The invention relates generally to surgical instruments. More particularly, the invention relates to a hand-actuated articulating surgical tool for use in minimally invasive surgical procedures.
Current laparoscopic surgical tools are limited in accessibility of certain regions of the human body. Existing tools can perform invasive surgery without making a substantial incision, but these tools are incapable of bending within the body to reach, for example, the backside of the human heart.
Additionally, existing tools rely on use of cables to manipulate the surgical tip of the tool. These tools have the disadvantage of requiring extensive sterilization of the internal components. The cleaning of internal metal cables can be a lengthy and expensive process. This process must be repeated prior to each procedure. Alternatively, disposable components may be used with a substantial increase in recurring costs.
In order for a surgeon to perform a surgical procedure on an active organ, such as the heart, current tools require the organ to be arrested. For example, in order to operate on a small portion of the heart, the patient must be placed on an artificial support system while the heart is temporarily stopped for the surgery. This requires additional equipment such as the artificial support system, substantially increasing the cost of the procedure. Also, the recovery period for the patient is substantially increased.
The present invention provides an apparatus for performing minimally invasive surgery while allowing articulation of the tool within the patient's body. Further, the present invention provides a surgical tool that is simple and inexpensive to sterilize and reuse. Another embodiment of the invention allows a surgeon to operate on a portion of an organ, for example, the heart, without the need for arresting the entire organ.
One embodiment of the present invention is a surgical device, comprising at least one controller located at the proximal end of the device adapted to transmit hydraulic control signals. At least one manipulator, configured to be controlled by a human finger actuates the controller. At least one slave, located at the distal end of the device, is in fluid communication with the controller and is configured to respond to the hydraulic control signals transmitted by the controller. A control line provides hydraulic communication between the controller and the slave.
In a preferred embodiment, the controller comprises a control cavity and a piston within the control cavity. The piston divides the control cavity into a first control cavity portion and a second control cavity portion and prevents communication between the two portions. The slave comprises a slave cavity and a piston within the slave cavity that divides the slave cavity into first and second portions and prevents communication between the two portions. The control line provides hydraulic communication between the first control cavity portion and the first slave cavity portion. A second control line provides hydraulic communication between the second control cavity portion and the second slave cavity portion.
In another embodiment, the surgical device comprises a control portion located at the proximal end having a plurality of controllers, each controller being adapted to transmit hydraulic control signals. A plurality of manipulators, configured to be controlled by a human finger, actuate a corresponding controller. A slave portion located at the distal end of the device comprises a plurality of slaves. Each slave is in communication with a corresponding controller, and responds to the hydraulic control signals transmitted by the controller. A surgical tip is manipulated by the slaves in response to the hydraulic control signals. Control lines provide communication between the controllers and the slaves. In a preferred embodiment, an outer sleeve envelops the control lines.
The device can also include an articulating portion. The articulating portion comprises a spring bar on one side and a plurality of pockets on an opposing side. The pockets are configured to receive a hydraulic fluid and expand, causing the device to bend as desired. In a preferred embodiment, the device includes a stabilizer having a rigid shaft and a stabilizing plate. The stabilizing plate has an access cutout, and is configured to pivot about the end of the shaft. The shaft can include an articulating portion, if desired.
The features, objects and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like references identify correspondingly throughout, and wherein:
Certain embodiments of the invention will now be described in detail with reference to the figures.
The control portion 110, 112 may be any device that can translate the movements of the user's hand and fingers into hydraulic, mechanical, or electrical signals to actuate the corresponding parts of the slave portion 120 of the device. For example, two such devices are shown in
In certain embodiments, the control portion 110, 112 uses hydraulic fluid to transfer pressure from a control cylinder to a slave cylinder. The fluid is preferably sterilized distilled water, however a saline solution, a perfluorinated hydrocarbon liquid, or any other physiologically compatible fluid could also be used. A “physiologically compatible fluid” is a fluid that once exposed to tissues and organs, does not create any intolerable reaction, such as a rash or immune response, in the patient, and does not adversely interfere with the normal physiological function of the tissues or organs to which it is exposed. In addition, a physiologically compatible fluid can remain in a patient's body or in contact with a tissue or an organ without the need to remove the fluid.
