1. Technical Field
The present disclosure relates to surgical devices and/or systems. More specifically, the present disclosure relates to hand-held surgical devices and/or systems configured for use with removable disposable loading units and/or single use loading units for clamping, cutting and/or stapling tissue.
2. Background of Related Art
A number of surgical device manufacturers have developed product lines with proprietary drive systems for operating and/or manipulating the surgical device. In many instances the surgical devices include a handle assembly, which is reusable, and disposable loading units and/or single use loading units or the like that are selectively connected to the handle assembly prior to use and then disconnected from the handle assembly following use in order to be disposed of or in some instances sterilized for re-use.
In intelligent surgical devices, intelligent disposable loading units and/or single use loading units include an identification element which communicates with a reader element disposed within an intelligent powered handle assembly. In this manner, when the intelligent disposable loading units and/or single use loading units are connected to the intelligent handle assembly, the reader element of the intelligent handle assembly communicates with the identification element of the intelligent disposable loading units and/or single use loading units to thereby indicate to the intelligent handle assembly which particular loading unit is attached thereto. Once the particular loading unit, attached to the handle assembly is identified, operative parameters for the powered handle assembly may be set in accordance with predetermined values.
A need exists for a system that is able to detect particular parameters (e.g., length of a staple cartridge, indication that a staple cartridge has been fired) of non-intelligent (i.e., not including an identification member) disposable loading units and/or single use loading units when such non-intelligent disposable loading units and/or single use loading units are connected to intelligent handle assemblies.
The present disclosure relates to hand-held surgical devices and/or systems configured for use with removable disposable loading units and/or single use loading units for clamping, cutting and/or stapling tissue.
According to an aspect of the present disclosure, a surgical system for performing a surgical procedure is provided. The surgical system includes an intelligent surgical device having a housing; a power source supported in the housing; at least one drive motor supported in the housing and being in electrical communication with the power source; and control circuitry interfacing with the power source and the at least one drive motor. The control circuitry includes a feedback system for monitoring at least one condition of the surgical device during a use thereof and for changing an operative parameter of the surgical device when a change in the at least one monitored condition occurs. The surgical system includes at least one non-intelligent loading unit configured for selective connection to the housing of the surgical device and which is actuatable by the at least one drive motor, the loading unit having at least a first condition and a second condition. During operation of the surgical device, the at least one drive motor actuates the loading unit from the first condition to at least the second condition; and when the loading unit achieves the second condition, a change in the at least one monitored condition occurs and an operative parameter of the surgical device is changed.
The at least one condition monitored by the feedback system may be a voltage being delivered to the at least one drive motor. The feedback system may include a resistor of a known quantity associated with the voltage being delivered to the at least one drive motor. The feedback system may calculate a current level across the resistor.
The operative parameter of the surgical device may be changed when the feedback system determines a current level across the resistor exceeds a threshold current level.
The second condition of the loading unit may be an end of a firing stroke thereof.
The current level across the resistor may exceed the threshold current level when the end of the firing stroke of the loading unit is reached.
The operative parameter of the surgical device that is changed when the feedback system determines that the current level across the resistor exceeds the threshold current level may be a voltage that is delivered to the at least one drive motor.
The operative parameter of the surgical device that is changed may be a power delivered to the at least one motor.
The second condition of the loading unit may be an end of a firing stroke thereof.
The surgical system may further include a plurality of non-intelligent loading units, wherein each loading unit includes a different unique second condition. The second condition of each loading unit may correspond to a different unique length of a firing stroke of each loading unit. The at least one condition monitored by the feedback system may be a voltage being delivered to the at least one drive motor, wherein the feedback system may include a resistor of a known quantity associated with the voltage being delivered to the at least one drive motor, and wherein the feedback system may calculate a current level across the resistor, and wherein the operative parameter of the surgical device may be changed when the feedback system determines a current level across the resistor exceeds a threshold current level.
The current level across the resistor may exceed the threshold current level when the end of the firing stroke of any of the plurality of loading units is reached. The operative parameter of the surgical device that is changed when the feedback system determines that the current level across the resistor exceeds the threshold current level may be a voltage that is delivered to the at least one drive motor.
Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:
Embodiments of the presently disclosed surgical device are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the surgical device, or component thereof, farther from the user, while the term “proximal” refers to that portion of the surgical device, or component thereof, closer to the user.
