Hanger for mounting multiple cables

Information

  • Patent Grant
  • 11143333
  • Patent Number
    11,143,333
  • Date Filed
    Tuesday, August 13, 2019
    5 years ago
  • Date Issued
    Tuesday, October 12, 2021
    3 years ago
Abstract
A cable hanger for mounting cables to a mounting structure includes: a base panel; a pair of arms attached to opposite ends of the base panel; and a pair of locking projections, each locking projection being attached adjacent a free end of a respective arm. Each arm is configured to define a respective internal cavity configured to grasp cable. The arms and the base panel combine to define an external cavity for grasping cable. The cable hanger can be deflected from a relaxed state to a deflected state by forcing the locking projections toward each other. In the deflected state the cable hanger may be mounted to a mounting structure, with the arms inserted through a hole in the mounting structure and exerting outward pressure on edges of the hole, and the locking projections maintaining the cable hanger in a mounted position on the mounting structure.
Description
FIELD OF THE INVENTION

The present invention relates generally to devices for supporting cables and, in particular, to hangers for securing cables to support structures.


BACKGROUND OF THE INVENTION

Cable hangers are commonly used to secure cables to structural members of antenna towers and or along tunnel walls. Generally, each cable is attached to a structural member by cable hangers mounted at periodically-spaced attachment points.


Antenna towers and or tunnels may be crowded due to the large numbers of cables required for signal-carrying. Over time, as systems are added, upgraded and/or expanded, installation of additional cables may be required. To conserve space, it may be desirable for each set of cable hangers to secure more than a single cable. Certain cable hangers have been constructed to secure multiple cables; other cable hangers have a stackable construction that permits multiple cable hangers to be interlocked extending outwardly from each mounting point/structural member. Stacked and multiple-cable-type cable hangers significantly increase the number of cables mountable to a single attachment point.


One popular stackable cable hanger is discussed in U.S. Pat. No. 8,191,836 to Korczak, the disclosure of which is hereby incorporated herein by reference in its entirety. One such cable hanger, designated broadly at 10, is shown in FIGS. 1 and 2. The hanger 10 includes curved arms 5 that extend from a flat base 6. Locking projections 7 extend from the free ends of the arms 5. As can be seen in FIGS. 1 and 2, the locking projections 7 are inserted into a reinforced hole 8 in a tower structure 4 to mount the hanger 10 thereon. The base 6 of the hanger 10 includes a reinforced hole 9 that can receive the projections of another hanger 10 to mount a second cable.


As can be best seen in FIG. 2, the arms 5 include arcuate sections 14 that together generally define a circle within which a cable can reside. Two cantilevered tabs 12 extend radially inwardly and toward the base 6 at one end of the arcuate sections 14, and two cantilevered tabs 16 extend radially inwardly and toward the base 6 from the opposite ends of the arcuate sections 14. The cantilevered tabs 12, 16 are deployed to deflect radially outwardly when the hanger 10 receives a cable for mounting; this deflection generates a radially inward force from each tab 12, 16 that grips the jacket of the cable.


Hangers can be “stacked” onto each other by inserting the locking projections 7 of one hanger into the large hole 9 of the next hanger. One variety of cable hanger of this type is the SNAP-STAK® hanger, available from CommScope, Inc. (Joliet, Ill.).


The SNAP-STAK® hanger is offered in multiple sizes that correspond to the outer diameters of different cables. This arrangement has been suitable for use with RF coaxial cables, which tend to be manufactured in only a few different outer diameters; however, the arrangement has been less desirable for fiber optic cables, which tend to be manufactured in a much greater variety of diameters. Moreover, fiber optic cables tend to be much heavier than coaxial cables (sometimes as much as three times heavier per unit foot), which induces greater load and stress on the hangers.


Multiple approaches to addressing this issue are offered in co-assigned and co-pending U.S. Patent Publication No. 2016/0281881 to Vaccaro, the disclosure of which is hereby incorporated herein by reference in full. One cable hanger discussed in this publication is shown in FIGS. 3 and 4 and designated broadly at 610 therein. The cable hanger 610 is somewhat similar to the cable hanger 10, inasmuch as it has a base 606, curved arms 605 and locking projections 607 that resemble those of the hanger 10 discussed above. However, the cable hanger 610 also has flex members 618 that define chords across the arcuate sections 614 of the arms 605. As can be seen in FIG. 4, cantilevered gripping members 612, 616 extend from the flex members 618 and into the cable-gripping space S within the arms 605. It can also be seen in FIG. 3 that the flex members 618 are tripartite, with two vertically offset horizontal runs 618a, 618c merging with the arcuate sections 614 of the arms 605 and a vertical run 618b extending between the horizontal runs 618a, 618c. The gripping members 612, 616 extend from opposite sides of the vertical run 618b and are vertically offset from each other.


