Field
The present disclosure relates to extrusion devices and, in particular, a hand-held implement configured to extrude a material so as to construct three-dimensional (3D) objects.
Description of the Related Art
Three-dimensional printers are known which may be used to produce 3D items of all types. Certain printers operate by deposition of sequential layers of plastic while others function by sequential agglomeration or solidification of layers of a precursor material. These printers tend to be large and expensive and require the design to be provided as a computer file, for example as generated by a Computer-Aided Design (CAD) program.
U.S. Pat. No. 3,665,158 to Froedge discloses a conventional handheld extrusion device. A chamber is filled with a granulated solid plastic material and then sealed with a cap. The contents of the chamber are heated to melt the plastic and create pressure within the chamber. A passage leads from the chamber to a rotatable nozzle that blocks flow in a first position and allows flow in a second position. A trigger is attached to the nozzle such that pulling the trigger moves the nozzle to the second position, thereby allowing the molten plastic to be expelled from the nozzle due to the pressure within the chamber. Releasing the trigger allows the nozzle to return to the first position, thereby stopping the flow of plastic. There is no provision to replenish the raw material without shutting off the device nor any mechanism to mechanically feed material to the nozzle at a constant rate. In addition, Froedge's system does not provide a means of cooling the extruded material.
It is desirable to provide a reliable, easily refillable hand-held device to form 2D and 3D items without the need for computerized design files. The present disclosure describes a hand-held device that allows a user to “draw” a 3D structure with a feed stock that can be replenished while in continuous use.
In certain embodiments, a 3D drawing device is disclosed that includes a housing configured for manipulation by a user's hand and to accept a feed stock, a nozzle assembly at least partially disposed within the housing and having an exit nozzle, a motor disposed within the housing, and a gear train disposed within the housing and coupled between the motor and the feed stock and configured such that rotation of the motor causes the feed stock to be extruded out of the exit nozzle to form a three-dimensional object.
In certain embodiments, a 3D drawing device is disclosed that includes a housing configured for manipulation by a user's hand and to accept a feed stock. The housing has an internal volume and at least one cooling port in fluid communication with the internal volume. The 3D drawing device also includes a nozzle assembly at least partially disposed within the housing proximate to the at least one cooling port and having an exit nozzle, a fan disposed within the housing and configured to draw air into the internal volume and then force the air out of the at least one cooling port, a motor disposed within the housing, and an actuator coupled to the housing. Actuation of the actuator causes the feed stock to be extruded out of the exit nozzle to form a three-dimensional object.
The accompanying drawings, which are included to provide further understanding and are incorporated in and constitute a part of this specification, illustrate disclosed embodiments and together with the description serve to explain the principles of the disclosed embodiments. In the drawings:
The present disclosure describes a hand-held device that allows a user to “draw” a 2D or 3D structure and to easily refill or replace the feed stock.
The detailed description set forth below is intended as a description of various configurations of the subject technology and is not intended to represent the only configurations in which the subject technology may be practiced. The appended drawings are incorporated herein and constitute a part of the detailed description. The detailed description includes specific details for the purpose of providing a thorough understanding of the subject technology. However, it will be apparent to those skilled in the art that the subject technology may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring the concepts of the subject technology. Like components are labeled with identical element numbers for ease of understanding.
As used within this disclosure, the phrase “feed stock” means any material provided in any form suitable for processing within the 3D drawing device so as to provide the desired output stream. Feed stock may be a thermoplastic such as acrylonitrile butadiene styrene (ABS), polyvinyl chloride (PVC) or a polylactic acid (PLA), a thermoset material such as an epoxy, a metal such as tin or lead or a mixture of metals. Feed stock may be a single material or a mixture of materials, such as a rod having particles of a first material dispersed within a matrix of a second material.
