degrees can be unobstructed by the presence of a glenoid rim member 908. In some embodiments, a span 930 of more than 190 degrees can be unobstructed by the presence of a glenoid rim member 908. In some embodiments, a span 930 of more than 200 degrees can be unobstructed by the presence of a glenoid rim member 908. In some embodiments, a span 930 of more than 210 degrees can be unobstructed by the presence of a glenoid rim member 908. In some embodiments, a span 930 of more than 220 degrees can be unobstructed by the presence of a glenoid rim member 908. In some embodiments, a span 930 of more than 230 degrees can be unobstructed by the presence of a glenoid rim member 908. In some embodiments, a span 930 of more than 240 degrees can be unobstructed by the presence of a glenoid rim member 908. In some embodiments, a span 930 of more than 250 degrees can be unobstructed by the presence of a glenoid rim member 908. In some embodiments, a span 930 of more than 260 degrees can be unobstructed by the presence of a glenoid rim member 908. In some embodiments, a span 930 of between 180 degrees and 260 degrees can be unobstructed by the presence of a glenoid rim member 908.
In some embodiments, the glenoid rim members 908 can be disposed in a zone of less than 180 degrees of the patient specific shoulder guide 900. In some embodiments, the glenoid rim members 908 can be disposed in a zone of less than 170 degrees of the patient specific shoulder guide 900. In some embodiments, the glenoid rim members 908 can be disposed in a zone of less than 160 degrees of the patient specific shoulder guide 900. In some embodiments, the glenoid rim members 908 can be disposed in a zone of less than 150 degrees of the patient specific shoulder guide 900. In some embodiments, the glenoid rim members 908 can be disposed in a zone of less than 140 degrees of the patient specific shoulder guide 900. In some embodiments, the glenoid rim members 908 can be disposed in a zone of less than 130 degrees of the patient specific shoulder guide 900. In some embodiments, the glenoid rim members 908 can be disposed in a zone of less than 120 degrees of the patient specific shoulder guide 900. In some embodiments, the glenoid rim members 908 can be disposed in a zone of less than 110 degrees of the patient specific shoulder guide 900. In some embodiments, a span of between 45 degrees and 180 degrees can enclosed all of the glenoid rim members 908.
The patient specific shoulder guide 950 includes a hub 956 through which a central channel 984 extends. A patient specific contact surface 962 can be disposed at or coupled with a distal portion of the hub 956. The patient specific contact surface 962 includes a patient specific contact surface 968 that is formed by reference to the specific patient. The patient specific contact surface 962 also can be configured to reduce flexing in or rotation of the patient specific shoulder guide 950 in use. The patient specific contact surface 962 can be non-round in one embodiment. The patient specific contact surface 962 can be elongated in one embodiment. In some embodiment, the shoulder guide 950 is configured to eliminate or compensate for there being no glenoid rim member 958 in a posterior side of the guide 950. For example, the patient specific contact surface 962 can be elongated and can extend in a posterior direction. In some embodiments, the contact surface 962 is elongated and a rim member 958 is disposed in the posterior portion of the guide 950. In other embodiments the contact surface 962 is sufficiently elongated to eliminate the posterior side rim member 958. The patient specific contact surface 962 can have an anterior-posterior extent 976 and a superior-inferior extent 980 in one embodiment.
The central member 964 can have a contact profile, e.g., outer periphery that is not round, as discussed above. The contact profile can be oblong or elongated. The contact profile can comprise two circular profiles that are partially overlapping such that end portions thereof can be circular and elongated sides thereof can be somewhat concave. The patient specific contact surface 968 can be formed to follow a natural surface of the articular portion of the glenoid 18, e.g., having a generally convex profile to follow the generally concave form of the articular surface.
The greater anterior-posterior extent 976 of the patient specific shoulder guide 950 compensates for the absence of any glenoid rim members 958 in the posterior portion 952. The shoulder guide 950 is configured to eliminate or compensate for there being no support on the posterior portion 952 of the guide 950. For example, the anterior-posterior extent 976 can be elongated more toward the posterior direction. In some embodiments, anterior-posterior extent 976 is sufficient to exclude the presence of rim contact in the posterior side of the rim in use. For example, any force directed toward the medial and posterior directions of the glenoid 18 will not tend to tip the patient specific shoulder guide 950. Rather, such forces will be transferred in a controlled manner to a surface of the glenoid 18, e.g., to the sub-chondral or cartilage surface thereof. By elongating the anterior-posterior extent 976 greater control of the patient specific shoulder guide 950 can be provided without unnecessarily expanding the superior-inferior extent 980. The anterior-posterior extent 976 need not be centered on the central channel 984. Rather, the anterior-posterior extent 976 can extend a greater amount toward the posterior direction than toward the anterior direction. This can further help compensate for the lack of glenoid rim members 958 in the posterior portion 952 of the patient specific shoulder guide 950.
A modified embodiment of the patient specific shoulder guide 950 includes a side member similar to the side member 926 in the patient specific shoulder guide 900. Such a side member can have a side channel disposed therethrough similar to the side channel 928 of the patient specific shoulder guide 900.
