The present disclosure relates generally to use of Hall effect prisms to measure surface magnetic field and capacitive variations of magnetized particles randomly positioned and oriented, but fixed in a substrate.
A physically unclonable function is an object that has characteristics that make it extremely difficult or impossible to copy. An array of randomly dispersed hard (magnetized) and soft (non-magnetized) magnetic particles that may be conducting or nonconducting that are disbursed in a binder create a particular magnetic field or capacitive pattern on the surface. This surface magnetic field and capacitive variations can be considered to be a unique pattern similar to fingerprint. The Hall effect prism is a sensor that measures the effects of these patterns by sensing the deformation of currents or electric potential flowing within or around a resistive substrate material that exhibits a substantial Hall effect coefficient.
The above-mentioned and other features and advantages of the disclosed embodiments, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of the disclosed embodiments in conjunction with the accompanying drawings.
It is to be understood that the present disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The present disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. As used herein, the terms “having,” “containing,” “including,” “comprising,” and the like are open ended terms that indicate the presence of stated elements or features, but do not preclude additional elements or features. The articles “a,” “an,” and “the” are intended to include the plural as well as the singular, unless the context clearly indicates otherwise. The use of “including,” “comprising,” or “having,” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
Terms such as “about” and the like have a contextual meaning, are used to describe various characteristics of an object, and such terms have their ordinary and customary meaning to persons of ordinary skill in the pertinent art. Terms such as “about” and the like, in a first context mean “approximately” to an extent as understood by persons of ordinary skill in the pertinent art; and, in a second context, are used to describe various characteristics of an object, and in such second context mean “within a small percentage of” as understood by persons of ordinary skill in the pertinent art.
Unless limited otherwise, the terms “connected,” “coupled,” and “mounted,” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings. Spatially relative terms such as “top,” “bottom,” “front,” “back,” “rear,” and “side,” “under,” “below,” “lower,” “over,” “upper,” and the like, are used for ease of description to explain the positioning of one element relative to a second element. These terms are intended to encompass different orientations of the device in addition to different orientations than those depicted in the figures. Further, terms such as “first,” “second,” and the like, are also used to describe various elements, regions, sections, etc., and are also not intended to be limiting. Like terms refer to like elements throughout the description.
A Physically Unclonable Function (PUF) is an object that has characteristics that make it extremely difficult or impossible to copy. An array of randomly dispersed hard (magnetized) and soft (non-magnetized) magnetic particles that may be conducting or nonconducting that are disbursed in a binder that create a particular magnetic field or capacitive pattern on the surface. This surface magnetic field and capacitive variations can be considered to be a unique pattern similar to fingerprint. The Hall Effect Prism is a sensor that measures the effects of these patterns by sensing the deformation of currents or electric potential flowing within or around a resistive substrate material that exhibits a substantial Hall effect coefficient. A person or ordinary skill in the art would recognize that the prism sensor of this invention is not limited to Hall effect measurements, but could be applied to any magnetic field sensing device. “Resistive substrate” or “substrate” will be understood to mean a material that exhibits a substantial Hall effect coefficient. These materials include but are not limited to Silicon (Si), gallium arsenide (GaAs), indium arsenide (InAs), indium phosphide (InP), indium antimonide (InSb), graphene (an allotrope of carbon (C)), and Bismuth (Bi) for example. The sensing is achieved by direct conductive contact to the substrate material or capacitively coupling to the substrate. The prior art consists of Hall effect sensors that have the geometry shown in
In
Most applications are looking for the magnetic field at one spot in space or the average over the surface area of the Hall plate. However, this invention solves a different problem. The magnetic field is created by an array of many small magnets represented by just three magnets 351, 361, 371 in
If the magnet features are small with respect to the substrate size, then the current lines will be more uniform when away from the normal magnetic fields. There is a desire to understand this distortion on the order of the size of the magnets. For this an array of small magnets, many sense locations are necessary.
The optional longer segment electrodes around the edge 531 and 521 provides a way to get a more uniform current flow through the substrate to lower the complexity of the sensor. A current or voltage source may be applied to any two electrodes within the array or edge conducting pads. This will cause the potential gradient distributed within the substrate. Then the potential measurements can then be made between any two conducting pads. The measurement of the two source locations is the trivial answer that does not yield any needed information. However, all the other combinations will give a reaction to the magnetic field patterns due to the magnetic distribution near the substrate.
One skilled in the art would recognize that the sensor size can be scaled with respect to the magnet size. Printed circuits are used for larger sensor sizes and resolutions. Semiconductor techniques can be used for the smaller size sensing areas.
There are many ways to implement this Hall prism effect by making modifications to touch sensing or camera sensor devices.
Another embodiment is provided by applying the source current to any combination of the side electrodes. This emphasizes different regions of the magnetic fields within the structure and results in different outputs. This can be done by using analog switches to route the source and measurement locations within the array of contacts.