In one embodiment, the control portion 112 clamps onto the arm of the user by way of a clamp 115. The control portion 112 features finger loops 117, into which the user inserts the user's fingers. By squeezing each finger loop 117, the user creates hydraulic pressure or an electrical signal that results in a corresponding motion at the distal end 120 of the device. The user may then “open” the squeezed finger to create the opposite motion.
Each finger loop 117 is connected with a control cylinder 310 (shown in
Another embodiment of the invention includes a control portion 110 that is clamped to the side of a surgical bed using clamps 130. In this embodiment, the user grasps the control portion 110 much in the same way that a motorcycle driver grasps the handles of a motorcycle. The user may turn the handles, push them in, pull them out, pivot them about their axes, or, with the aid of a thumb loop, squeeze them. As detailed below, each of these motions creates a corresponding motion at the distal end 120 of the device.
In another embodiment, the control portion 110 is clamped to an object other than the surgical bed, such as a table or a cart. In yet another embodiment, the control portion 110 is clamped to the user's arms or hand. In still another embodiment, the control portion 110 is held by the user, without it being clamped to anything.
The movements of the control portion 110 are translated into hydraulic motion through the use of control cylinders 214, 216, 218, 220. When the user squeezes the thumb loop 212 towards the handle 210, a bend cam 222 is turned about a vertical axis. The bend cam 222 is shown in
The control portion 110 may be attached to the side of a surgical bed using a clamp 130. However, the control portion is free to rotate about a vertical axis 226, shown in
A user may also push the handle 210 forward, in which case, the top portion of the control portion 110 moves forward over a slide 232. The slide 232 is connected to an outer cylinder 312 of a control cylinder 218 via an attachment point 330. The outer cylinder 312 is in turn attached to the piston 320 via a shaft 318. The forward movement of the shaft 318 extends the piston 320 forward, thereby creating the hydraulic pressure needed to actuate a slave cylinder in the distal end 120 of the device. In one embodiment of the invention, the forward movement of the handle results in an extension of the distal end 120 of the device through an extension module, described in detail below.
The handle part of the control portion 110 may also rotate along a longitudinal axis coinciding with the shaft 234, as shown in
In certain embodiments of the invention, the movements of the different parts of the control portion 110 creates electrical signals that are sent through wires in the intermediate portion 190 to the slave cylinders in the distal end 120 of the device. The electrical signal is sufficient to actuate a motor in the corresponding slave cylinder, which in turn results in the slave module being actuated. Thus, for example, a forward movement of the handle 210 creates an electrical signal that actuates a motor in an extend module, which results in the extension of that module. Similarly, the rotation of the handle 210, the bending of the handle 210, and the squeezing of the thumb loop 212, result in the rotate module, the bend module, and the grasp module, respectively, being actuated. The slave modules having a motor are described in greater detail below.
Cylinders 214, 216, 218, and 220 are control cylinders. A typical control cylinder 310 is shown in its retracted position in
A piston 320, attached to a shaft 318, moves within the inner cylinder 314, within a distance defined by the two inlet points 322, 324 for the hydraulic fluid. The distal end of the shaft 318 is configured to be capable of attachment to the piston 320, while the proximal end of the shaft 318 is configured to be capable of attachment to the outer cylinder at a site close to the attachment point 330. The outer cylinder or the handle assembly may be provided with ratchet teeth. The ratchet teeth are adapted to engage with a locking mechanism to secure the piston 320 at a desired position relative to the cylinder body. Alternatively, a locking mechanism may employ a friction lock to secure the piston 320 at a desired position.
The piston 320 has a solid front face and is movable along the longitudinal axis of the inner cylinder 314. The front face of the piston 320 is identical in shape to the cross section of the cylindrical cavity. The outer surface of the piston 320 forms an airtight seal with the inner surface of the inner cylinder 314. Thus, the portion of the cavity on one side of the piston 320 does not communicate with the portion of the cavity on the other side of the piston 320. At the same time, the piston 320 must be allowed to move smoothly back and forth along the longitudinal axis of the inner cylinder 314.