Referring initially to
Surgical device 10 includes a housing having lower portion 12 forming a base, and an intermediate portion 14, which includes several finger-actuated control buttons 17 and 18 and rocker device 27. Lower portion 12 is configured to selectively store a power source in the form of a battery or the like (not shown). Intermediate portion 14 is configured and adapted to house at least one drive motor (not shown) that is powered by the power source. Surgical device 10 further includes control circuitry (not shown) therein which controls the operation of surgical device 10 based on input from a user and/or feedback obtained prior to, during or after operation of surgical device 10.
Control buttons 17 and 18 and rocker device 27 are located at a front location of the intermediate portion 14 of surgical device 10. Each one of the control buttons 17, 18, and rocker device 27 includes a respective magnet that is moved by the actuation of a user, or operator. In addition, a circuit board (not shown) disposed within surgical device 10 includes, for each one of the control buttons 17, 18 and rocker device 27, respective Hall-effect switches that are actuated by the movement of the magnets in the control buttons 17, 18 and rocker device 27. The actuation of the Hall-effect switch causes the circuit board to provide appropriate signals to a function selection module and an actuator or input drive component to actuate or operate loading unit 20.
Surgical devices 10 may include at least one drive motor, at least one power source “PS” (see
In accordance with the present disclosure, surgical device 10 includes a first and a second drive motor, and a first and a second rotatable drive member or shaft, respectively connected to the first and second drive motors. In use, as the first drive motor is activated, the first drive motor will cause the first drive shaft to selectively rotate along its axis in either a first or clock-wise direction, or in a second or counter clock-wise direction. Additionally, as the second drive motor is activated, the second drive motor will cause the second drive shaft to selectively rotate along its axis in either a first or clock-wise direction, or in a second or counter clock-wise direction.
Surgical device 10 is shown in
As seen in
Reference may be made to U.S. Patent Publication No. 2009/0145947, filed Jan. 14, 2009, the entire content of which is incorporated herein by reference for a detailed discussion of the construction and operation of the endo-gastrointestinal anastomosis loading unit 20.
Loading units 20 include at least one axially translatable drive member therein that is configured and adapted to at least one of open and close jaw assemblies thereof by approximating or separating an anvil assembly and a cartridge assembly to/away from one another, and to fire the loading unit to expel staples contained in the cartridge assembly for formation against the anvil assembly and possibly to actuate a knife blade along the staple line. Loading units 20 may further include an axially translatable drive member therein that is configured and adapted to cause an articulation thereof.
Loading units 20 are non-intelligent in that loading units 20 typically do not include any identification members, in the form of sensors or the like, which interact with reader elements disposed in surgical device 10 for identification thereof and for identification of parameters (e.g., length of a staple cartridge, indication that a staple cartridge has been fired) thereof.
In accordance with the present disclosure, in order for intelligent surgical device 10 to identify the parameters of non-intelligent loading units 20, intelligent surgical device 10 includes, as seen in
It is contemplated, in accordance with an embodiment of the present disclosure, the feedback system incorporates a highly toleranced resistor “R” with an extremely low resistance, about 0.05 ohms, that is added to a low side of an H-bridge responsible for driving the first drive motor or the second drive motor. In operation, the feedback system measures a voltage “V” across resistor “R.” By measuring the voltage “V” drop across resistor “R,” the feedback system may calculate an amount of current “I” flowing through resistor “R” using Ohm's Law:
V=IR
In a DC electric motor, such as first drive motor or second drive motor, current “I” is directly related to the amount of torque “τ” being developed by using a relation, e.g., the Torque Constant (Km). Accordingly, the feedback system calculates the amount of torque “τ” being applied to first drive motor or second drive motor according to the following equation:
τ=(Km)(I)
By factoring in the reductions in a transmission of surgical device 10 and of a screw drive of surgical device 10, the feedback system may determine an amount of linear force being applied to a firing rod in loading unit 20. Additionally, the feedback system needs to determine a linear position of the firing rod of loading unit 20 in order to ultimately determine if the torque being applied to first drive motor or second drive motor corresponds to a particular length of a staple cartridge loaded in loading unit 20. It is contemplated that an optical or magnetic encoder, a linear variable differential transformer (LVDT) or other method may be used to determine the linear position of the firing rod.
