This invention relates, in general, to scrapbooking, card making, and related crafts and, in particular, to a handheld pattern cutting device and associated method of use for cutting or drawing designs including shapes, graphics, letters, numbers, words and the like out of a media such as paper or cloth.
Traditionally, highly specialized computer controlled pattern machines such as plotters, cutters, engravers, and routers have been used commercially. These machines have not been suitable for the consumer market due to the specialized training required for operation and high cost. Recent technology and manufacturing advancements, however, have enabled versions of these commercial machines to begin to enter the consumer market.
A major limitation of these newer consumer devices is a small pattern size to machine footprint ratio. Compared to the footprint of the machine, the handheld varieties create small patterns due to the area required for the traditional Cartesian x-y drive mechanisms which require bulky gear assemblies and mounting features that reside external to the cutting area. Accordingly, improvements are warranted in the field of handheld pattern creating devices.
A handheld pattern creating device and method of use of the same are disclosed which provide for an increased pattern size to machine footprint ratio. The present invention utilizes a polar coordinate-based drive mechanism and space-conscious gear assemblies and mounting features having a reduced form factor such that all components reside within the cutting area.
In one embodiment of the handheld pattern creating device, a rotational member is rotatably positioned within a housing under the power of a rotational drive mechanism to angularly traverse an x-y plane in a polar coordinate-based fashion. A rail track is disposed on a surface of the rotational member in order to provide a radial path for a carriage that houses a tool tip, such as a cutting blade or plotter pen. A guide track disposed on the surface of the rotational member includes a curved portion that provides a non-linear path. A radial drive mechanism drives the carriage transversely along the radial path of the rail track such that a flexible rack gear travels the non-linear path of the guide track. In another implementation, a radial member is utilized with the rotational member. In particular, the radial member is mounted to the rotational member under the power of a radial drive mechanism to traverse a path that substantially intersects the center of rotation of the rotational member. A carriage which is mounted to the radial member provides actuation in the z-axis. A particular embodiment provides a means for the radial member to travel a distance that is greater than the distance of a substantially circular body of the rotational member.
For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures in which corresponding numerals in the different figures refer to corresponding parts and in which:
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts which can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention, and do not delimit the scope of the present invention.
Referring initially to
The pattern creating device 10 presented herein utilizes, as will be discussed in further detail hereinbelow, rotational mechanisms and a polar coordinate-based system to provide a handheld tool that controls a tool tip, such as a cutting blade or plotter pen, for example, and performs a wide array of cutting, design, and pattern operations on any suitable media. These operations may further include cutting, drawing, plotting, milling, routing, or engraving, for example. The handheld pattern cutting device 10 and associated method of use provide for cutting or drawing designs including shapes, graphics, letters, numbers, words and the like out of a media such as paper or cloth.
It should be appreciated that although a cutting mat and platform are shown in
The housing 40 includes an opening 72 at the bottom side 48 thereof and may comprise two sections, an upper housing 40a and a lower housing 40b. The two housings 40a, 40b having complimentary forms that mate. A flanged portion 74 extends from the housing 40 proximate to the opening 72 to provide an increased contact area between the housing 40 and the media 16, and to provide a surface for printed or embossed ruler markings. The tool tip 70, which in the embodiments that comprise a cutting blade may include a removable protective sheath (not depicted) disposed thereon, may retractably extend from the housing 40 in order to contact the media 16 during pattern creation which may involve the cutting or drawing, for example, of shapes, graphics, letter, numbers, words, or the like. As best seen in
In one implementation, a guide track 94 integrally formed from the rotational member 80 includes an arcuate or curved portion 96 that provides a non-linear path 98 as well as a linear portion 100. The radial member 78 which includes an inset 102, for accommodating sub-components of the radial member 78, is disposed within the rotational member 80 and adjacent to the guide track 94 at a location between the rail track 82 and the parallel runner 90. A rotational drive mechanism 110, which may be referred to as a first drive mechanism, is disposed within the housing 40. Under the power of the rotational drive mechanism 110, the rotational member 80 angularly traverses an x-y plane relative to the housing 40.
A carriage 112 is slidably mounted to the rail track 82 by flanges 114, 116 which extend therefrom to slidably engage the parallel runners 90, 92. Under the power of a radial drive mechanism 118, which may be referred to as a second drive mechanism and forms a portion of the radial member 78, the carriage 112 linearly and radially traverses the pathway 88 of the rail track 82. The radial drive mechanism 118 is secured within the housing 40 and partially disposed within the inset 102. A flexible rack gear 120, which forms a portion of the radial drive mechanism 118 and therefore the radial member 78, is adapted to travel the curved portion 96 of the guide track, which as mentioned, also includes a linear portion 100 to permit the maximum extension of the flexible rack gear 120. As illustrated, in one implementation, the rotational member 80 includes a substantially circular body 122 having a radius r. In this implementation, the flexible rack gear 120 includes a length greater than the radius r which is accepted by the guide track 94.