In use, the cable hanger 610 is employed in the same manner as the cable hanger 10; a cable is inserted into the space S between the arms 605, which are then closed around the cable as the locking projections 607 are inserted into a mounting hole. The cantilevered gripping members 612, 616 can help to grip and to center the cable within the space S. The presence of the flex members 618, which are fixed end beams rather than cantilevered tabs, can provide additional gripping force beyond that of the cable hanger 10.


SUMMARY

As a first aspect, embodiments of the invention are directed to a cable hanger for mounting cables to a mounting structure. The cable hanger comprises: a base panel; a pair of arms attached to opposite ends of the base panel; and a pair of locking projections, each locking projection being attached adjacent a free end of a respective arm. Each arm is configured to define a respective internal cavity configured to grasp a first cable. The arms and the base panel combine to define an external cavity for grasping a second cable. The cable hanger can be deflected from a relaxed state to a deflected state by forcing the locking projections toward each other. In the deflected state the cable hanger may be mounted to a mounting structure, with the arms inserted through a hole in the mounting structure and exerting outward pressure on edges of the hole, and the locking projections maintaining the cable hanger in a mounted position on the mounting structure.


As a second aspect, embodiments of the invention are directed to a cable hanger for mounting cables to a mounting structure comprising: a base panel; a pair of arms attached to opposite ends of the base panel; and a pair of locking projections, each locking projection being attached adjacent a free end of a respective arm. The arms and the base panel define at least one internal cavity and at least one external cavity configured to grasp cables.


As a third aspect, embodiments of the invention are directed to a cable hanger for mounting cables to a mounting structure comprising: a head portion defining an internal head cavity for mounting a first cable; a pair of arm portions merging with the head portion, each arm portion defining an internal arm cavity for mounting a respective second cable; a pair of locking segments, each locking segment merging with a respective arm portion; and a first pair of gripping members, a first one of the gripping members extending from the head portion, and a second one of the gripping members extending from a first one of the arm portions, the gripping members defining a first external cable mounting location for mounting a third cable. The cable hanger can be deflected from a relaxed state to a deflected state by forcing the locking projections toward each other. In the deflected state the cable hanger may be mounted to a mounting structure, with the arms inserted through a hole in the mounting structure and exerting outward pressure on edges of the hole, and the locking projections maintaining the cable hanger in a mounted position on the mounting structure.


As a fourth aspect, embodiments of the invention are directed to a cable hanger for mounting cables to a mounting structure comprising: a formed strip, the strip having a periphery, the strip defining a plurality of internal cavities defined by walls configured to receive and grasp first cables, the strip including a pair of locking projections configured to be deflected into a deflected state by forcing the locking projections toward each other, wherein in the deflected state the cable hanger may be mounted to a mounting structure; and at least one pair of gripping members extending from the walls of the strip, the gripping members defining an external cable mounting location configured to receive and grasp a second cable.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a perspective view of a prior art cable hanger.



FIG. 2 is a top view of the prior art cable hanger of FIG. 1.



FIG. 3 is a perspective view of another prior art cable hanger.



FIG. 4 is a top view of the cable hanger of FIG. 3.



FIG. 5 is a top view of a cable hanger capable of mounting multiple cables according to embodiments of the invention.



FIG. 6 is a top view of two cable hangers of FIG. 5 deployed in a stacked configuration.



FIG. 7 is a top view of a cable hanger capable of mounting multiple cables according to alternative embodiments of the invention.



FIG. 8 is a top view of another cable hanger capable of mounting multiple cables according to alternative embodiments of the invention.



FIG. 9 is a top view of two cable hangers of FIG. 8 deployed in a stacked configuration.