During a normal operating condition of surgical device 10, a certain or predetermined force profile is expected to be seen by the feedback system in the control circuitry of surgical device 10, e.g., either a current v. time profile (see
As seen in
Each current spike “I1” or “I2” exceeds a predetermined threshold level “IT” for current “I.” The predetermined threshold level “IT” for current “I” is selected so that if there is an increase in current “I” during the firing sequence, at a location prior to 30 mm for a 30 mm staple cartridge, prior to 45 mm for a 45 mm staple cartridge, or prior to 60 mm for a 60 mm staple cartridge, that surgical device 10 will continue to fire until the end or stop of the staple cartridge and/or loading unit 20 has been achieved, as described above. Premature increases in current “I,” during the firing of surgical device 10, may be experienced if the path through the tissue through which loading unit 20 is acting on includes a segment of denser tissue, a change in the type of tissue, a prior deployed fastener or the like.
Additionally or alternatively, the control circuitry of surgical device 10 may also monitor a slope of current v. time (dI/dt) or current v. distance (dI/dx) to determine if an end of the staple cartridge has been reached. For example, if the feedback system determines that a rise in the slope has become excessively large, the control circuitry can also reasonably assume that a firing sled of loading unit 20 has reached an end or a stop of the staple cartridge and/or loading unit 20.
In accordance with the present disclosure, the control circuitry of surgical device 10 includes a loading unit lockout recognition system that functions and/or operates according to the same or similar principles to the feedback system described above. The loading unit lockout recognition system functions to determine whether a mechanical lockout of a staple cartridge loaded into loading unit 20 has been or has not been activated.
In use, the first time that a staple cartridge is loaded into loading unit 20 and the loading unit 20 is clamped by surgical device 10, surgical device 10 continues to drive forward slightly further than a clamped position for loading unit 20. If the loading unit lockout recognition system measures a sudden spike in current “I,” corresponding to a rapid increase in torque “τ,” the loading unit lockout recognition system of the control circuitry determines that a hard stop for the mechanical lockout of the staple cartridge in the loading unit 20 has been reached. Surgical device 10 may then relay the information to the user and the control circuitry will not allow surgical device 10 to be fired.
If the loading unit lockout recognition system does not measure a sudden spike in current “I,” the loading unit lockout recognition system of the control circuitry concludes that the mechanical lockout of the staple cartridge in the loading unit 20 has not been activated. If the loading unit lockout recognition system concludes that the mechanical lockout of the staple cartridge in the loading unit 20 has not been activated, the control circuitry indicated to the surgical device 10 the presence of an un-fired staple cartridge and operation of surgical device 10 may continue as normal to fire loading unit 20.
It will be understood that various modifications may be made to the embodiments of the presently disclosed adapter assemblies. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.
The present application claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/324,919 filed on Apr. 16, 2010, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4722685 | de Estrada et al. | Feb 1988 | A |
4823807 | Russell et al. | Apr 1989 | A |
5301061 | Nakada et al. | Apr 1994 | A |
5339799 | Kami et al. | Aug 1994 | A |
5411508 | Bessler et al. | May 1995 | A |
5427087 | Ito et al. | Jun 1995 | A |
5540375 | Bolanos et al. | Jul 1996 | A |