The patient specific shoulder guide 950 can have a span 930 with any of the amounts or degrees discussed above in connection with patient specific shoulder guide 900. The span 930 is generally unobstructed of any glenoid rim members 958. A zone can be provided in which the glenoid rim members 958 are disposed, as discussed above in connection with the patient specific shoulder guide 900.
Terminology
Although certain embodiments have been described herein, the implants and methods described herein can interchangeably use any articular component, as the context may dictate.
As used herein, the relative terms “proximal” and “distal” shall be defined from the perspective of the implant. Thus, proximal refers to the direction of the articular component and distal refers to the direction of an anchor component, such as a stem of a humeral anchor or a thread or porous surface or other anchoring structure of a stemless anchor when the implant is assembled.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.
The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. In addition, the articles “a,” “an,” and “the” as used in this application and the appended claims are to be construed to mean “one or more” or “at least one” unless specified otherwise.
The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers and should be interpreted based on the circumstances (e.g., as accurate as reasonably possible under the circumstances, for example ±5%, ±10%, ±15%, etc.). For example, “about 1” includes “1.” Phrases preceded by a term such as “substantially,” “generally,” and the like include the recited phrase and should be interpreted based on the circumstances (e.g., as much as reasonably possible under the circumstances). For example, “substantially spherical” includes “spherical.” Unless stated otherwise, all measurements are at standard conditions including temperature and pressure.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: A, B, or C” is intended to cover: A, B, C, A and B, A and C, B and C, and A, B, and C. Conjunctive language such as the phrase “at least one of X, Y and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be at least one of X, Y or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of X, at least one of Y and at least one of Z to each be present.
Although certain embodiments and examples have been described herein, it should be emphasized that many variations and modifications may be made to the humeral head assembly shown and described in the present disclosure, the elements of which are to be understood as being differently combined and/or modified to form still further embodiments or acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. A wide variety of designs and approaches are possible. No feature, structure, or step disclosed herein is essential or indispensable.
Some embodiments have been described in connection with the accompanying drawings. However, it should be understood that the figures are not drawn to scale. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, it will be recognized that any methods described herein may be practiced using any device suitable for performing the recited steps.
For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
Moreover, while illustrative embodiments have been described herein, it will be understood by those skilled in the art that the scope of the inventions extends beyond the specifically disclosed embodiments to any and all embodiments having equivalent elements, modifications, omissions, combinations or sub-combinations of the specific features and aspects of the embodiments (e.g., of aspects across various embodiments), adaptations and/or alterations, and uses of the inventions as would be appreciated by those in the art based on the present disclosure. The limitations in the claims are to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive. Further, the actions of the disclosed processes and methods may be modified in any manner, including by reordering actions and/or inserting additional actions and/or deleting actions. It is intended, therefore, that the specification and examples be considered as illustrative only, with a true scope and spirit being indicated by the claims and their full scope of equivalents.
Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “coupling a glenoid guide with the glenoid rim” include “instructing coupling of a glenoid guide with a glenoid rim.”
Number | Name | Date | Kind |
---|---|---|---|
4919670 | Dale et al. | Apr 1990 | A |
5030219 | Matsen, III et al. | Jul 1991 | A |
5329846 | Bonutti | Jul 1994 | A |
5383938 | Rohr et al. | Jan 1995 | A |
5458637 | Hayes | Oct 1995 | A |
5531793 | Kelman et al. | Jul 1996 | A |
5610966 | Martell et al. | Mar 1997 | A |
5725586 | Sommerich | Mar 1998 | A |
5768134 | Swaelens et al. | Jun 1998 | A |
5769856 | Dong et al. | Jun 1998 | A |
5779710 | Matsen, III | Jul 1998 | A |
5807437 | Sachs et al. | Sep 1998 | A |
5824078 | Nelson et al. | Oct 1998 | A |
5824085 | Sahay et al. | Oct 1998 | A |
6002859 | DiGioia, III et al. | Dec 1999 | A |
6129764 | Servidio | Oct 2000 | A |
6172856 | Jang | Jan 2001 | B1 |
6183519 | Bonnin et al. | Feb 2001 | B1 |
6364910 | Shultz et al. | Apr 2002 | B1 |
6385475 | Cinquin et al. | May 2002 | B1 |
6432142 | Kamiya et al. | Aug 2002 | B1 |
6459948 | Ateshian et al. | Oct 2002 | B1 |
6648894 | Abdelgany et al. | Nov 2003 | B2 |
6772026 | Bradbury et al. | Aug 2004 | B2 |
6797006 | Hodorek | Sep 2004 | B2 |
6849223 | Dean et al. | Feb 2005 | B2 |
6915150 | Cinquin et al. | Jul 2005 | B2 |
6944518 | Roose | Sep 2005 | B2 |
7175665 | German et al. | Feb 2007 | B2 |
7468075 | Lang et al. | Dec 2008 | B2 |
7469474 | Farrar | Dec 2008 | B2 |
7534263 | Burdulis, Jr. et al. | May 2009 | B2 |
7599539 | Kunz et al. | Oct 2009 | B2 |
7618451 | Berez et al. | Nov 2009 | B2 |
7634119 | Tsougarakis et al. | Dec 2009 | B2 |
7648530 | Habermeyer et al. | Jan 2010 | B2 |
7702380 | Dean | Apr 2010 | B1 |
7717956 | Lang | May 2010 | B2 |
7747305 | Dean et al. | Jun 2010 | B2 |
7796791 | Tsougarakis et al. | Sep 2010 | B2 |
7799077 | Lang et al. | Sep 2010 | B2 |
7802503 | Couvillion et al. | Sep 2010 | B2 |
7822588 | Mueller et al. | Oct 2010 | B2 |
7831079 | Kunz et al. | Nov 2010 | B2 |
7892287 | Deffenbaugh | Feb 2011 | B2 |
7927338 | Laffargue et al. | Apr 2011 | B2 |
7981158 | Fitz et al. | Jul 2011 | B2 |
7983777 | Melton et al. | Jul 2011 | B2 |
7993408 | Meridew et al. | Aug 2011 | B2 |
8007448 | Barrera | Aug 2011 | B2 |
8014984 | Iannotti et al. | Sep 2011 | B2 |
8055487 | James | Nov 2011 | B2 |
8062302 | Lang et al. | Nov 2011 | B2 |
8066708 | Lang et al. | Nov 2011 | B2 |
8077950 | Tsougarakis et al. | Dec 2011 | B2 |
8083745 | Lang et al. | Dec 2011 | B2 |
8094900 | Steines et al. | Jan 2012 | B2 |
8105330 | Fitz et al. | Jan 2012 | B2 |
8122582 | Burdulis, Jr. et al. | Feb 2012 | B2 |
8234097 | Steines et al. | Jul 2012 | B2 |
8337501 | Fitz et al. | Dec 2012 | B2 |
8337503 | Lian | Dec 2012 | B2 |
8337507 | Lang et al. | Dec 2012 | B2 |
8343218 | Lang et al. | Jan 2013 | B2 |
8350186 | Jones et al. | Jan 2013 | B2 |
8366771 | Burdulis, Jr. et al. | Feb 2013 | B2 |
8377073 | Wasielewski | Feb 2013 | B2 |
8377129 | Fitz et al. | Feb 2013 | B2 |
8439926 | Bojarski et al. | May 2013 | B2 |
8457930 | Schroeder | Jun 2013 | B2 |
8460304 | Fitz et al. | Jun 2013 | B2 |
8475463 | Lian | Jul 2013 | B2 |
8480754 | Bojarski et al. | Jul 2013 | B2 |
8500740 | Bojarski et al. | Aug 2013 | B2 |
8529568 | Bouadi | Sep 2013 | B2 |
8529630 | Bojarski et al. | Sep 2013 | B2 |
8532806 | Masson | Sep 2013 | B1 |
8535319 | Ball | Sep 2013 | B2 |
8545509 | Park et al. | Oct 2013 | B2 |
8545569 | Fitz et al. | Oct 2013 | B2 |
8551099 | Lang et al. | Oct 2013 | B2 |
8551102 | Fitz et al. | Oct 2013 | B2 |
8551103 | Fitz et al. | Oct 2013 | B2 |