With respect to the radial movement and length of the flexible rack gear 120, the radial member 78, being slidably mounted to the rotational member 80, under the power of a radial drive mechanism 118, traverses a pathway 88 substantially through the center of rotation of the rotational member 80. In particular, the flexible rack gear 120 of the radial member 78 is adapted to traverse the curved guide track 94. In another implementation, the radial drive mechanism 118 includes a plurality of synchronized pinion gears disposed parallel to the pathway 88 and the radial member further comprises a rack gear adapted to engage less than the full number of pinion gears when positioned at an extremity of the traversal pathway, such as the locations when the carriage 112 is completely retracted or completely extended.
Additionally, a lateral member 124 is attached at one end of the flexible rack gear 120 in such a way as to move concurrently with the flexible rack gear 120 and retain a slidable attachment between the flexible rack gear 120 and the rotational member 80. The carriage 112 includes a casing 126 which houses an internal z-axis drive mechanism 128 that controls the movement of the tool tip 70 through a z-axis relative to the housing 40.
A computer controller interfaces 140 with the user via the graphical user interface 54, the monitor 56, and the input controls 58, and directs the tool tip 70 and pattern creating by sending control signals to the drive mechanisms; namely, the rotational drive mechanism 110, the radial drive mechanism 118, and the z-axis drive mechanism 128 of carriage 112. The computer controller 140 includes various electronic components and has access to a memory volume having a pattern library disposed thereon. The pattern library is utilized to translate the user's pattern selection into a created pattern on the media. As will be discussed in greater detail hereinbelow, users have several ways of obtaining and designing patterns for use with the pattern creating device 10. It should be appreciated that the computer controller 140 may include any combination of hardware, software, and firmware for processing and executing the required instructions and control signals.
In one embodiment, the housing 40 as well as portions of the other components may comprise thermoplastic and/or thermosetting plastic materials formed by injection molding. The rotational drive mechanism 110 is superposed on the rotational member 80 and both are secured within the housing 40. The radial drive mechanism 118 is at least partially disposed on the rotational member 80 which includes various tabs and male and female connectors to rotatably secure the rotational member 80 to the housing 40.
With respect to the rotational drive mechanism 110, an electric motor 146 is secured within the housing 40 for transferring torque to an output shaft 148 to which a gear 150, which may be a pinion gear, is attached. A set of gear teeth or ring gear 152 extending from the rotational member 80 are disposed in a meshed relationship with the gear 150. With respect to the radial drive mechanism 118, similar to the rotational drive mechanism 110, an electric motor 154 is disposed on the rotational member 80 to transfer torque to an output shaft 156 having a pinion gear 158 attached thereto. The flexible rack gear 120 is disposed in a meshed relationship with the pinion gear 158.
The flexible rack gear 120 is positioned on the surface 86 of the rotational member 80 as is the support structure 84 which forms a portion of the rail track 82. The carriage 112, which as with the other components includes tabs and other securing means, is slidably secured to the support structure 84 and the surface 86 of the rotational member 80.
It should be appreciated that the components described herein may be manufactured from various natural and synthetic materials including plastics, metals, composites, and the like. Further, the electric motors used in the rotational and radial drive mechanisms 110, 118 may be DC motors, hybrid steppers, DC servo motors, or linear motors, for example, that are driven by Darlington transistor arrays, FET arrays, power switching transistor and relay arrangements, or any combination thereof. As illustrated, the pattern creating device 10 is powered by a battery. It should be appreciated, however, that alternative sources of power are within the teachings presented herein. For example, corded power attachments with AC/DC adaptors, USB interfaces, and disposable batteries are available options.
The retainer clip 174, the compression spring 178, the piston 176, a tool bearing assembly 183, and the tool tip 70 move downward in unison until the tool tip 70, which may be a cutting blade, pierces the media 16 and bottoms out on a cutting surface, such as mat, at which point only the retainer clip 174 continues moving downward until the solenoid 181 has completed transition to the energized position. In this way a load slightly greater than the designed pre-load of the compressed spring is applied during the cutting process. In this manner, the z-axis position of the tool tip 70 and the force and pressure applied to the media 16 may be controlled.
With reference to
With reference to
With reference to
With reference to
Accordingly, it should be appreciated that the tool tip 70 may be positioned at any location within the housing 40 through the polar coordinate-based cooperation of the rotational and radial drive mechanisms 110, 118. The pattern creating device 10 thus creates patterns by maneuvering the angular and radial displacement of the tool tip 70 as discussed above and controlling the contact of the tool tip 70 with the media 16. As discussed, the z-axis drive mechanism 128 controls the z-axis position, and the force and pressure of the contact, with the media 16 to create the desired pattern by implementing selective cutting operations in accordance with the desired pattern 14. With this arrangement, the rotational drive mechanism 80 and radial drive mechanism 78 are substantially contained within a projection of a cutting area defined by movement of the carriage.