In an example of use of one embodiment of the device 100, the user selects a particular type and color of a thermoplastic feed stock 20 and introduces the feed stock 20 into the entrance port 115 (see
In certain embodiments, button 122 may cause the feed stock 20 to be extruded at a first rate, for example 2.6 mm/sec, while the second button 124 may cause the feed stock 20 to be extruded at a second rate, for example 5.0 mm/sec. In certain embodiments, the first rate may be in the range of 0.1-10.0 mm/sec and the second rate may be in the range of 2-50 mm/sec. In certain embodiments, the first and second rates are chosen to provide a speed appropriate for the intended user, for example a device 100 intended for use by a young child may have slower rates than a device 100 intended for an adult artist. In certain embodiments, the 3D drawing device 100 may include a variable speed control mechanism (not shown in
In certain embodiments, for example with a feed stock comprising a plastic, the temperature of the extruder 132 may be in the range of 20-500° C. In certain embodiments, for example with a feed stock comprising a metal, the temperature of the extruder 132 may be in the range of 1000-2000° C. In certain embodiments, for example with a feed stock comprising a metal such as lead, tin, or mixtures thereof, the temperature of the extruder 132 may be in the range of 100-400° C. In certain embodiments, for example with a feed stock comprising a metal such as copper, gold, silver or mixtures thereof, the temperature of the extruder 132 may be in the range of 1000-1200° C. In certain embodiments, for example with a feed stock comprising a metal such as platinum, the temperature of the extruder 132 may be in the range of 1600-2000° C. In certain embodiments, the 3D drawing device 100 may include a variable temperature controller (not shown) that is connected to the circuit assembly 126 to allow a user to select a setpoint temperature for the extruder 132. In certain embodiments, the variable temperature controller may allow the use to select a type of material, for example “thermoplastic,” and the circuit assembly 126 will adjust the setpoint temperature of the extruder 132. In certain embodiments, the variable temperature controller may include a dial.
A guide tube 134 is aligned with the first chamber 135 of the extruder 132 such that feed stock passing through the guide tube 134 enters the first chamber 135. In certain embodiments, the guide tube 134 may be formed of a low-friction material, such as polytetrafluoroethylene (PTFE), so allow the feed stock 20 to slide easily while also minimizing the gap between the guide tube 134 and feed stock 20. The extruder 132 and guide tube 134 are held in alignment by a mounting tube 138. In certain embodiments, the mounting tube 138 is formed of a metal having a relatively low thermal conductivity, compared to other metals. In certain embodiments, the mounting tube 138 may be a stainless steel. In certain embodiments, an insulating film (not visible in
In certain embodiments, an insulator 131 may be provided over the mounting tube 138 so as to reduce the amount of heat transferred from the extruder 132 to the upper and lower housings 112, 114. In certain embodiments, one or both of the upper and lower housings 112, 114 may have cooling ports 118 formed therethrough such that air can flow from the interior volume 116 to the ambient atmosphere. In certain embodiments, the passages formed in the top and bottom housings 112, 114 that lead to the cooling ports 118 may be angled such that the air that emerges from the cooling ports 118 is directed inward toward the tip 137. Thus, as the air exits the cooling ports 118, the air passes by the tip 137 of the extruder 132, cooling both the tip 137 and the feed stock 20 that just been extruded from the extrusion passage 133. Both of these cooling effects serve to reduce the temperature of the feed stock 20 as it exits the extrusion passage 133 such that the feed stock 20 may be essentially solid as it exits the extrusion passage 133. In certain embodiments, the freshly extruded feed stock 20 may be pliable and formable into various shapes. In certain embodiments, the surface of the freshly extruded feed stock 20 may be receptive to attachment, e.g. sticky, such that the extruded material will bond to other previously extruded feed stock 20.
In certain embodiments, there may be a gap between the insulator 131 and the mounting tube 138. In certain embodiments, this gap may provide a thermal break so as to further thermally isolate the upper and lower housings 112, 114 from the extruder 132.
As the feed stock 20 is driven toward the extrusion passage 133 by the feed mechanism 150 (not shown in
In use, the use of a motor 152 to drive a step-down gear train 150 to control the advancement of the feed stock 20 provides an improved level of control over the rate of extrusion of the feed stock 20. For example, a conventional glue gun has a direct linkage between a trigger and the glue stick, such that pressure on the trigger on the trigger is directly transferred to the rod. The rate of advancement of the glue stick, and therefore the rate of extrusion, is dependent upon the viscosity of the melted glue and therefore caries over a die range. This often results in excessive glue being dispensed. In addition, since releasing the trigger does not retract the glue stick, there is frequently a “tail” of glue drawn out of the glue gun as the nozzle is moved away from the dispensing location. In contrast, the disclosed 3D drawing device 100 provides a constant rate of extrusion, for example 3 mm/sec, due to the controlled motion provided by the motor 152 and gear train 150. In addition, the circuit assembly 126 causes the motor 152 to briefly run in reverse when the button 122 is released, thereby retracting the feed stock 20 slightly and drawing the melted feed stock 20 that is within the extrusion passage 133 back into the extruder 132, thereby cleanly severing the extruded column 22 from the tip 137.
