This application claims priority of German patent application no. 10 2010 053 086.7, filed Dec. 1, 2010, the entire content of which is incorporated herein by reference.
U.S. Pat. No. 5,215,049 discloses a handheld work apparatus having a top handle, in particular a top-handle chain saw. An operating-mode selector, a throttle trigger and a throttle trigger lock, are pivotably mounted on the handle. The operating-mode selector and the throttle trigger coact when the operating-mode selector and the throttle trigger are in the starting position. The latch elements of the operating-mode selector and throttle trigger, which define the starting position, are arranged in such a manner that the operating-mode selector can be pushed into the starting position when the throttle trigger is not actuated. The throttle trigger is pivoted in the process. This pivot movement is blocked when the throttle trigger lock is not actuated. If, however, the throttle trigger lock is pressed, then the starting position can be engaged without the throttle trigger being actuated.
It is desirable that an engaging of the starting position of the operating-mode selector is not possible when the throttle trigger is not pressed by the operator.
It is an object of the invention to provide a handheld work apparatus which allows for the engaging of the starting position only when the throttle trigger is pressed.
The handheld work apparatus of the invention includes: a housing; a handle configured to be arranged above the housing in a typical storage position of the work apparatus and the handle being configured as a carrying handle; a throttle trigger having a starting position and a non-actuated position; the throttle trigger being arranged on the handle; a throttle trigger lock arranged on the handle; an operating-mode selector having an off position, an operating position and at least one starting position; the throttle trigger, the throttle trigger lock and the operating-mode selector being pivotally mounted; a first latch element defining a first pivot path and being arranged on the operating-mode selector; a second latch element arranged on the throttle trigger; the first and second latch elements being configured to coact in the starting position of the operating-mode selector and the starting position of the throttle trigger so as to hold the throttle trigger in the starting position thereof; and, the second latch element being configured to lie outside of the first pivot path of the first latch element when the throttle trigger is in the non-actuated position.
Because the second latch element is outside of the pivot path of the first latch element at the operating-mode selector when the throttle trigger is in a non-actuated position, the operating-mode selector can be freely pivoted without function when the throttle trigger is not actuated. No latching between the operating-mode selector and the throttle trigger is achieved. The operating-mode selector is therefore returned back to the operating position when released from the starting position on account of its spring loading. The engaging of the starting position without previously actuating the throttle trigger is not possible as a result.
Advantageously, when the throttle trigger is moved out of the non-actuated position into the full throttle position, the second latch element is pivoted as a result of the pivot path of the first latch element. In the full throttle position, the second latch element advantageously lies outside of the pivot path of the first latch element. The position outside of the pivot path includes a position, relative to the pivot axis of the throttle trigger, radially outside of the pivot path as well as a position radially within the pivot path. In particular, the second latch element is radially outside the pivot path of the first latch element in the non-actuated position of the throttle trigger and radially within the pivot path of the first latch element in the full throttle position and thus has a larger distance to the pivot axis of the throttle trigger than the first latch element in the non-actuated position and a smaller distance to the pivot axis of the throttle trigger than the first latch element in the full throttle position. The operating-mode selector can, thus, only be moved when the throttle trigger has been moved so far that the second latch element lies outside of the pivot path of the first latch element.
In order to ensure a latching in the starting position, it is provided that the first latch element lies in the pivot path of the second latch element when the operating-mode selector is in the starting position. Thus, the second latch element comes to rest at the first latch element and is held in the starting position after the release of the throttle trigger.
Advantageously, the latch elements extend in the direction of the pivot axis of the throttle trigger. During pivoting of the operating-mode selector from the starting position into the off-position, it is provided that the latching of the latch elements is released, with at least one of the latch elements being deflected away from the other latch element in the direction of the pivot axis of the throttle trigger. As a result of the deflection in the direction of the pivot axis for the release of the latching, it can be ensured that the throttle trigger is not further actuated during the pivoting of the operating-mode selector from the starting position into the off position. It can, however, also be provided that additionally or alternatively at least one of the latch elements is elastically deformed when the latching is released. Even in the case of elastic deformation of at least one of the latch elements a further actuating of the throttle trigger can be avoided while releasing the latching. Advantageously, at least one of the latch elements has a section which extends in inclined manner toward the pivot axis of the throttle trigger, said section sliding on the other latch element when the operating-mode selector is pivoted from the starting position into the off position. The section extending in an inclined manner can in this case be straight, as for example a chamfer, or arch-shaped as for example in a radius. In particular, one of the latch elements is a lug. A lug can be produced simply and with low tolerances and can be easily produced with the operating-mode selector during the production of the operating-mode selector from plastic. The checking of whether the required tolerances were adhered to can be done easily in the case of a lug because a lug can be easily measured. The section extending in an inclined manner toward the pivot axis of the throttle trigger is advantageously arranged at the free end of the lug. A chamfer or a radius can be very easily formed at the free end of the lug, so that a simple configuration results. A radius is seen as especially advantageous because sharp edges can, thereby, be avoided on the lug.