A result is that the reader can be given a command to vary the source locations which are filtered by the magnetic PUF to result in a different resultant output vector.
In another embodiment, the source locations for the current can be applied to any combination of the surface contact or coupling locations. The pads can be given an array number in terms of rows and columns. In this way, any source pattern of one more positive or negative source locations results in a different pattern on the voltage measuring pad locations. By choosing the different source locations the sensitivity of the potential changes within the array can be tuned to the magnets under the sensor area.
The source may be a direct current (“DC”) for direct measurement of the voltage potential distribution. An alternating current (“AC”) may also be used which would allow capacitive coupling that would not require direct conduction contact to the substrate resistive layer. The device being measured is filled with conducting particles that are magnetized. This will also give a different frequency response for different frequencies of operation. The embedding of non-magnetic conductive wires would give an altered response. The AC or time varying source may have different profiles. Sinusoidal, square, triangular, trapezoidal, exponential and other stimulus would all give a different response. The voltage potentials may also be sampled by a “sample and hold” circuity. This will allow a simultaneous sampling of the entire array at one time. This is a very similar technique to exposure control of camera sensors.
In another embodiment, the substrate may be expanded beyond a resistive substrate materials including a number of semiconductor device materials. The simple resistive operation has both positive (holes) and negative (electron) carriers that are available to be influenced by the magnetic field. The substrate may be a material with majority carries being a P (holes) or N (electrons). The deposition of these materials is the same as the current art for single Hall effect sensors that exhibit the substantial Hall coefficient. However, this invention has an array in two dimensions of spaced electrodes distributed along the surface of the substrate.
In another embodiment, the substrate material can be made thicker stretching the into a 3D sensor. This would allow magnetic fields to be measured in the direction that is tangential to the sensor array surface.
In another embodiment shown in
A soft ferrite material layer can be added to the back side of the sensor to increase the field on the sensor side of the voltage measuring pads. This would be placed anywhere above the measuring pads in
In another embodiment, a reader or sensor is made unique by inserting a filter or key that is a thin layer of magnet PUF material that will perturb the magnetic fields between the sensor and the PUF device being measured. This thin key layer is present when measuring the target PUF object is present to enroll or record the superposition of object and key. This key would create a distorting field of the test PUF object. The additional thin key layer could then be removed and used as a two-level authentication. The target and the key insert would have to be recombined to repeat the measurement to identify the total fingerprint for authentication. For additional security, the key may be shipped by a different method than the PUF object device.
An example sensor can be constructed using rigid or flexible material. A ceramic base could be used for a rigid device with a laminated or coated process to apply the resistive substrate material. The layering of the material would be like any printed circuit board (“PCB”) or package processes. This implementation could just as easily be part of a semiconductor process like complementary metal—oxide—semiconductor (“CMOS”) or charged-coupled device (“CCD”) camera sensors. In these cases, the medium is light sensitive but could be replaced by a resistive substrate material.
The sensor can be translated by 0.5 cells to double the resolution in the X and Y
direction.
As the array of sensor pads grows in
Additional combinations of potential variations can be created by stacking alternating layers of electrode and substrate layers. This will give indications of how the fields are bending as they progress through the layers. The layers may be isolated from each other or bonded together to allow current to flow from the top surface of the stack to the bottom of the stack. This will allow dynamic control of the sensitivity in all directions as well.
An additional feature is a via that can connect to a layer in the stack but be isolated from the bulk material. The
A wiring channel 951 connects the center conducting via 941 from the substrate 921. The conducting pad 961 are shown on the top of the stackup. The conducting via 941, 971 connect the wiring channels to their respective conducting pads 931 and 961 that are connected to the resistive substrate. While the dielectric material will obstruct the current flow, it will stop the conducting via from shorting the vertical flow of the current.
One skilled in the art would recognize that the structures found in
The sensor in
Sensor calibration may be necessary to compensate for environmental variations which can affect sensor response. A baseline signal response will be recorded across one or multiple terminal pairs prior to introducing the magnetic/PUF material sample. Baseline calibration signal response information will be used to adjust test measurement readings as needed in order to compensate for environmental conditions. In some applications a compensating signal input may be applied to one or more electrodes in order to calibrate the response reading within another test electrode.
A soft ferrite material may be placed over the sensor to block external fields during the calibration process. This is then removed for the set of the magnetic/PUF material. This soft ferrite can be integrated into a sensor covers that automatically retracts or is manually removed for use.
This application claims priority as a divisional application to U.S. non-provisional patent application Ser. No. 16/816,948, filed Mar. 12, 2020, titled “Hall Effect Prism Sensor,” the content of which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62822518 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16816948 | Mar 2020 | US |
Child | 18081427 | US |