DETAILED DESCRIPTION

The present invention is described with reference to the accompanying drawings, in which certain embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments that are pictured and described herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. It will also be appreciated that the embodiments disclosed herein can be combined in any way and/or combination to provide many additional embodiments.


Unless otherwise defined, all technical and scientific terms that are used in this disclosure have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the below description is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in this disclosure, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that when an element (e.g., a device, circuit, etc.) is referred to as being “attached”, “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly attached”, “directly connected” or “directly coupled” to another element, there are no intervening elements present.


Referring now to the drawings, a cable hanger 110 according to embodiments of the invention is shown in FIG. 5. The cable hanger 110 has a base panel 106 with two arms 105 extending from opposite ends thereof. Each of the arms 105 is a mirror image of the other arm 105 and includes a plurality of segments. An inboard segment 121 extends rearwardly and generally perpendicularly from the edge of the base panel 106. A rear segment 122 extends laterally and generally perpendicularly from the rear end of each inboard segment 121. An outboard segment 123 extends forwardly and generally perpendicularly from the outer end of each rear segment 122. A forward segment 124 extends inwardly and generally perpendicularly from the forward end of each outboard segment 123. Finally, a lock segment 125 extends generally perpendicularly and forwardly from the inner end of each forward segment 124. Locking projections 107 are located on the lock segments 125. (As used herein, the “forward” or “front” direction is the direction extending from the base panel 106 toward the locking segments 125. The “rear” direction is the opposite of the front direction. “Lateral” and “outboard” refer to the direction normal to the front and rear directions that extends away from the center of the cable hanger 110 toward the outboard segments 123, and “inboard” refers to the opposite of the outboard direction).


This configuration creates cavities in which cables can be mounted. More specifically, the inboard, rear and outboard segments 121, 122, 123 create internal lateral cavities 140, and the base panel 106 and the inboard segments 121 create an external central cavity 142 (as used herein, a cavity is “internal” when it is located within the periphery of the cable hanger 110, and is “external” when it is located outside the periphery of the cable hanger 110).


The cable hanger 110 may include a number of cable gripping features, such as barbs, lances, nubs, teeth, and the like. The cable hanger 110 shown in FIG. 5 includes barbs 131 that extend from the inboard segments 121 into both the lateral and central cavities 140, 142. Also, lances 132 extend from the base panel 106 into the central cavity 142 and from the rear segments 122 into the lateral cavities 140.


As is also shown in FIG. 5, cables 150 can be mounted within the lateral and central cavities 140, 142. It can be seen that a single cable hanger 110 can hold up to three cables 150 at once, which can reduce the number of cable hangers 110 required to mount multiple cables. The barbs 131 and the lances 132 can assist in grasping cables 150 mounted in the cavities 140, 142. As with the cable hangers 10, 610 discussed above, the cable hanger 110 can be mounted to a mounting structure via the locking projections 107 being deflected toward each other from a relaxed state and being inserted into a hole (typically ¾ inch) in a mounting structure in the deflected condition. The arms 105 exert outward pressure on edges of the hole, and the locking projections 107 maintain the cable hanger 110 in a mounted position on the mounting structure.


Those skilled in this art will appreciate that, although the cavities 140, 142 are shown as being similar, if not identical, in size, in other embodiments the cable hanger 110 may be configured such that the lateral and central cavities 140, 142 are of different sizes, or even such that each of the lateral cavities 140 is of a different size. In addition, in some embodiments additional segments may be included in the arms 105 in a “square wave” pattern so that more cables (e.g., five or seven) may be mounted in a single cable hanger.


Further, the segments may be oriented somewhat different relative to each other. For example, the inboard segments 121 may be disposed at an oblique angle relative to the base panel 106 and the rearward segments 122. If the inboard segments 121 were angled such that their rearward ends (where they merge with the rear segments 122) were closer together than their forward ends (where they merge with the base panel 106), the cavities 140, 142 created thereby would be trapezoidal in shape, with the open end of the trapezoid being relatively narrow, and thereby would be likely to capture cables more securely. If on the other hand, the inboard segments 121 were angled so that their rearward ends were farther apart than their forward ends, the resulting trapezoidal cavities would have their wider ends open, which may facilitate the entry of cables in the cavities. Other configurations are also possible, including those in which some or all of the segments of the arms 105 are arcuate or curvilinear rather than straight.