It can be seen from
The disclosed examples of a 3D drawing device illustrate the principles of its construction and use. The provision of a flow of cooling air at the tip to quickly solidify the extruded feed stock allows the user to work in three dimensions, rather than being forced to rely on a support surface to hold the still-fluid extruded material in place while it hardens. The use of a mechanical gear train to advance the feed stock, instead of a pressurized supply or a direct connection between a trigger and a feed rod, allows precise control of the rate of extrusion, thereby increasing the uniformity of the extruded column of material and allowing precise placement without excess material.
This application includes description that is provided to enable a person of ordinary skill in the art to practice the various aspects described herein. While the foregoing has described what are considered to be the best mode and/or other examples, it is understood that various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. It is understood that the specific order or hierarchy of steps or blocks in the processes disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps or blocks in the processes may be rearranged. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims.
Headings and subheadings, if any, are used for convenience only and do not limit the invention.
Reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Use of the articles “a” and “an” is to be interpreted as equivalent to the phrase “at least one.” Unless specifically stated otherwise, the terms “a set” and “some” refer to one or more.
Terms such as “top,” “bottom,” “upper,” “lower,” “left,” “right,” “front,” “rear” and the like as used in this disclosure should be understood as referring to an arbitrary frame of reference, rather than to the ordinary gravitational frame of reference. Thus, a top surface, a bottom surface, a front surface, and a rear surface may extend upwardly, downwardly, diagonally, or horizontally in a gravitational frame of reference.
Although the relationships among various components are described herein and/or are illustrated as being orthogonal or perpendicular, those components can be arranged in other configurations in some embodiments. For example, the angles formed between the referenced components can be greater or less than 90 degrees in some embodiments.
Although various components are illustrated as being flat and/or straight, those components can have other configurations, such as curved or tapered for example, in some embodiments.
Pronouns in the masculine (e.g., his) include the feminine and neuter gender (e.g., her and its) and vice versa. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “operation for.”
A phrase such as an “aspect” does not imply that such aspect is essential to the subject technology or that such aspect applies to all configurations of the subject technology. A disclosure relating to an aspect may apply to all configurations, or one or more configurations. A phrase such as an aspect may refer to one or more aspects and vice versa. A phrase such as an “embodiment” does not imply that such embodiment is essential to the subject technology or that such embodiment applies to all configurations of the subject technology. A disclosure relating to an embodiment may apply to all embodiments, or one or more embodiments. A phrase such as an embodiment may refer to one or more embodiments and vice versa.
The word “exemplary” is used herein to mean “serving as an example or illustration.” Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs.
All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.” Furthermore, to the extent that the term “include,” “have,” or the like is used in the description or the claims, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim.
Although embodiments of the present disclosure have been described and illustrated in detail, it is to be clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the scope of the present invention being limited only by the terms of the appended claims.
The present application is a continuation of U.S. application Ser. No. 14/821,399, filed Aug. 7, 2015, which is a continuation of U.S. application Ser. No. 13/831,050, filed Mar. 14, 2013, now U.S. Pat. No. 9,102,098, which claims benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/733,689, filed on Dec. 5, 2012, the entirety of each of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3281576 | Cooper et al. | Oct 1966 | A |