The proximal end of the inner cylinder 314 is sealed with a seal 316, comprising an opening therethrough, through which the shaft 318 can slide. The distal end of the inner cylinder 314 is sealed with another seal 328, optionally comprising an O-ring 326.
Thus, in the extended position of the control cylinder 310,
The cannula 190 comprises hydraulic tubings, connecting the control cylinders of the control portion 110 with the slave cylinders at the distal end 120, and housings for the hydraulic tubings.
The distal end 120 comprises modular components. The components can be selected from, for example, an extend module, a rotate module, a bend module, and a grasp module. Other functions can be included as well and activated in the manner described in detail below. Each module is individually describe in greater detail below. The invention is adapted such that the user can pick the combination of modules and the quantity of each individual module that is best suitable for the user's needs and assemble them conveniently.
The extend module 410 is depicted in both its retracted position,
Additional modules can be attached to the extend module either at its distal end, through the distal attachment point 430, or at its proximal end, through the proximal attachment point 431.
In another embodiment, the extend module may be extended using electrical power instead of hydraulic power. In this embodiment, by pushing forward on the handle 210 of the control portion 110, the user causes an electrical connection to be formed, whereby electrical signal is sent from the control portion 110 through wires in the intermediate portion 190 to the extend module 432,
In another embodiment,
The rotate module 510,
Additional modules can be attached to the rotate module either at its distal end, through the distal attachment point 532, or at its proximal end, through the proximal attachment point 534.
In another embodiment, the rotate module may be rotated using electrical power instead of hydraulic power. In this embodiment, by turning the handle 210 of the control portion 110, the user causes an electrical connection to be formed, whereby an electrical signal is sent from the control portion 110 through wires in the intermediate portion 190 to the rotate module 540,
The bend module 610 is depicted in
In some embodiments, the bending of the distal end 628 of the module is through an angle of at least 110°, i.e., when the piston 620 moves from the proximal end of the hydraulic portion completely to the distal end of the hydraulic portion, the distal end 628 of the module bends at least 110°. In other embodiments, the rotation is an angle of at least 110°, at least 150°, at least 200°, at least 250°, at least 300°, or an angle of at least 350°.
Additional modules can be attached to the bend module either at its distal end, through the distal attachment point 630, or at its proximal end, through the proximal attachment point 632.
In another embodiment, the bend module may be bent using electrical power instead of hydraulic power. In this embodiment, by turning the handle 210 of the control portion 110, the user causes an electrical connection to be formed, whereby electrical signal is sent from the control portion 110 through wires in the intermediate portion 190 to the bend module. The electrical signal causes an electrical motor to turn. The electrical motor is attached to a shaft which in turn is attached to the rack 624. The movement of the shaft 618 moves the rack 624, which in turn causes the gear 626 to rotate, which in turn causes the distal end 628 of the module to bend.
In another embodiment,
In another embodiment, the squeezing of the thumb loop 212 causes an electrical current to turn a motor 740,
The tynes 724 of the grasp module 710 are configured to accommodate a number of different tools. For example, in
All the above tools and other tools can fit individually and interchangeably on the grasp module 710. Therefore, during a surgical procedure, the user may attach one tool to the grasp module 710, use it, remove it, and then attach another tool to the same grasp module 710. This process can be repeated any number of times with any number of tools.
As mentioned above, the modules of the present invention are designed to be placed in order that the user deems most useful. For example,
As shown in
In certain embodiments, the present invention features a restraint 1110 that can be attached to the cannula 190 using a thumb screw 1112 (
As part of their normal physiological function, certain organs in the body have continuous motion. For example, the heart beats, the lungs expand and contract as the patient breathes, and the gastrointestinal tract also undergoes contractile motion. When performing surgery, it is often necessary stabilize the part of the organ undergoing surgery so that additional injury to the organ does not occur and the organ can be worked on. Aspects of the invention also feature a tissue restraint module 1210 (
A number of different mechanisms for separating the tynes 1214 are shown in
In certain embodiments, the tissue restraint module is held against a tissue or an organ during the surgical procedure. By doing so, in the space between the two tynes 1214, or a particular space created within a single tyne, a surface area of the tissue or organ becomes restrained, i.e., the local motion of the tissue or the organ is considerably reduced as compared with an unrestrained region of the tissue or the organ. The restraining of the tissue or the organ provides a relatively stable area on which the user can perform the surgical procedure.