Referring now to FIG. 6, two cable hangers 110, 110′ are shown mounted in a stacked relationship. As can be seen from FIG. 6, the locking projections 107′ of the cable hanger 110′ are inserted into holes (not shown) in the inboard segments 121 of the cable hanger 110. The cable hanger 110 is mounted in a mounting structure 170. In this manner, additional cables (three additional cables in this instance) can be mounted to the same mounting location on the mounting structure 170 with only a single additional cable hanger.


Referring now to FIG. 7, another embodiment of a cable hanger, designated broadly at 210, is shown therein. The cable hanger 210 is similar to the cable hanger 110 in general configuration, with a base panel 206, arms 205 having the same five segments as discussed above, and locking projections 207. However, the cable hanger 210 also includes two cantilevered gripping tabs 212 that extend from the base panel 206 into the central cavity 242, and further includes two cantilevered gripping tabs 216, 218 that extend from, respectively, the inboard segment 221 and the outboard segment 223 of each lateral cavity 240. Barbs 231 also extend into the cavities 240, 242 from the base panel 206 and the rear segments 222. Thus, cables (not shown in FIG. 7) can be mounted within each cavity 240, 242 and held in place by the gripping tabs 212, 216, 218.


The gripping tabs 212, 216, 218 may take a variety of configurations. Some potential configurations are shown in U.S. Patent Publication No. 2016/0281881 to Vaccaro and U.S. Pat. No. 8,191,836 to Korczak, supra. Other configurations are shown in co-assigned U.S. patent application Ser. No. 15/335,614, filed Oct. 27, 2016, the disclosure of which is hereby incorporated herein in its entirety. More or fewer gripping tabs may be included in other embodiments.


Referring now to the drawings, a cable hanger 410 according to embodiments of the invention is shown in FIG. 8. The cable hanger 410 is generally cruciform in shape, with a head portion 420, two arm portions 430, and locking segments 408 on which locking projections 407 or other locking features are located. These are described in greater detail below.


The head portion 420 includes an end wall 421 and two side walls 422 that merge with the end wall 421, thereby defining a head cavity 424. Each of the arm portions 430 includes an end wall 431 and two side walls 432 that merge with the end wall 431, thereby defining respective arm cavities 434. As can be seen in FIG. 5, one of the side walls 432 of each of the arm portions 430 merges with one of the side walls 422 of the head portion 420. The other of the side walls 432 of each of the arm portions 430 merges with a respective locking segment 408.


It can also be seen in FIG. 5 that the head portion 420 includes a lance 425 that extends into the head cavity 424 from the end wall 421, and further includes barbs 426 that extend into the head cavity 424 from the side walls 422. Similarly, each of the arm portions 430 includes a lance 435 that extends into its arm cavity 434 from the end wall 431 and barbs 436 that extend into its arm cavity 434 from the side walls 432. The lances 425, 435 and barbs 426, 436 provide gripping features to the cavities 424, 434; other gripping features, such as teeth, nubs and the like, may also be employed.



FIG. 8 also illustrates that a gripping tab 412 extends from each of the side walls 422 of the head portion 420 at an oblique angle (typically about 45 degrees). A gripping tab 416 also extends at an oblique angle (typically about 45 degrees) from each of the side walls 432 of the arm portions 430 that merge with the side walls 422. Lances 417, 419 are positioned near the ends of respective gripping tabs 412, 416. Each pair of gripping tabs 412, 416 defines a cable mounting location 413 that is located external of the cable hanger 410. (As used herein, a cavity or mounting location is “internal” when it is located within the periphery of the cable hanger 410, and is “external” when it is located outside the periphery of the cable hanger 410).


As can be seen in FIG. 8, the head cavity 424 is sized to receive and grasp a cable 450, which is held in place by the barbs 426 and the lance 425. Each of the arm cavities 434 is also sized to receive and grasp a cable 452, which is held in place by the barbs 436 and the lance 435. Finally, each pair of gripping tabs 412, 416 can grasp a cable 454 as it is located in a respective cable mounting location 413. Thus, in the illustrated configuration, the cable hanger 410 can hold up to five separate cables.