5540706 | Aust et al. | Jul 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5553675 | Pitzen et al. | Sep 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5609560 | Ichikawa et al. | Mar 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5762603 | Thompson | Jun 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5865361 | Milliman et al. | Feb 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6126651 | Mayer | Oct 2000 | A |
6165169 | Panescu et al. | Dec 2000 | A |
6239732 | Cusey | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6371909 | Hoeg et al. | Apr 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6645218 | Cassidy et al. | Nov 2003 | B1 |
6654999 | Stoddard et al. | Dec 2003 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6716233 | Whitman | Apr 2004 | B1 |
6743240 | Smith et al. | Jun 2004 | B2 |
6783533 | Green et al. | Aug 2004 | B2 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6846307 | Whitman et al. | Jan 2005 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6849071 | Whitman et al. | Feb 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6986451 | Mastri et al. | Jan 2006 | B1 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
RE39152 | Aust et al. | Jun 2006 | E |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7122029 | Koop et al. | Oct 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7172104 | Scirica et al. | Feb 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7238021 | Johnson | Jul 2007 | B1 |
7407078 | Shelton, IV et al. | Aug 2008 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7481824 | Boudreaux et al. | Jan 2009 | B2 |
7565993 | Milliman et al. | Jul 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7588175 | Timm et al. | Sep 2009 | B2 |
7699835 | Lee et al. | Apr 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7721936 | Shalton, IV et al. | May 2010 | B2 |
7738971 | Swayze et al. | Jun 2010 | B2 |
7793812 | Moore et al. | Sep 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7822458 | Webster, III et al. | Oct 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
7870989 | Viola et al. | Jan 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922719 | Ralph et al. | Apr 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7959051 | Smith et al. | Jun 2011 | B2 |
7967178 | Scirica et al. | Jun 2011 | B2 |
7967179 | Olson et al. | Jun 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8035487 | Malackowski | Oct 2011 | B2 |
8052024 | Viola et al. | Nov 2011 | B2 |
8056787 | Boudreaux et al. | Nov 2011 | B2 |
8132705 | Viola et al. | Mar 2012 | B2 |
8152516 | Harvey et al. | Apr 2012 | B2 |
8157150 | Viola et al. | Apr 2012 | B2 |
8186587 | Zmood et al. | May 2012 | B2 |
8235273 | Olson et al. | Aug 2012 | B2 |
8272554 | Whitman et al. | Sep 2012 | B2 |
8303581 | Arts et al. | Nov 2012 | B2 |
8342379 | Whitman et al. | Jan 2013 | B2 |
8348855 | Hillely et al. | Jan 2013 | B2 |
8353440 | Whitman et al. | Jan 2013 | B2 |
8365633 | Simaan et al. | Feb 2013 | B2 |
8371492 | Aranyi et al. | Feb 2013 | B2 |
8424739 | Racenet et al. | Apr 2013 | B2 |
8454585 | Whitman | Jun 2013 | B2 |
8505802 | Viola et al. | Aug 2013 | B2 |
8517241 | Nicholas | Aug 2013 | B2 |
8551076 | Duval et al. | Oct 2013 | B2 |
8561871 | Rajappa et al. | Oct 2013 | B2 |
8623000 | Humayun et al. | Jan 2014 | B2 |
8632463 | Drinan et al. | Jan 2014 | B2 |
8647258 | Aranyi et al. | Feb 2014 | B2 |
8657174 | Yates et al. | Feb 2014 | B2 |
8696552 | Whitman | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8758391 | Swayze et al. | Jun 2014 | B2 |
8806973 | Ross et al. | Aug 2014 | B2 |
8851355 | Aranyi et al. | Oct 2014 | B2 |
8858571 | Shelton, IV et al. | Oct 2014 | B2 |
8875972 | Weisenburgh, II et al. | Nov 2014 | B2 |
8893946 | Boudreaux et al. | Nov 2014 | B2 |
8899462 | Kostrzewski et al. | Dec 2014 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8960519 | Whitman et al. | Feb 2015 | B2 |
8961396 | Azarbarzin et al. | Feb 2015 | B2 |
8967443 | McCuen | Mar 2015 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
8968337 | Whitfield et al. | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
9064653 | Prest et al. | Jun 2015 | B2 |
9113875 | Viola et al. | Aug 2015 | B2 |
9216013 | Scirica et al. | Dec 2015 | B2 |