In certain embodiments, the intermediate portion 190 of the cannula can be adapted to hold a number of different tools to be used during the operation. The cannula may be the cannula leading to the tissue restraint module or the cannula leading to the grasp module 710 at the distal end 120 of the device. Preferably, the cannula is the one leading the tissue restraint module. During the operation, the user can retrieve a first tool from the cannula while within the patient's body and attach it to the grasp module 710. After using the first tool, the user can then return the first tool to the cannula, retrieve a second tool and attach it to the grasp module 710. Other tools may subsequently be used in a similar fashion.
The cannula 190 is held in place using a positioning arm 140 (see
In using the devices of the present invention, it is often the case that the tools at the distal portion of the device are to move a short distance. This distance is small enough that it would become difficult for the user to move his hands or fingers for that short a distance. Therefore, a system is needed to convert a longer movement of the user's hands and fingers at the proximal end of the device to a short movement of the tools at the distal end of the device. This is accomplished by having the control cylinder and the slave cylinder be of different diameters. Of importance, is the relationship between the piston area and the shaft area when using cylinders of different diameters, as generally described below.
At least a portion of the intermediate portion 190 of the laparoscopic tool is preferably an articulation portion.
Double Acting/Double Cylinder System
Another aspect of the present invention includes a double acting/double cylinder system. This system is depicted in
The slave cylinder comprises a piston 1314 and a shaft 1316 attached thereto. The piston 1314 is capable of moving within the slave cylinder 1310. The piston divides the slave cylinder into two cavities: a distal cavity, a wall of which is A3, and a proximal cavity, a wall of which is A4. The shaft 1316 passes through the proximal cavity. The piston 1314 prevents liquid communication between the distal cavity and the proximal cavity.
A control line provides hydraulic communication between the proximal cavity of the control cylinder and the proximal cavity of the slave cylinder. Another control line provides hydraulic communication between the distal cavity of the control cylinder and the proximal cavity of the slave cylinder. Thus, in the system, the two distal cavities are in hydraulic communication with each other, the two proximal cavities are in hydraulic communication with each other, but no proximal cavity is in hydraulic communication with any distal cavity.
If the control cylinder piston 1318 moves towards the distal end of the control cylinder 1320, hydraulic fluid is moved from the distal cavity of the control cylinder, through a control line, and into the distal cavity of the slave cylinder, thereby pushing the slave cylinder piston 1314 towards the proximal end of the slave cylinder 1310. The reverse may also happen. If the control cylinder piston 1318 moves towards the proximal end of the control cylinder 1320, hydraulic fluid is moved from the proximal cavity of the control cylinder, through a control line, and into the proximal cavity of the slave cylinder, thereby pushing the slave cylinder piston 1314 towards the distal end of the slave cylinder 1310. Further, while the control cylinder piston 1318 remains stationary, the salve cylinder piston 1314 also remains stationary.
In an embodiment, the double acting/double cylinder system of the invention comprises an overpressure reservoir. If the hydraulic pressure within the cylinders or the control lines exceeds a certain amount, some hydraulic fluid is transferred to the overpressure reservoir. The opening to the overpressure reservoir may comprise a pressure gauge device, which can become activated when the hydraulic pressure within a system surpasses a certain preset value. When the pressure gauge device is activated, the opening to the overpressure reservoir opens and hydraulic fluid can then enter the reservoir.
In another embodiment, the overpressure reservoir comprises an opening, which is in constant fluid communication with the hydraulic fluid within the system. The reservoir further comprises a spring mechanism at the side opposite to the opening. When the hydraulic pressure within the system surpasses the pressure applied by the spring mechanism, hydraulic fluid enters the reservoir from the system. Conversely, when the pressure within the system falls below the pressure applied by the spring mechanism, for example due to a leak in the system, hydraulic fluid enters the system from the reservoir. Thus, the reservoir may also function as a fluid replacement reservoir.