As with the cable hangers 10, 110, 210, 610 discussed above, the cable hanger 410 can be mounted to a mounting structure via the locking projections 407 being deflected toward each other from a relaxed state and being inserted into a hole (typically ¾ inch) in a mounting structure in the deflected condition. The locking segments 408 exert outward pressure on edges of the hole, and the locking projections 407 maintain the cable hanger in a mounted position on the mounting structure.


Those skilled in this art will appreciate that, although the head and arm cavities 424, 434 are shown as being similar, if not identical, in size, in other embodiments the cable hanger 410 may be configured such that the head and arm cavities 424, 434 are of different sizes, or even such that each of the arm cavities 434 is of a different size. In addition, in some embodiments arm portions may be included in a “square wave” pattern so that more cables (e.g., five or seven) may be mounted in a single cable hanger.


Those skilled in this art will also appreciate that the head portion 421 and arm portions 431 may be configured differently. For example, configurations which some or all of the segments of the end and side walls are arcuate or curvilinear rather than straight may be suitable. In addition, the end and side walls may be disposed at oblique angles to one another rather than at generally right angles.


Like the gripping tabs 212, 216, 218 discussed above, the gripping tabs 412, 416 may take a variety of configurations. Some potential configurations for gripping members are shown in U.S. Patent Publication No. 2016/0281881 to Vaccaro and U.S. Pat. No. 8,191,836 to Korczak, supra. Other configurations are shown in co-assigned U.S. patent application Ser. No. 15/335,614, filed Oct. 27, 2016, the disclosure of which is hereby incorporated herein in its entirety. More or fewer gripping tabs may be included in other embodiments.


Referring now to FIG. 9, two cable hangers 410, 410′ are shown mounted in a stacked relationship. As can be seen from FIG. 6, the locking projections 407′ of the cable hanger 410′ are inserted into holes (not shown) in the end wall 421 of the head portion 420 of the cable hanger 410 and can be received in slots or holes (not shown) in the side walls 422 of the head section inboard segments 421 of the cable hanger 410. The cable hanger 410 is mounted in a mounting structure 470. In this manner, additional cables (five additional cables in this instance) can be mounted to the same mounting location on the mounting structure 470 with only a single additional cable hanger 410′.


The cable hangers 110, 210, 410 may be formed of a variety of materials, such as steel and other metals. The cable hangers 110, 210 may be stamped from a sheet or strip of material, such as steel, and bent by known methods into the configurations shown herein. As such, the cable hangers 110, 210, 410 may be monolithic component, such as formed strips of steel or other easily-bent materials.


The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.

Claims
  • 1. A cable hanger for mounting cables to a mourning structure, comprising a base panel;a pair of arms attached to opposite ends of the base panel; anda pair of locking projections, each locking projection being attached adjacent a free end of a respective arm;wherein each arm is configured to define a respective internal cavity, each internal cavity configured to grasp a respective first cable;wherein the arms and the base panel combine to define an external cavity for grasping a respective second cable;wherein the cable hanger can be deflected from a relaxed state to a deflected state by forcing the locking projections toward each other;wherein in the deflected state the cable hanger may be mounted to a mounting structure, with the arms inserted through a hole in the mounting structure and exerting outward pressure on edges of the hole, and the locking projections maintaining the cable hanger in a mounted position on the mounting structure.
  • 2. The cable hanger defined in claim 1, further comprising gripping features on the arms.
  • 3. The cable hanger defined in claim 2, wherein the gripping features are located within the external cavity.
  • 4. The cable hanger defined in claim 2, wherein the gripping features are located within at least one of the internal cavities.
  • 5. The cable hanger defined in claim 1, wherein each of the arms includes an inboard segment attached to the base panel, and wherein the external cavity is defined by the inboard segments and the base panel.
  • 6. The cable hanger defined in claim 5, wherein each of the arms further includes a rear segment that merges with the inboard segment and an outboard segment that merges with an end of the rear segment, and wherein the internal cavities are defined by respective inboard, rear and outboard segments.
  • 7. The cable hanger defined in claim 6, wherein each of the arms further includes a forward segment that merges with an end of the outboard segment, and a locking segment that merges with an end of the forward segment, the locking projections being mounted on the locking segments.
  • 8. The cable hanger defined in claim 1, wherein the cable hanger is formed as a monolithic component.
  • 9. The cable hanger defined in claim 1, wherein the cable hanger is formed from a metallic sheet.
  • 10. The cable hanger defined in claim 1, in combination with the second cable mounted in the external cavity and the first cable mounted in one of the internal cavities.
  • 11. A cable hanger for mounting cables to a mounting structure, comprising: a base panel;a pair of arms attached to opposite ends of the base panel; anda pair of locking projections, each locking projection being attached adjacent a free end of a respective arm;wherein each arm is configured to define a respective internal cavity, each internal cavity configured to grasp a respective cable;wherein the arms and the base panel combine to define an external cavity for grasping a respective cable;wherein the cable hanger can be deflected from a relaxed state to a deflected state by forcing the locking projections toward each other;wherein in the deflected state the cable hanger may be mounted to a mounting structure, with the arms inserted through a hole in the mounting structure and exerting outward pressure on edges of the hole, and the locking projections maintaining the cable hanger in a mounted position on the mounting structure;wherein gripping features are located within the external cavity and within at least one of the internal cavities.
  • 12. The cable hanger defined in claim 11, wherein each of the arms includes an inboard segment attached to the base panel, and wherein the external cavity is defined by the inboard segments and the base panel.
  • 13. The cable hanger defined in claim 12, wherein each of the arms further includes a rear segment that merges with the inboard segment and an outboard segment that merges with an end of the rear segment, and wherein the internal cavities are defined by respective inboard, rear and outboard segments.
  • 14. The cable hanger defined in claim 13, wherein each of the arms further includes a forward segment that merges with an end of the outboard segment, and a locking segment that merges with an end of the forward segment, the locking projections being mounted on the locking segments.
  • 15. The cable hanger defined in claim 11, wherein the cable hanger is formed as a monolithic component.
  • 16. The cable hanger defined in claim 11, wherein the cable hanger is formed from a metallic sheet.
RELATED APPLICATION