A large number of applications benefit from a larger pattern size to machine footprint ratio as provided by the handheld pattern creating device 10 presented herein. In particular, the structures and functions of the rotational and radial drive mechanisms 110, 118 are contained within the housing 40 to minimize the form factor and footprint and maximizes the pattern creating area. The pattern creating device presented herein provides drive mechanisms which are contained within the footprint of the cutting area. Using one embodiment of the design presented hereinabove, the pattern creating device 10 does not exceed a 5 inch (12.7 centimeters) by 5 inch (12.7 centimeters) square area. These dimensions are substantially within a range which qualifies as “handheld”. Additionally, the pattern creating device 10 may produce a pattern as large as or larger than 4 inches (10.2 centimeters) by 4 inches (10.2 centimeters). A size which is necessary for many potential applications. In addition to enabling a smaller machine with useful pattern sizes, the pattern creating device 10 presented herein reduces cost with efficient use of inexpensive parts and saves work and desk space.
Returning to block 242, as an alternative, the methodology may advance to block 248, where the OEM uploads the thumbnail images and command files to a website on the Internet to permit users to purchase and download the files at block 250. Once the user purchases and downloads the files to a personal computer, for example, the files may be placed onto a media card as shown at block 252.
At block 254, a user creates a raster image pattern set from software or pre-existing images and then, at block 256, digital thumbnail images and pattern command files are created. This method of creating pattern command files advances to the previously discussed block 252, where the user programs a removable media card. The options presented in blocks 240 through 252 permit a user with several techniques to create patterns. It should be appreciated, however, that the present technology is not limited to only these options.
Regardless of the technique used to create the pattern, at block 258, the user may then install the pattern card and the associated data onto the pattern creating device. A plurality of images of patterns are displayed on a graphical user interface of the handheld pattern creating device at block 260. A user then selects a pattern at block 262 from the plurality of images of patterns. At block 264, the media is mounted to a cutting mat prior to the handheld pattern creating device being positioned on the cutting mat also at block 264. At this time, the positioning of the tool tip, or cutting blade in particular embodiments, proximate to the media may be viewed, verified, and adjusted through a window of the handheld pattern creating device.
At block 266, the handheld pattern creating device is instructed to create the selected pattern and in particular, a CPU or electronic component associated with computer controller reads the necessary command file and transmits signals to each of the drive mechanisms and vertical actuator mechanism to crate the patter. While creating the pattern, the handheld pattern creating device selectively radially traverses the media with the cutting blade. Additionally, while creating the pattern, the cutting blade selectively angularly traverses the media. The operations of selectively radially traversing the media and selectively angularly traversing the media repeatedly occur without regard to order. During these operations, the z-axis drive mechanism actuates the cutting blade up and down into contact with the media to create the pattern.
While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is, therefore, intended that the appended claims encompass any such modifications or embodiments.
This application claims priority from co-pending U.S. patent application Ser. No. 60/840,387, entitled “Handheld Cutter and Plotter Devices”, filed on Aug. 25, 2006, and pending through Aug. 27, 2007, in the names of Josh Malone and Michael Wuensch; which is hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2907620 | Van Luik, Jr. | Oct 1959 | A |
3577828 | Stickney | May 1971 | A |
3872596 | Pardubsky | Mar 1975 | A |
3937873 | Gastineau | Feb 1976 | A |
4031369 | Heaman et al. | Jun 1977 | A |
4089262 | Sopora | May 1978 | A |
4089292 | Laboy | May 1978 | A |
4213427 | Di Stefano | Jul 1980 | A |
4225154 | Takada | Sep 1980 | A |
4343087 | Simon | Aug 1982 | A |
4400913 | Krantz et al. | Aug 1983 | A |
4495845 | Sherby | Jan 1985 | A |
4577409 | Sakamoto et al. | Mar 1986 | A |
4834595 | Cacciotti | May 1989 | A |
5628594 | Fetty | May 1997 | A |
5751436 | Kwon et al. | May 1998 | A |
6128024 | Carver | Oct 2000 | A |
6430820 | Chessari et al. | Aug 2002 | B1 |
6450710 | Foster et al. | Sep 2002 | B1 |
6491361 | Spann | Dec 2002 | B1 |
6494307 | Kozak et al. | Dec 2002 | B1 |
6499840 | Day et al. | Dec 2002 | B2 |
6843328 | Boyl-Davis et al. | Jan 2005 | B2 |
7054708 | Aamodt et al. | May 2006 | B1 |
20030007023 | Barclay et al. | Jan 2003 | A1 |
20030033151 | Vozick et al. | Feb 2003 | A1 |
20040134755 | Sticht et al. | Jul 2004 | A1 |
20050000337 | Ahne et al. | Jan 2005 | A1 |
20060007292 | Ohmori et al. | Jan 2006 | A1 |
20060169269 | Baratta | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
61119518 | Jun 1986 | JP |
WO 2004056577 | Jul 2004 | WO |
2007018941 | Mar 2008 | WO |
2007018941 | Mar 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20080050163 A1 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
60840387 | Aug 2006 | US |