8551169 | Fitz et al. | Oct 2013 | B2 |
8556906 | Fitz et al. | Oct 2013 | B2 |
8556907 | Fitz et al. | Oct 2013 | B2 |
8556971 | Lang | Oct 2013 | B2 |
8556983 | Bojarski et al. | Oct 2013 | B2 |
8561278 | Fitz et al. | Oct 2013 | B2 |
8562611 | Fitz et al. | Oct 2013 | B2 |
8562618 | Fitz et al. | Oct 2013 | B2 |
8568479 | Fitz et al. | Oct 2013 | B2 |
8568480 | Fitz et al. | Oct 2013 | B2 |
8585708 | Fitz et al. | Nov 2013 | B2 |
8617172 | Fitz et al. | Dec 2013 | B2 |
8617242 | Philipp | Dec 2013 | B2 |
8623026 | Wong et al. | Jan 2014 | B2 |
8634617 | Tsougarakis et al. | Jan 2014 | B2 |
8638998 | Steines et al. | Jan 2014 | B2 |
8641716 | Fitz et al. | Feb 2014 | B2 |
8657827 | Fitz et al. | Feb 2014 | B2 |
8682052 | Fitz et al. | Mar 2014 | B2 |
8690945 | Fitz et al. | Apr 2014 | B2 |
8709089 | Lang et al. | Apr 2014 | B2 |
8731885 | Iannotti et al. | May 2014 | B2 |
8735773 | Lang | May 2014 | B2 |
8744148 | Nord et al. | Jun 2014 | B2 |
8768028 | Lang et al. | Jul 2014 | B2 |
8771365 | Bojarski et al. | Jul 2014 | B2 |
8774900 | Buly et al. | Jul 2014 | B2 |
8775133 | Schroeder | Jul 2014 | B2 |
8781557 | Dean et al. | Jul 2014 | B2 |
8814942 | Anthony et al. | Aug 2014 | B2 |
8843229 | Vanasse et al. | Sep 2014 | B2 |
8864769 | Stone et al. | Oct 2014 | B2 |
8882847 | Burdulis, Jr. et al. | Nov 2014 | B2 |
8884618 | Mahfouz | Nov 2014 | B2 |
8888855 | Roche et al. | Nov 2014 | B2 |
8898043 | Ashby et al. | Nov 2014 | B2 |
8906107 | Bojarski et al. | Dec 2014 | B2 |
8926706 | Bojarski et al. | Jan 2015 | B2 |
8932361 | Tornier et al. | Jan 2015 | B2 |
8932363 | Tsougarakis et al. | Jan 2015 | B2 |
8934961 | Lakin et al. | Jan 2015 | B2 |
8945230 | Lang et al. | Feb 2015 | B2 |
8951259 | Fitz et al. | Feb 2015 | B2 |
8951260 | Lang et al. | Feb 2015 | B2 |
8965088 | Tsougarakis et al. | Feb 2015 | B2 |
8971606 | Chaoui | Mar 2015 | B2 |
8974539 | Bojarski et al. | Mar 2015 | B2 |
8984731 | Broeck et al. | Mar 2015 | B2 |
8989460 | Mahfouz | Mar 2015 | B2 |
8992538 | Keefer | Mar 2015 | B2 |
8998915 | Fitz et al. | Apr 2015 | B2 |
9020788 | Lang | Apr 2015 | B2 |
9023050 | Lang et al. | May 2015 | B2 |
9055953 | Lang et al. | Jun 2015 | B2 |
9060788 | Bollinger | Jun 2015 | B2 |
9066728 | Burdulis, Jr. et al. | Jun 2015 | B2 |
9072531 | Fitz et al. | Jul 2015 | B2 |
9084617 | Lang et al. | Jul 2015 | B2 |
9095353 | Burdulis, Jr. et al. | Aug 2015 | B2 |
9107679 | Lang et al. | Aug 2015 | B2 |
9107680 | Fitz et al. | Aug 2015 | B2 |
9113921 | Lang et al. | Aug 2015 | B2 |
9125672 | Fitz et al. | Sep 2015 | B2 |
9126673 | Green et al. | Sep 2015 | B1 |
9180015 | Fitz et al. | Nov 2015 | B2 |
9186161 | Lang et al. | Nov 2015 | B2 |
9186254 | Fitz et al. | Nov 2015 | B2 |
9208558 | Dean et al. | Dec 2015 | B2 |
9211199 | Ratron | Dec 2015 | B2 |
9216025 | Fitz et al. | Dec 2015 | B2 |
9220516 | Lang et al. | Dec 2015 | B2 |
9220517 | Lang et al. | Dec 2015 | B2 |
9232955 | Bonin, Jr. et al. | Jan 2016 | B2 |
9237950 | Hensley et al. | Jan 2016 | B2 |
9241724 | Lang et al. | Jan 2016 | B2 |
9241725 | Lang et al. | Jan 2016 | B2 |
9275191 | Dean et al. | Mar 2016 | B2 |
9278413 | Sperling | Mar 2016 | B2 |
9292920 | Dean et al. | Mar 2016 | B2 |
9295481 | Fitz et al. | Mar 2016 | B2 |
9295482 | Fitz et al. | Mar 2016 | B2 |
9301768 | Buza et al. | Apr 2016 | B2 |
9308005 | Fitz et al. | Apr 2016 | B2 |
9308053 | Bojarski et al. | Apr 2016 | B2 |
9308091 | Lang | Apr 2016 | B2 |
9314256 | Fitz et al. | Apr 2016 | B2 |
9320608 | Sperling | Apr 2016 | B2 |
9320620 | Bojarski et al. | Apr 2016 | B2 |
9326780 | Wong et al. | May 2016 | B2 |
9330206 | Dean et al. | May 2016 | B2 |
9333085 | Fitz et al. | May 2016 | B2 |
9351743 | Kehres et al. | May 2016 | B2 |
9358018 | Fitz et al. | Jun 2016 | B2 |
9381025 | Fitz et al. | Jul 2016 | B2 |
9381026 | Trouilloud et al. | Jul 2016 | B2 |
9387083 | Al Hares et al. | Jul 2016 | B2 |