3559241 | Chu | Feb 1971 | A |
3604597 | Pohl et al. | Sep 1971 | A |
3665158 | Froedge | May 1972 | A |
3887319 | Cottingham | Jun 1975 | A |
4059204 | Duncan et al. | Nov 1977 | A |
4552287 | Dziki | Nov 1985 | A |
4597821 | Munro | Jul 1986 | A |
4681524 | Ikeda et al. | Jul 1987 | A |
5121329 | Crump | Jun 1992 | A |
5169587 | Courval | Dec 1992 | A |
5340433 | Crump | Aug 1994 | A |
5672312 | Almquist et al. | Sep 1997 | A |
5843490 | Horiba et al. | Dec 1998 | A |
5853774 | Dreve | Dec 1998 | A |
6117385 | Chartoff et al. | Sep 2000 | A |
6129872 | Jang | Oct 2000 | A |
6162378 | Bedal et al. | Dec 2000 | A |
6238613 | Batchelder et al. | May 2001 | B1 |
6460481 | Young | Oct 2002 | B1 |
6500374 | Akioka et al. | Dec 2002 | B1 |
6558059 | Hillinger et al. | May 2003 | B1 |
6776602 | Swanson | Aug 2004 | B2 |
7959847 | Wicker et al. | Jun 2011 | B2 |
8221669 | Batchelder et al. | Jul 2012 | B2 |
8236227 | Batchelder et al. | Aug 2012 | B2 |
8262304 | Llach et al. | Sep 2012 | B2 |
8439665 | Batchelder et al. | May 2013 | B2 |
8926882 | Batchelder et al. | Jan 2015 | B2 |
9102098 | Dilworth et al. | Aug 2015 | B2 |
20010030383 | Swanson et al. | Oct 2001 | A1 |
20010033037 | Nitschke et al. | Oct 2001 | A1 |
20030137077 | Lee et al. | Jul 2003 | A1 |
20040232165 | Lee | Nov 2004 | A1 |
20050129941 | Comb et al. | Jun 2005 | A1 |
20050288813 | Yang et al. | Dec 2005 | A1 |
20060051442 | Miceli et al. | Mar 2006 | A1 |
20060198918 | Koyagi et al. | Sep 2006 | A1 |
20070003656 | LaBossiere et al. | Jan 2007 | A1 |
20070029693 | Wigand et al. | Feb 2007 | A1 |
20070228590 | LaBossiere et al. | Oct 2007 | A1 |
20080197116 | Achtner et al. | Aug 2008 | A1 |
20080213419 | Skubic et al. | Sep 2008 | A1 |
20090133800 | Morohoshi et al. | May 2009 | A1 |
20090274540 | Batchelder et al. | Nov 2009 | A1 |
20090283544 | Salmela et al. | Nov 2009 | A1 |
20100147465 | Di Miceli | Jun 2010 | A1 |
20100166969 | Batchelder | Jul 2010 | A1 |
20100327479 | Zinniel et al. | Dec 2010 | A1 |
20110074065 | Batchelder et al. | Mar 2011 | A1 |
20110076496 | Batchelder et al. | Mar 2011 | A1 |
20110079936 | Oxman | Apr 2011 | A1 |
20110196660 | Liu et al. | Aug 2011 | A1 |
20120070523 | Swanson et al. | Mar 2012 | A1 |
20120219699 | Pettersson et al. | Aug 2012 | A1 |
20120258190 | Batchelder et al. | Oct 2012 | A1 |
20130209600 | Tow | Aug 2013 | A1 |
20130234366 | Batchelder et al. | Sep 2013 | A1 |
20140044823 | Pax et al. | Feb 2014 | A1 |
20140120197 | Swanson et al. | May 2014 | A1 |
20140159273 | Koop et al. | Jun 2014 | A1 |
20140291886 | Mark et al. | Oct 2014 | A1 |
20140328963 | Mark et al. | Nov 2014 | A1 |
20150096717 | Batchelder et al. | Apr 2015 | A1 |
20150137402 | Schmehl et al. | May 2015 | A1 |
20150147427 | Lundwall et al. | May 2015 | A1 |
20150165691 | Mark et al. | Jun 2015 | A1 |
20150331412 | Adair et al. | Nov 2015 | A1 |
20160031159 | Church et al. | Feb 2016 | A1 |
20170057168 | Miller et al. | Mar 2017 | A1 |
20170120519 | Mark | May 2017 | A1 |
20170157826 | Hishiki | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
1285856 | Feb 2001 | CN |
2761402 | Mar 2006 | CN |
2813176 | Sep 2006 | CN |
101166597 | Apr 2008 | CN |
101172428 | May 2008 | CN |
201086388 | Jul 2008 | CN |
202079738 | Dec 2011 | CN |
202399493 | Aug 2012 | CN |
102922721 | Feb 2013 | CN |
203371791 | Jan 2014 | CN |
203449607 | Feb 2014 | CN |
103707511 | Apr 2014 | CN |
203592687 | May 2014 | CN |
3341201 | May 1985 | DE |
0257838 | Mar 1988 | EP |
S61-141959 | Jun 1986 | JP |
S63-205216 | Aug 1988 | JP |
WO-9932544 | Jul 1999 | WO |
WO-2009134298 | Nov 2009 | WO |
WO-2012088257 | Jun 2012 | WO |
WO-2012152510 | Nov 2012 | WO |
WO-2012152511 | Nov 2012 | WO |
WO-2015020944 | Feb 2015 | WO |
Entry |
---|
“A Range of Leister Hand-Held and Automatic Welders from Techspan,” Dec. 12, 2006, retrieved from http://www.ferret.com.au/c/techspan-group/a-range-of-Leister-hand-held-automatic-welders-from-Techspan-n667443. |
Donutman.sub.—2000 “Plastic Welding Gun (Plastruder MK4)” published Sep. 19, 2010, http://www.thingiverse.com/thing:4156, last accessed Jul. 3, 2014. |
Number | Date | Country | |
---|---|---|---|
20170297245 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
61733689 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14821399 | Aug 2015 | US |
Child | 15638266 | US | |
Parent | 13831050 | Mar 2013 | US |
Child | 14821399 | US |