9282961 | Whitman et al. | Mar 2016 | B2 |
9282963 | Bryant | Mar 2016 | B2 |
9295522 | Kostrzewski | Mar 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
20020049454 | Whitman et al. | Apr 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20030038938 | Jung et al. | Feb 2003 | A1 |
20030125717 | Whitman | Jul 2003 | A1 |
20030165794 | Matoba | Sep 2003 | A1 |
20040111081 | Whitman et al. | Jun 2004 | A1 |
20040133189 | Sakurai | Jul 2004 | A1 |
20040176751 | Weitzner et al. | Sep 2004 | A1 |
20050131442 | Yachia et al. | Jun 2005 | A1 |
20050192609 | Whitman et al. | Sep 2005 | A1 |
20060142740 | Sherman et al. | Jun 2006 | A1 |
20060151567 | Roy | Jul 2006 | A1 |
20070023476 | Whitman et al. | Feb 2007 | A1 |
20070055304 | Whitman | Mar 2007 | A1 |
20070102473 | Shelton et al. | May 2007 | A1 |
20070175956 | Swayze | Aug 2007 | A1 |
20070175961 | Shelton et al. | Aug 2007 | A1 |
20070175964 | Shelton et al. | Aug 2007 | A1 |
20070187453 | Smith et al. | Aug 2007 | A1 |
20080078801 | Shelton et al. | Apr 2008 | A1 |
20080167736 | Swayze et al. | Jul 2008 | A1 |
20080188841 | Tomasello et al. | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080237296 | Boudreaux et al. | Oct 2008 | A1 |
20080277449 | Marczyk | Nov 2008 | A1 |
20080300580 | Shelton, IV et al. | Dec 2008 | A1 |
20080308603 | Shelton et al. | Dec 2008 | A1 |
20080308607 | Timm et al. | Dec 2008 | A1 |
20090090763 | Zemlok | Apr 2009 | A1 |
20090099876 | Whitman | Apr 2009 | A1 |
20090101692 | Whitman et al. | Apr 2009 | A1 |
20090171147 | Lee et al. | Jul 2009 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100193568 | Scheib et al. | Aug 2010 | A1 |
20100211053 | Ross et al. | Aug 2010 | A1 |
20110006101 | Hall et al. | Jan 2011 | A1 |
20110017801 | Zemlok et al. | Jan 2011 | A1 |
20110071508 | Duval et al. | Mar 2011 | A1 |
20110121049 | Malinouskas et al. | May 2011 | A1 |
20110125138 | Malinouskas et al. | May 2011 | A1 |
20110155786 | Shelton, IV | Jun 2011 | A1 |
20110172648 | Jeong | Jul 2011 | A1 |
20110174099 | Ross et al. | Jul 2011 | A1 |
20110276057 | Conlon et al. | Nov 2011 | A1 |
20120074199 | Olson et al. | Mar 2012 | A1 |
20120089131 | Zemlok et al. | Apr 2012 | A1 |
20120104071 | Bryant | May 2012 | A1 |
20120116368 | Viola | May 2012 | A1 |
20120172924 | Allen, IV | Jul 2012 | A1 |
20120223121 | Viola et al. | Sep 2012 | A1 |
20120245428 | Smith et al. | Sep 2012 | A1 |
20120330285 | Hartoumbekis et al. | Dec 2012 | A1 |
20130093149 | Saur et al. | Apr 2013 | A1 |
20130181035 | Milliman | Jul 2013 | A1 |
20130184704 | Beardsley et al. | Jul 2013 | A1 |
20130274722 | Kostrzewski et al. | Oct 2013 | A1 |
20130292451 | Viola et al. | Nov 2013 | A1 |
20130313304 | Shelton, IV et al. | Nov 2013 | A1 |
20130317486 | Nicholas et al. | Nov 2013 | A1 |
20130324978 | Nicholas et al. | Dec 2013 | A1 |
20130324979 | Nicholas et al. | Dec 2013 | A1 |
20130334281 | Williams | Dec 2013 | A1 |
20140110455 | Ingmanson et al. | Apr 2014 | A1 |
20140207125 | Applegate et al. | Jul 2014 | A1 |
20140207182 | Zergiebel et al. | Jul 2014 | A1 |
20140236173 | Scirica et al. | Aug 2014 | A1 |
20140236174 | Williams et al. | Aug 2014 | A1 |
20140276932 | Williams et al. | Sep 2014 | A1 |
20140299647 | Scirica et al. | Oct 2014 | A1 |
20140303668 | Nicholas et al. | Oct 2014 | A1 |
20140358129 | Zergiebel et al. | Dec 2014 | A1 |
20140361068 | Aranyi et al. | Dec 2014 | A1 |
20140373652 | Zergiebel et al. | Dec 2014 | A1 |
20150048144 | Whitman | Feb 2015 | A1 |
20150076205 | Zergiebel | Mar 2015 | A1 |
20150080912 | Sapre | Mar 2015 | A1 |
20150157321 | Zergiebel et al. | Jun 2015 | A1 |
20150164502 | Richard et al. | Jun 2015 | A1 |
20150272577 | Zemlok et al. | Oct 2015 | A1 |
20150297199 | Nicholas et al. | Oct 2015 | A1 |
20150303996 | Calderoni | Oct 2015 | A1 |
20150320420 | Penna et al. | Nov 2015 | A1 |
20150327850 | Kostrzewski | Nov 2015 | A1 |
20150342601 | Williams et al. | Dec 2015 | A1 |
20150342603 | Zergiebel et al. | Dec 2015 | A1 |
20150374366 | Zergiebel et al. | Dec 2015 | A1 |
20150374370 | Zergiebel et al. | Dec 2015 | A1 |
20150374371 | Richard et al. | Dec 2015 | A1 |