9402726 | Linderman et al. | Aug 2016 | B2 |
9408615 | Fitz et al. | Aug 2016 | B2 |
9408616 | Kehres et al. | Aug 2016 | B2 |
9408686 | Miller et al. | Aug 2016 | B1 |
9414928 | Sperling | Aug 2016 | B2 |
9439767 | Bojarski et al. | Sep 2016 | B2 |
9486226 | Chao | Nov 2016 | B2 |
9495483 | Steines et al. | Nov 2016 | B2 |
9517134 | Lang | Dec 2016 | B2 |
9539013 | Katrana et al. | Jan 2017 | B2 |
9554910 | Vanasse et al. | Jan 2017 | B2 |
9575931 | Ratron | Feb 2017 | B2 |
9579106 | Lo et al. | Feb 2017 | B2 |
9579110 | Bojarski et al. | Feb 2017 | B2 |
9603711 | Bojarski et al. | Mar 2017 | B2 |
9615839 | Olson | Apr 2017 | B2 |
9626756 | Dean et al. | Apr 2017 | B2 |
9636229 | Lang et al. | May 2017 | B2 |
9646113 | Park et al. | May 2017 | B2 |
9662214 | Li et al. | May 2017 | B2 |
9668873 | Winslow et al. | Jun 2017 | B2 |
9672302 | Dean et al. | Jun 2017 | B2 |
9672617 | Dean et al. | Jun 2017 | B2 |
9675471 | Bojarski et al. | Jun 2017 | B2 |
9681956 | Al Hares et al. | Jun 2017 | B2 |
9687945 | Steines et al. | Jun 2017 | B2 |
9700420 | Fitz et al. | Jul 2017 | B2 |
9700971 | Lang | Jul 2017 | B2 |
9713533 | Taylor et al. | Jul 2017 | B2 |
9715563 | Schroeder | Jul 2017 | B1 |
9717508 | Iannotti et al. | Aug 2017 | B2 |
9737367 | Steines et al. | Aug 2017 | B2 |
9741263 | Iannotti et al. | Aug 2017 | B2 |
9770335 | Sperling | Sep 2017 | B2 |
9775680 | Bojarski et al. | Oct 2017 | B2 |
9849019 | Miller et al. | Dec 2017 | B2 |
9872773 | Lang et al. | Jan 2018 | B2 |
9877790 | Bojarski et al. | Jan 2018 | B2 |
9895230 | Mahfouz | Feb 2018 | B2 |
9913723 | Fitz et al. | Mar 2018 | B2 |
9937046 | Mahfouz | Apr 2018 | B2 |
9943370 | Asseln et al. | Apr 2018 | B2 |
9956047 | Bojarski et al. | May 2018 | B2 |
9956048 | Bojarski et al. | May 2018 | B2 |
9993341 | Vanasse et al. | Jun 2018 | B2 |
10068671 | Dean et al. | Sep 2018 | B2 |
10085839 | Wong et al. | Oct 2018 | B2 |
10405993 | Deransart et al. | Sep 2019 | B2 |
10716676 | Tornier et al. | Jul 2020 | B2 |
20010047210 | Wolf | Nov 2001 | A1 |
20020007294 | Bradbury et al. | Jan 2002 | A1 |
20020025358 | Nelson et al. | Feb 2002 | A1 |
20020082741 | Mazumder et al. | Jun 2002 | A1 |
20030139818 | Rogers et al. | Jul 2003 | A1 |
20040045934 | Harvey et al. | Mar 2004 | A1 |
20040064189 | Maroney et al. | Apr 2004 | A1 |
20040102866 | Harris et al. | May 2004 | A1 |
20040133276 | Lang et al. | Jul 2004 | A1 |
20040171924 | Mire et al. | Sep 2004 | A1 |
20040181144 | Cinquin et al. | Sep 2004 | A1 |
20040243481 | Bradbury et al. | Dec 2004 | A1 |
20050049709 | Tornier | Mar 2005 | A1 |
20050065617 | Barrera et al. | Mar 2005 | A1 |
20050065628 | Roose | Mar 2005 | A1 |
20050098915 | Long et al. | May 2005 | A1 |
20050112397 | Rolfe et al. | May 2005 | A1 |
20050197814 | Aram | Sep 2005 | A1 |
20050216305 | Funderud | Sep 2005 | A1 |
20060100714 | Ensign | May 2006 | A1 |
20060136058 | Pietrzak | Jun 2006 | A1 |
20070089518 | Ericson et al. | Apr 2007 | A1 |
20070118055 | McCombs | May 2007 | A1 |
20070118243 | Schroeder et al. | May 2007 | A1 |
20070191741 | Tsai et al. | Aug 2007 | A1 |
20070244563 | Roche et al. | Oct 2007 | A1 |
20070249967 | Buly et al. | Oct 2007 | A1 |
20080014082 | Kunz et al. | Jan 2008 | A1 |
20080109000 | Maroney et al. | May 2008 | A1 |
20080183297 | Boileau et al. | Jul 2008 | A1 |
20080228269 | McLeod et al. | Sep 2008 | A1 |
20080243127 | Lang et al. | Oct 2008 | A1 |
20090204225 | Meridew et al. | Aug 2009 | A1 |
20090226068 | Fitz et al. | Sep 2009 | A1 |
20090254091 | Long et al. | Oct 2009 | A1 |
20090264894 | Wasielewski | Oct 2009 | A1 |
20090292464 | Fuchs et al. | Nov 2009 | A1 |
20100087927 | Roche et al. | Apr 2010 | A1 |
20100161066 | Iannotti et al. | Jun 2010 | A1 |
20100191100 | Anderson et al. | Jul 2010 | A1 |
20100217270 | Polinski et al. | Aug 2010 | A1 |
20100303313 | Lang et al. | Dec 2010 | A1 |
20110029088 | Raucher et al. | Feb 2011 | A1 |
20110035013 | Winslow et al. | Feb 2011 | A1 |