Expediently one of the latch elements is an arch-shaped wall section which forms a receiver for the other latch element. Because of the arch-shaped configuration a secure latching is achieved. The lug can be mounted behind the arch-shaped section and thus be securely held. The wall section is, in particular, arranged on an arm of the throttle trigger. The arch-shaped configuration of the wall section at the same time prevents engaging of the starting position of the operating-mode selector without sufficient actuation of the throttle trigger. In the latched position the lug advantageously rests against the concave side of the wall section. If the operating-mode selector is pressed in the off position then the lug exerts a force on the wall section in the radial direction to the pivot axis, which force is converted to an axial force by the chamfer or the radius. For engaging the starting position, the operating-mode selector must rest against the convex side of the wall section and press against the convex wall section. Because of the arch-shaped configuration of the wall section, the throttle trigger is pivoted by the force exerted by the lug and an engaging of the starting position is not possible.
The operating-mode selector, in particular, has a receptacle for a contact pin. The contact pin can coact with the contact spring of an ignition unit and in the off position of the operating-mode selector can short circuit the drive motor configured as a combustion engine. At the same time a desired spring-loading of the operating-mode selector can be achieved via the contact spring. In particular, the pivot axes of the throttle trigger, throttle trigger lock and operating-mode selector lie parallel to each other and have a distance between each other.
Advantageously, an actuating element for actuating a drive motor of the work apparatus engages at the throttle trigger. The distance of the contact point of the actuating element to the second latch element is, advantageously, up to about a third of the distance of the contact point of the actuating element to the pivot axis of the throttle trigger. As a result of the comparatively small distance of the contact point to the latch element small tolerances are achieved for the starting position which is set by the actuating element. An exact position, for example of a choke element in the starting position can be achieved in a simple manner.
The invention will now be described with reference to the drawings wherein:
As
The operating-mode selector 9 is pivotably mounted about a pivot axis 15, which is at a distance (b) to the pivot axis 14 of the throttle trigger 8 and a distance (c) to the pivot axis 13 of the throttle trigger lock 7. The operating-mode selector 9 has a lug 21, shown schematically in
The throttle linkage is engaged on the arm 22 of the throttle trigger in an opening 28 (
As
As
As
The bearing shaft 32 has a cutout 49 directly adjacent to the cover wall 34 on which the lug 21 is also arranged. The arm 22 of the throttle trigger 8 is introduced into the cutout 49 in the full throttle position shown in
It is understood that the foregoing description is that of the preferred embodiments of the invention and that various changes and modifications may be made thereto without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 053 086 | Dec 2010 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4079708 | Wieland et al. | Mar 1978 | A |
4946087 | Wingert | Aug 1990 | A |
5215049 | Wolf | Jun 1993 | A |
5239891 | Stocker | Aug 1993 | A |
5517967 | Nakayama | May 1996 | A |
5927241 | Dahlberg et al. | Jul 1999 | A |
6021757 | Nagashima | Feb 2000 | A |
6108867 | Nagashima | Aug 2000 | A |
6871623 | Ohsawa et al. | Mar 2005 | B2 |
7287331 | Sasaki et al. | Oct 2007 | B2 |
7337757 | Schmidt et al. | Mar 2008 | B2 |
7484431 | Muller et al. | Feb 2009 | B2 |
8051743 | Kullberg et al. | Nov 2011 | B2 |
8156656 | Tate et al. | Apr 2012 | B2 |
8490289 | Nystrom et al. | Jul 2013 | B2 |
Number | Date | Country |
---|---|---|
36 08 941 | Sep 1987 | DE |
Entry |
---|
Search report of the European Patent Office dated Mar. 30, 2012 issued in the parallel European application. |
Number | Date | Country | |
---|---|---|---|
20120138326 A1 | Jun 2012 | US |