The present application is a divisional of and claims priority to U.S. patent application Ser. No. 15/842,108, filed Dec. 14, 2017, now allowed, which claims priority from and the benefit of U.S. Provisional Patent Application Nos. 62/438,480, filed Dec. 23, 2016, and 62/437,195, filed Dec. 21, 2016, the disclosures of each of which are hereby incorporated herein in their entireties.

US Referenced Citations (159)
Number Name Date Kind
582086 Poole et al. May 1897 A
924090 Moore Jun 1909 A
1376284 Kohn Apr 1921 A
1452497 Fischer Apr 1923 A
1982501 Douglas Nov 1934 A
2032413 Hall Mar 1936 A
2166916 Lombard Jul 1939 A
2179406 Fitzpatrick Nov 1939 A
2375513 Bach Aug 1945 A
2447025 Newman Aug 1948 A
2453980 Hartman Nov 1948 A
2470814 Hain May 1949 A
2496848 Kiesel Jan 1950 A
2560845 Carpenter et al. Jul 1951 A
2605865 Liptay Aug 1952 A
2723431 Di Renzo Nov 1955 A
2746110 Bedford, Jr. May 1956 A
2990150 Weigel et al. Jun 1961 A
3042352 Stamper Jul 1962 A
3050578 Huebner Aug 1962 A
3163712 Cochran Dec 1964 A
3179969 Glynn Apr 1965 A
3189961 Heller Jun 1965 A
3228640 Wolsh Jan 1966 A
3404858 Levy Oct 1968 A
3430904 Soltysik Mar 1969 A
3485467 Fuchs et al. Dec 1969 A
3501117 Soltysik Mar 1970 A
3536281 Meehan et al. Oct 1970 A
3599915 Soltysik Aug 1971 A
3916089 Sloan Oct 1975 A
3981048 Moody et al. Sep 1976 A
4148113 Dvorachek Apr 1979 A
4244542 Mathews Jan 1981 A
4244544 Kornat Jan 1981 A
4295618 Morota et al. Oct 1981 A
4306697 Mathews Dec 1981 A
4344480 Boyer Aug 1982 A
4356987 Schmid Nov 1982 A
4441680 Rivkin Apr 1984 A
4669156 Guido et al. Jun 1987 A
4795856 Farmer Jan 1989 A
4813639 Midkiff Mar 1989 A
D305099 Naruse Dec 1989 S
4958792 Rinderer Sep 1990 A
5016843 Ward May 1991 A
5035383 Rainville Jul 1991 A
5085384 Kasubke Feb 1992 A
5149027 Weber Sep 1992 A
5188318 Newcomer Feb 1993 A
5320312 Hoenninger Jun 1994 A
5393021 Nelson Feb 1995 A
D357802 Todd May 1995 S
5587555 Rinderer Dec 1996 A
5677513 Ito Oct 1997 A
5762299 Motsch Jun 1998 A
5833188 Studdiford et al. Nov 1998 A
5876000 Ismert Mar 1999 A
5878465 Jenner Mar 1999 A
5921520 Wisniewski Jul 1999 A
5971329 Hickey Oct 1999 A
6257530 Tsai Jul 2001 B1
6317933 Suenaga Nov 2001 B1
6323430 Finona Nov 2001 B1
6354543 Paske Mar 2002 B1
6580867 Galaj Jun 2003 B2