In certain embodiments, the flow of the hydraulic fluid inside the system will move very easily so that not enough resistance is afforded. In these situations, it is difficult for a user to control the movement of the cylinders with fine precision. Therefore, certain embodiments of the invention feature a narrowing at a point in the hydraulic tubing, the purpose of which is to create resistance. In some embodiments, the user can change the amount of narrowing, and therefore, the amount of resistance in the hydraulic tubing.
The slave cylinder 1312 also has a piston 1318 and a shaft 1320. The volumes of displaced hydraulic fluid in front of and behind the piston 1318 must be equal to the volume of displaced hydraulic fluid in front of and behind the piston 1314. In other words,
A1l1=A3l2
and
A2l1=A4l2
where l1 is the distance traveled by the slave cylinder. Rearranging the equations results in
which result in the basic relationship between the various surface areas as
It is readily understood by those of skill in the art that the above relationship will also hold true if the control cylinder and the slave cylinder are configured such that small movements by the user's hands and fingers results in longer movements at the distal end of the device. In other words, in
In certain embodiments, when it is desirable to have a long range of movement or very fine movement at the distal end of the device, it is preferable to affect a full range of movement at a slave cylinder at the distal end of the device using multiple strokes of a control cylinder. In these embodiments, the present invention features a multiple stroke cylinder system (
The system is also equipped with a “dump” valve 1416. The dump valve 1416 may be activated by the user at anytime. When the dump valve 1416 is activated, hydraulic fluid is transferred from the slave cylinder 1418 back to the reservoir 1422.
In some embodiments, to aid the removal of the hydraulic fluid from the slave cylinder 1418 a spring mechanism 1420 is placed behind the piston of the slave cylinder. Those of skill in the art know of other mechanisms that can be used to return the piston of the slave cylinder to its original position.
In other embodiments, the system is so configured that the user can reverse the flow of the hydraulic fluid. Therefore by additional strokes of the control cylinder the user can remove hydraulic fluid from the slave cylinder 1418 and transfer it back to the reservoir 1422.
Thus, those of skill in the art will appreciate that the devices described herein provide a relatively easy and economical instrument to perform minimally invasive surgery.
One skilled in the art will appreciate that these devices are and may be adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The methods, procedures, and devices described herein are presently representative of preferred embodiments and are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention and are defined by the scope of the disclosure.
It will be apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention.
Those skilled in the art recognize that the aspects and embodiments of the invention set forth herein may be practiced separate from each other or in conjunction with each other. Therefore, combinations of separate embodiments are within the scope of the invention as disclosed herein.
All patents and publications mentioned in the specification are indicative of the levels of those skilled in the art to which the invention pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.
The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. Thus, for example, in each instance herein any of the terms “comprising”, “consisting essentially of” and “consisting of” may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions indicates the exclusion of equivalents of the features shown and described or portions thereof. It is recognized that various modifications are possible within the scope of the invention disclosed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the disclosure.
This application is a continuation of U.S. application Ser. No. 10/996,872, filed on Nov. 23, 2004, now abandoned by Doyle et al., and entitled “HAND-ACTUATED ARTICULATING SURGICAL TOOL,” which in turn is a continuation of U.S. application Ser. No. 10/388,795, filed on Mar. 12, 2003, now abandoned by Doyle et al., and entitled “HAND-ACTUATED ARTICULATING SURGICAL TOOL,” which in turn is a continuation of U.S. application Ser. No. 09/910,482, filed on Jul. 18, 2001, by Doyle et al., and entitled “HAND-ACTUATED ARTICULATING SURGICAL TOOL,” now U.S. Pat. No. 6,607,475, issued on Aug. 19, 2003, which in turn claims priority to the U.S. Provisional Application Ser. No. 60/219,593, filed Jul. 20, 2000, by Doyle et al., and entitled “HAND-ACTUATED ARTICULATING SURGICAL TOOL,” all of which are incorporated by reference herein in their entirety, including any drawings.