20110040334 | Kaes et al. | Feb 2011 | A1 |
20110046735 | Metzger et al. | Feb 2011 | A1 |
20110054478 | Vanasse et al. | Mar 2011 | A1 |
20110119884 | Ratron | May 2011 | A1 |
20110137424 | Lappin et al. | Jun 2011 | A1 |
20110144760 | Wong et al. | Jun 2011 | A1 |
20110282403 | Anthony et al. | Nov 2011 | A1 |
20120078258 | Lo et al. | Mar 2012 | A1 |
20120116203 | Vancraen et al. | May 2012 | A1 |
20120130434 | Stemniski | May 2012 | A1 |
20120141034 | Iannotti et al. | Jun 2012 | A1 |
20120143267 | Iannotti et al. | Jun 2012 | A1 |
20120221112 | Lappin | Aug 2012 | A1 |
20120232670 | Bojarski et al. | Sep 2012 | A1 |
20120253350 | Anthony et al. | Oct 2012 | A1 |
20120276509 | Iannotti et al. | Nov 2012 | A1 |
20120279933 | Hensler et al. | Nov 2012 | A1 |
20130053968 | Nardini et al. | Feb 2013 | A1 |
20130110116 | Kehres et al. | May 2013 | A1 |
20130110470 | Vanasse et al. | May 2013 | A1 |
20130110471 | Lang et al. | May 2013 | A1 |
20130114873 | Chaoui | May 2013 | A1 |
20130150975 | Iannotti et al. | Jun 2013 | A1 |
20130172898 | Iannotti et al. | Jul 2013 | A1 |
20130190882 | Humphrey | Jul 2013 | A1 |
20130211531 | Steines et al. | Aug 2013 | A1 |
20130245631 | Bettenga | Sep 2013 | A1 |
20130261629 | Anthony et al. | Oct 2013 | A1 |
20130274752 | Trouilloud et al. | Oct 2013 | A1 |
20130338673 | Keppler | Dec 2013 | A1 |
20140039633 | Roche et al. | Feb 2014 | A1 |
20140257499 | Winslow et al. | Sep 2014 | A1 |
20140276867 | Kelley et al. | Sep 2014 | A1 |
20140371863 | Vanasse et al. | Dec 2014 | A1 |
20150045903 | Neal | Feb 2015 | A1 |
20150054195 | Greyf | Feb 2015 | A1 |
20150093283 | Miller et al. | Apr 2015 | A1 |
20150150688 | Vanasse et al. | Jun 2015 | A1 |
20150202045 | Early et al. | Jul 2015 | A1 |
20150223941 | Lang | Aug 2015 | A1 |
20150250552 | Radermacher et al. | Sep 2015 | A1 |
20150250597 | Lang et al. | Sep 2015 | A1 |
20150320430 | Kehres et al. | Nov 2015 | A1 |
20150328004 | Mafhouz | Nov 2015 | A1 |
20160015466 | Park et al. | Jan 2016 | A1 |
20160051367 | Gervasi et al. | Feb 2016 | A1 |
20160067049 | Flaherty et al. | Mar 2016 | A1 |
20160074052 | Keppler et al. | Mar 2016 | A1 |
20160100907 | Gomes | Apr 2016 | A1 |
20160120555 | Bonin, Jr. et al. | May 2016 | A1 |
20160143744 | Bojarski et al. | May 2016 | A1 |
20160143749 | Holovacs et al. | May 2016 | A1 |
20160157937 | Kehres et al. | Jun 2016 | A1 |
20160166392 | Vanasse et al. | Jun 2016 | A1 |
20160184104 | Sperling | Jun 2016 | A1 |
20160193051 | Budhabhatti et al. | Jul 2016 | A1 |
20160213385 | Iannotti et al. | Jul 2016 | A1 |
20160242933 | Deransart et al. | Aug 2016 | A1 |
20160256222 | Walch | Sep 2016 | A1 |
20160270854 | Chaoui et al. | Sep 2016 | A1 |
20160296285 | Chaoui et al. | Oct 2016 | A1 |
20160296290 | Furrer et al. | Oct 2016 | A1 |
20160324648 | Hodorek et al. | Nov 2016 | A1 |
20160331467 | Slamin et al. | Nov 2016 | A1 |
20160345987 | Guilloux et al. | Dec 2016 | A1 |
20160374697 | Kehres et al. | Dec 2016 | A1 |
20170000614 | Mahfouz | Jan 2017 | A1 |
20170000615 | Mahfouz | Jan 2017 | A1 |
20170027587 | Fraone et al. | Feb 2017 | A1 |
20170027593 | Bojarski et al. | Feb 2017 | A1 |
20170056024 | Chao | Mar 2017 | A1 |
20170079803 | Lang | Mar 2017 | A1 |
20170105841 | Vanasse et al. | Apr 2017 | A1 |
20170105843 | Britton et al. | Apr 2017 | A1 |
20170112626 | Miller et al. | Apr 2017 | A1 |
20170119531 | Bojarski et al. | May 2017 | A1 |
20170151058 | Sperling | Jun 2017 | A1 |
20170216038 | Lang et al. | Aug 2017 | A1 |
20170231783 | Lang et al. | Aug 2017 | A1 |
20170249440 | Lang et al. | Aug 2017 | A1 |
20170258598 | Radermacher et al. | Sep 2017 | A1 |
20170273795 | Neichel et al. | Sep 2017 | A1 |
20170273800 | Emerick et al. | Sep 2017 | A1 |
20170273801 | Hodorek | Sep 2017 | A1 |
20170281357 | Taylor et al. | Oct 2017 | A1 |
20170296347 | Chua et al. | Oct 2017 | A1 |
20170304063 | Hatzidakis et al. | Oct 2017 | A1 |