20150374372 | Zergiebel et al. | Dec 2015 | A1 |
20150374449 | Chowaniec et al. | Dec 2015 | A1 |
20150380187 | Zergiebel et al. | Dec 2015 | A1 |
20160095585 | Zergiebel et al. | Apr 2016 | A1 |
20160095596 | Scirica et al. | Apr 2016 | A1 |
20160106406 | Cabrera et al. | Apr 2016 | A1 |
20160113648 | Zergiebel et al. | Apr 2016 | A1 |
20160113649 | Zergiebel et al. | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
2008229795 | Apr 2009 | AU |
2011201182 | Apr 2014 | AU |
2014204542 | May 2016 | AU |
101224116 | Jul 2008 | CN |
101401736 | Apr 2009 | CN |
101856251 | Oct 2010 | CN |
0705571 | Apr 1996 | EP |
1723913 | Nov 2006 | EP |
1759652 | Mar 2007 | EP |
1772105 | Apr 2007 | EP |
1908412 | Apr 2008 | EP |
1917929 | May 2008 | EP |
1943954 | Jul 2008 | EP |
1943954 | Jul 2008 | EP |
1943956 | Jul 2008 | EP |
1943956 | Jul 2008 | EP |
1952769 | Aug 2008 | EP |
2044890 | Apr 2009 | EP |
2044890 | Apr 2009 | EP |
2090247 | Aug 2009 | EP |
2100562 | Sep 2009 | EP |
2245994 | Nov 2010 | EP |
2272443 | Jan 2011 | EP |
2272443 | Jan 2011 | EP |
2316345 | May 2011 | EP |
2324776 | May 2011 | EP |
2377472 | Oct 2011 | EP |
2462878 | Jun 2012 | EP |
2668910 | Dec 2013 | EP |
2676615 | Dec 2013 | EP |
2815705 | Dec 2014 | EP |
2333509 | Feb 2010 | ES |
2861574 | May 2005 | FR |
08-038488 | Feb 1996 | JP |
2005-125075 | May 2005 | JP |
2009090113 | Apr 2009 | JP |
20120022521 | Mar 2012 | KR |
9915086 | Apr 1999 | WO |
03030743 | Apr 2003 | WO |
03065916 | Aug 2003 | WO |
03090630 | Nov 2003 | WO |
2007016290 | Feb 2007 | WO |
2007137304 | Nov 2007 | WO |
WO 2009039506 | Mar 2009 | WO |
2009143092 | Nov 2009 | WO |
2009149234 | Dec 2009 | WO |
2012040984 | Apr 2012 | WO |
Entry |
---|
Japanese Notice of Reasons for Rejection (with English Translation), dated Apr. 21, 2015, corresponding to Japanese Patent Application No. 2011-090475; 4 total pages. |
European Search Report corresponding to EP 11250473 mailed Aug. 3, 2011; (3 pp). |
Australian Patent Examination Report No. 1, issued Jan. 7, 2016, corresponding to Australian Patent Application No. 2014204542; 4 pages. |
Japanese Notice of Reasons for Rejection (with English Translation), dated Nov. 13, 2015, corresponding to Japanese Patent Application No. 2011-090475; 4 total pages. |
European Search Report dated Jul. 26, 2016, corresponding to European Application No. 16156453.9; 9 pages. |
Japanese Notice of Allowance and English language Summary Form daed Jun. 19, 2016, corresponding to Japanese Application No. 2011-090475; 4 pages. |
Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015. |
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016. |
Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016. |
Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015. |
European Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015. |
Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015. |
Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016. |
European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016. |
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015. |
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, mailed Dec. 21, 2015. |
Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015. |
Partial European Search Report corresponding to International Application No. EP 15 19 0643.5 dated Feb. 26, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016. |
Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 17 3807.7 dated Nov. 24, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015. |
European Office Action corresponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016. |
Canadian Office Action and Examination Report dated Oct. 20, 2016, corresponding to Canadian Applciation No. 2,733,801; 3 pages. |
Chinese Office Action (with English Translation), dated Dec. 1, 2016, corresponding to Chinese Application No. 201510310141.8; 20 total pages. |
Number | Date | Country | |
---|---|---|---|
20130317486 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61324919 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13039677 | Mar 2011 | US |
Child | 13955237 | US |