Number | Name | Date | Kind |
---|---|---|---|
2426695 | Kremiller | Sep 1947 | A |
3642159 | Askins | Feb 1972 | A |
3702535 | House | Nov 1972 | A |
4122678 | Wilson | Oct 1978 | A |
4167792 | Carnegie | Sep 1979 | A |
4485817 | Swiggett | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4721099 | Chikama | Jan 1988 | A |
4832473 | Ueda | May 1989 | A |
4848338 | De Satnick et al. | Jul 1989 | A |
4890602 | Hake | Jan 1990 | A |
4946329 | Krueger | Aug 1990 | A |
5112184 | Tapper et al. | May 1992 | A |
5179934 | Nagayoshi et al. | Jan 1993 | A |
5201743 | Haber et al. | Apr 1993 | A |
5217003 | Wilk | Jun 1993 | A |
5275614 | Haber et al. | Jan 1994 | A |
5282806 | Haber et al. | Feb 1994 | A |
5290249 | Foster et al. | Mar 1994 | A |
5312391 | Wilk | May 1994 | A |
5361583 | Huitema | Nov 1994 | A |
5368015 | Wilk | Nov 1994 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5496317 | Goble et al. | Mar 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5611813 | Lichtman | Mar 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5620459 | Lichtman | Apr 1997 | A |
5626595 | Sklar et al. | May 1997 | A |
5681262 | Isse | Oct 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5746740 | Nicholas | May 1998 | A |
5746759 | Meade et al. | May 1998 | A |
5752972 | Hoogeboom | May 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5779727 | Orejola | Jul 1998 | A |
5791231 | Cohn et al. | Aug 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5807376 | Viola et al. | Sep 1998 | A |
5807377 | Madhani et al. | Sep 1998 | A |
5807378 | Jensen et al. | Sep 1998 | A |
5814038 | Jensen et al. | Sep 1998 | A |
5820623 | Ng | Oct 1998 | A |
5833656 | Smith et al. | Nov 1998 | A |
5855583 | Wang et al. | Jan 1999 | A |
5876410 | Petillo | Mar 1999 | A |
5931832 | Jensen | Aug 1999 | A |
5971976 | Wang et al. | Oct 1999 | A |
5976122 | Madhani et al. | Nov 1999 | A |
6001108 | Wang et al. | Dec 1999 | A |
6007550 | Wang et al. | Dec 1999 | A |
6017358 | Yoon et al. | Jan 2000 | A |
6024695 | Taylor et al. | Feb 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6099536 | Petillo | Aug 2000 | A |
6102850 | Wang et al. | Aug 2000 | A |
6102909 | Chen et al. | Aug 2000 | A |
6131480 | Yoneyama | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6132441 | Grace | Oct 2000 | A |
6168634 | Shmitz | Jan 2001 | B1 |
6179837 | Hooven | Jan 2001 | B1 |
6197017 | Brock et al. | Mar 2001 | B1 |
6201984 | Funda et al. | Mar 2001 | B1 |
6206903 | Ramans | Mar 2001 | B1 |
6223100 | Green | Apr 2001 | B1 |
6244809 | Wang et al. | Jun 2001 | B1 |
6246200 | Blumenkranz et al. | Jun 2001 | B1 |
6296635 | Smith et al. | Oct 2001 | B1 |
6309397 | Julian et al. | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6346072 | Cooper | Feb 2002 | B1 |
6361534 | Chen et al. | Mar 2002 | B1 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6391029 | Hooven et al. | May 2002 | B1 |
6398726 | Ramans et al. | Jun 2002 | B1 |
6424885 | Niemeyer et al. | Jul 2002 | B1 |
6432112 | Brock et al. | Aug 2002 | B2 |
6434329 | Dube et al. | Aug 2002 | B1 |
6441577 | Blumenkranz et al. | Aug 2002 | B2 |
6468265 | Evans et al. | Oct 2002 | B1 |
6488265 | Laskaris et al. | Dec 2002 | B2 |
6491691 | Morley et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6554844 | Lee et al. | Apr 2003 | B2 |
6574355 | Green | Jun 2003 | B2 |
6607475 | Doyle et al. | Aug 2003 | B2 |
6620174 | Jensen et al. | Sep 2003 | B2 |
6622980 | Boucher et al. | Sep 2003 | B2 |
6665554 | Charles et al. | Dec 2003 | B1 |
6671581 | Niemeyer et al. | Dec 2003 | B2 |