20170360567 | Fitz et al. | Dec 2017 | A1 |
20170367766 | Mahfouz | Dec 2017 | A1 |
20170367828 | Steines et al. | Dec 2017 | A1 |
20170367834 | Fitz et al. | Dec 2017 | A1 |
20180028325 | Bojarski et al. | Feb 2018 | A1 |
20180161176 | Vivanz et al. | Jun 2018 | A1 |
20180228614 | Lang et al. | Aug 2018 | A1 |
20180235706 | Asseln et al. | Aug 2018 | A1 |
20180235762 | Radermacher et al. | Aug 2018 | A1 |
20180263782 | Lang et al. | Sep 2018 | A1 |
20180289380 | Mauldin et al. | Oct 2018 | A1 |
20190015113 | Morvan | Jan 2019 | A1 |
20190015116 | Neichel et al. | Jan 2019 | A1 |
20190015117 | Neichel et al. | Jan 2019 | A1 |
20190015118 | Neichel et al. | Jan 2019 | A1 |
20190015119 | Athwal et al. | Jan 2019 | A1 |
20190038360 | Chaoui | Feb 2019 | A1 |
20190343658 | Deransart et al. | Nov 2019 | A1 |
20200188121 | Boux De Casson et al. | Jun 2020 | A1 |
20200214845 | Knox et al. | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
2927086 | Apr 2015 | CA |
2927811 | Apr 2015 | CA |
2938709 | May 2015 | CA |
10 2006 047663 | Apr 2008 | DE |
1 249 213 | Oct 2002 | EP |
1 265 555 | Dec 2002 | EP |
1 563 810 | Aug 2005 | EP |
1 862 151 | Dec 2007 | EP |
1 902 689 | Mar 2008 | EP |
1 952 788 | Aug 2008 | EP |
2 135 576 | Dec 2009 | EP |
1 917 051 | Jun 2010 | EP |
2 243 445 | Oct 2010 | EP |
2 324 801 | May 2011 | EP |
2 335 655 | Jun 2011 | EP |
2 501 313 | Sep 2012 | EP |
2 544 601 | Jan 2013 | EP |
2 583 242 | Apr 2013 | EP |
2 653 136 | Oct 2013 | EP |
2 845 547 | Mar 2015 | EP |
2 965 720 | Jan 2016 | EP |
3 057 518 | Aug 2016 | EP |
3 057 524 | Aug 2016 | EP |
3 065 671 | Sep 2016 | EP |
3 068 317 | Sep 2016 | EP |
2 874 570 | Jan 2017 | EP |
3 117 801 | Jan 2017 | EP |
2 579 454 | Oct 1986 | FR |
2 859 099 | Mar 2005 | FR |
2962573 | Jan 2012 | FR |
2982694 | Nov 2016 | FR |
2982979 | Nov 2016 | FR |
2982693 | Dec 2016 | FR |
2501494 | Oct 2013 | GB |
WO 93025157 | Dec 1993 | WO |
WO 0035346 | Jun 2000 | WO |
WO 0059411 | Oct 2000 | WO |
WO 02061688 | Aug 2002 | WO |
WO 2010120346 | Oct 2010 | WO |
WO 2011110374 | Sep 2011 | WO |
WO 2011154891 | Dec 2011 | WO |
WO 2011157961 | Dec 2011 | WO |
WO 2012021241 | Feb 2012 | WO |
WO 2012058349 | May 2012 | WO |
WO 2012125319 | Sep 2012 | WO |
WO 2013060851 | May 2013 | WO |
WO 2013062848 | May 2013 | WO |
WO 2013062851 | May 2013 | WO |
WO 2013142998 | Oct 2013 | WO |
WO 2014020561 | Feb 2014 | WO |
WO 2014035991 | Mar 2014 | WO |
WO 2014180972 | Nov 2014 | WO |
WO 2015052586 | Apr 2015 | WO |
WO 2015056097 | Apr 2015 | WO |
WO 2015068035 | May 2015 | WO |
WO 2015071757 | May 2015 | WO |
WO 2015175397 | Nov 2015 | WO |
WO 2015185219 | Dec 2015 | WO |
WO 2017005514 | Jan 2017 | WO |
WO 2017007565 | Jan 2017 | WO |
WO 2017091657 | Jun 2017 | WO |
WO 2017105815 | Jun 2017 | WO |
WO 2017106294 | Jun 2017 | WO |
WO 2017184792 | Oct 2017 | WO |
WO 2017214537 | Dec 2017 | WO |
WO 2018022227 | Feb 2018 | WO |
WO 2019014278 | Jan 2019 | WO |
WO 2019014281 | Jan 2019 | WO |
WO 2019033037 | Feb 2019 | WO |
WO 2019060780 | Mar 2019 | WO |
Entry |
---|
US 9,451,972 B2, 09/2016, Lang et al. (withdrawn) |
Zimmer, “Zimmer® PSI Shoulder Trabecular Metal™ Reverse Glenoid Base Plate Surgical Technique”, Dec. 30, 2013. |
Boileau, et al., “The three-dimensional geometry of the proximal humerus: implications for surgical technique and prosthetic design.” The Journal of bone and joint surgery. British vol. 79.5 (1997): 857-865. |
Dougherty, “Digital Image Processing for Medical Applications,” May 11, 2009 (May 11, 2009), Cambridge University Press, XP002615721. |
Favre, et al., “Influence of component positioning on impingement in conventional total shoulder arthroplasty,” Clinical Biomechanics, Butterworth Scientifics, Nov. 5, 2007, pp. 174-183, vol. 23, No. 2, Guilford, GB. |
Gregory, et al.,“Accuracy of Glenoid Component Placement in Total Shoulder Arthroplasty and Its Effect on Clinical and Radiological Outcome in a Retrospective, Longitudinal, Monocentric Open Study,” PLOS One, p. e75791, Aug. 1, 2013, vol. 8, No. 10. |