6676669 | Charles et al. | Jan 2004 | B2 |
6676684 | Morley et al. | Jan 2004 | B1 |
6692485 | Brock et al. | Feb 2004 | B1 |
6702805 | Stuart | Mar 2004 | B1 |
6723087 | O'Neill et al. | Apr 2004 | B2 |
6723106 | Charles et al. | Apr 2004 | B1 |
6731988 | Green | May 2004 | B1 |
6746443 | Morley et al. | Jun 2004 | B1 |
6755338 | Hahnen et al. | Jun 2004 | B2 |
6764445 | Ramans et al. | Jul 2004 | B2 |
6770081 | Cooper et al. | Aug 2004 | B1 |
6776783 | Frantzen et al. | Aug 2004 | B1 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786896 | Madhani et al. | Sep 2004 | B1 |
6788018 | Blumenkranz | Sep 2004 | B1 |
6788999 | Green | Sep 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6827725 | Batchelor et al. | Dec 2004 | B2 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6843793 | Brock et al. | Jan 2005 | B2 |
6850817 | Green | Feb 2005 | B1 |
6860878 | Brock | Mar 2005 | B2 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6879880 | Nowlin et al. | Apr 2005 | B2 |
6902560 | Morley et al. | Jun 2005 | B1 |
6936042 | Wallace et al. | Aug 2005 | B2 |
6949106 | Brock et al. | Sep 2005 | B2 |
6963792 | Green | Nov 2005 | B1 |
6991627 | Madhani et al. | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6999852 | Green | Feb 2006 | B2 |
7006895 | Green | Feb 2006 | B2 |
7048745 | Tierney et al. | May 2006 | B2 |
7063697 | Slater | Jun 2006 | B2 |
7083615 | Peterson et al. | Aug 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7090683 | Brock et al. | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7107124 | Green | Sep 2006 | B2 |
7108688 | Jensen | Sep 2006 | B2 |
7125403 | Julian et al. | Oct 2006 | B2 |
7155315 | Niemeyer et al. | Dec 2006 | B2 |
7155316 | Sutherland et al. | Dec 2006 | B2 |
7169141 | Brock et al. | Jan 2007 | B2 |
7204844 | Jensen et al. | Apr 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7248944 | Green | Jul 2007 | B2 |
7250028 | Julian et al. | Jul 2007 | B2 |
7252660 | Kunz | Aug 2007 | B2 |
7276065 | Morley et al. | Oct 2007 | B2 |
7297142 | Brock | Nov 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7316681 | Madhani et al. | Jan 2008 | B2 |
7320700 | Cooper et al. | Jan 2008 | B2 |
20020120252 | Brock et al. | Aug 2002 | A1 |
20030083673 | Tierney et al. | May 2003 | A1 |
20030109877 | Morley et al. | Jun 2003 | A1 |
20030135204 | Lee et al. | Jul 2003 | A1 |
20030216715 | Moll et al. | Nov 2003 | A1 |
20030236549 | Bonadio et al. | Dec 2003 | A1 |
20040039485 | Niemeyer et al. | Feb 2004 | A1 |
20040193146 | Lee et al. | Sep 2004 | A1 |
20050021018 | Anderson et al. | Jan 2005 | A1 |
20050149003 | Tierney et al. | Jul 2005 | A1 |
20050215983 | Brock | Sep 2005 | A1 |
20050216033 | Lee et al. | Sep 2005 | A1 |
20050228440 | Brock et al. | Oct 2005 | A1 |
20050240178 | Morley et al. | Oct 2005 | A1 |
20070012135 | Tierney et al. | Jan 2007 | A1 |
20070021776 | Jensen et al. | Jan 2007 | A1 |
20070088340 | Brock et al. | Apr 2007 | A1 |
20070093792 | Julian et al. | Apr 2007 | A1 |
20070123855 | Morley et al. | May 2007 | A1 |
20070233052 | Brock | Oct 2007 | A1 |
20080033453 | Brock | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
WO 9824017 | Jun 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20060195071 A1 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
60219593 | Jul 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10996872 | Nov 2004 | US |
Child | 11352899 | US | |
Parent | 10388795 | Mar 2003 | US |
Child | 10996872 | US | |
Parent | 09910482 | Jul 2001 | US |
Child | 10388795 | US |