Habets, et al., Computer assistance in orthopaedic surgery. Technische Universiteit Eindhoven, 2002. |
Hempfing, et al. “Surgical landmarks to determine humeral head retrotorsion for hemiarthroplasty in fractures.” Journal of shoulder and elbow surgery 10.5 (2001): 460-463. |
Hernigou, et al., “Determining humeral retroversion with computed tomography.” Journal of bone and joint surgery. Oct. 2002;84-A(10):1753-62. |
Iannotti et al., “Prosthetic positioning in total shoulder arthroplasty,” Journal of Shoulder and Elbow Surgery, Jan. 1, 2005, vol. 14, No. 1S, pp. S111-S121. |
Kobashi et al., “Knowledge-Based Organ Identification from CT Images,” Pattern Recognition, Elsevier, GB, vol. 28, No. 4, Apr. 1, 1995 (Apr. 1, 1995), pp. 475-491, XP004013165. |
Lee, C.C. et al., “Identifying multiple abdominal organs from CT image series using a multimodule contextual neural network and spatial fuzzy rules”, IEEE Transactions on Information Technology in Biomedicine, IEEE Services Center, Los Alamitos, CA, US, vol. 7, No. 3, Sep. 1, 2003 (Sep. 1, 2003) pp. 208-217, XP011100536. |
Lee, C.C. et al., “Recognizing Abdominal Organs in CT Images Using Contextual Neural Network and Fuzzy Rules”, Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE Jul. 23-28, 2000, Piscataway, NJ, USA, IEEE, vol. 3, Jul. 23, 2000 (Jul. 23, 2000), pp. 1745-1748, XP010530837. |
Ma, et al., “Robust registration for computer-integrated orthopedic surgery: laboratory validation and clinical experience.” Medical image analysis 7.3 (2003): 237-250. |
“Olympia Total Shoulder System Surgical Technique”, Wright Medical Technology, 2001, in 19 pages. |
Nguyen, et al., “A New Segmentation Method for MRI Images of the Shoulder Joint”, Computer and Robot Vision, 2007. CRV '07. Fourth Canadian Conference on, IEEE, PI, May 1, 2007 (May 1, 2007), pp. 329-338, XP031175821. |
Radermacher, K., et al., “Computer Assisted Orthopaedic Surgery with Image Based Individual Templates,” Clinical Orthopaedics and Related Research, No. 354, Sep. 1998, pp. 28-38. |
Radermacher, K., et al., “Image Guided Orthopedic Surgery Using Individual Templates: Experimental Results and Aspects of the Development of a Demonstrator for Pelvis Surgery”, Health Care Sector, Telematics Applications Program, 1997, pp. 606-615. |
Tamez-Pena et al., “The Integration of Automatic Segmentation and Motion Tracking for 4D Reconstruction and Visualization of Musculoskeletal Structures,” Biomedical Image Analysis, 1998. Proceedings. Workshop on Santa Barbara, CA US, Jun. 26-27, 1998, Los Alamitos, CA, USA, IEEE Comput. Soc. US, Jun. 26, 1998 (Jun. 26, 1998), pp. 154-163, XP010291418. |
Tornier, “Salto Talaris, Total Ankle Prosthesis”, 2009. |
Valstar, et al. “Towards computer-assisted surgery in shoulder joint replacement.” ISPRS journal of photogrammetry and remote sensing 56.5-6 (2002): 326-337. |
Valstar, et al. “The use of Roentgen stereophotogrammetry to study micromotion of orthopaedic implants.” ISPRS journal of photogrammetry and remote sensing 56.5-6 (2002): 376-389. |
Welsh, et al., “CT-based preoperative analysis of scapula morphology and glenohumeral joint geometry.” Computer Aided Surgery 8.5 (2003): 264-268. |
Wu, et al. “An interface for the data exchange between CAS and CAD/CAM systems.” International Congress Series. vol. 1256. Elsevier, 2003. |
“Zimmer® PSI Shoulder Planning”, Zimmer Biomet TV, posted Jul. 11, 2014, retrieved from internet on Jan. 9, 2020, <https://zimmerbiomet.tv/videos/1025?a=surgeon&version=1190>. |
International Search Report and Written Opinion issued in PCT Application No. PCT/US2018/041526, dated Dec. 4, 2018, in 20 pages. |
Number | Date | Country | |
---|---|---|---|
20190015221 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
62530981 | Jul 2017 | US | |
62545327 | Aug 2017 | US |