6899305 Korczak et al. May 2005 B2
6935001 Barriuso et al. Aug 2005 B2
7131792 Doverspike Nov 2006 B2
7384018 Moretto Jun 2008 B2
7500644 Naudet Mar 2009 B2
7518058 Hagbrandt Apr 2009 B1
7533854 Aube May 2009 B2
D597403 Ho Aug 2009 S
7651056 Tjerrild Jan 2010 B2
7997546 Andersen et al. Aug 2011 B1
8011621 Korczak Sep 2011 B2
8020259 Ho Sep 2011 B2
8020811 Nelson Sep 2011 B2
8191836 Korczak Jun 2012 B2
8353485 Hjerpe Jan 2013 B2
8439316 Feige May 2013 B2
8540191 Sabadie et al. Sep 2013 B2
8541682 Mazelle Sep 2013 B2
8776328 Kodi Jul 2014 B2
8785779 Jones Jul 2014 B1
8879881 Cote Nov 2014 B2
9127789 Caspari et al. Sep 2015 B2
9206927 Carter et al. Dec 2015 B2
9759880 Chamberlain et al. Sep 2017 B2
9841123 White Dec 2017 B1
9853434 Vaccaro Dec 2017 B2
9866004 Vaccaro et al. Jan 2018 B2
9879803 Leng Jan 2018 B2
9903510 Joshi et al. Feb 2018 B2
9995414 Joshi et al. Jun 2018 B2
10215308 Bartos Feb 2019 B2
10415723 Vaccaro et al. Sep 2019 B2
10422446 Joshi et al. Sep 2019 B2
10634265 Joshi et al. Apr 2020 B2
10637226 Bell et al. Apr 2020 B2
10663088 Vaccaro et al. May 2020 B2
10760714 Rajpal et al. Sep 2020 B2
10823312 Vaccaro et al. Nov 2020 B2
10837577 Arbuckle Nov 2020 B2
10927980 Varale Feb 2021 B2
10935105 Bell et al. Mar 2021 B2
20020005463 Korczak et al. Jan 2002 A1
20020012582 Kirkegaard et al. Jan 2002 A1
20030173470 Geiger Sep 2003 A1
20040113027 Nakanishi Jun 2004 A1
20040251386 Mizukoshi et al. Dec 2004 A1
20050109887 Catapano May 2005 A1
20050109890 Korczak et al. May 2005 A1
20050253025 Benoit et al. Nov 2005 A1
20060108480 Goodwin et al. May 2006 A1
20060237217 Glew Oct 2006 A1
20060249633 Korczak et al. Nov 2006 A1
20070007397 Nelson Jan 2007 A1
20070120023 Martinez et al. May 2007 A1
20070246616 Budagher Oct 2007 A1
20080093510 Oh et al. Apr 2008 A1
20080115448 Kodi May 2008 A1
20090230256 Widlacki et al. Sep 2009 A1
20090242715 Kosidlo et al. Oct 2009 A1
20090294602 Korczak Dec 2009 A1
20100084520 Ohno Apr 2010 A1
20110107719 Kodi May 2011 A1
20110226913 Feige Sep 2011 A1
20110260025 Aoshima et al. Oct 2011 A1
20110283515 Korczak Nov 2011 A1
20120045608 Huchet et al. Feb 2012 A1
20120085577 Eshima Apr 2012 A1
20120305724 Diez Herrera et al. Dec 2012 A1
20130104494 Evangelista et al. May 2013 A1
20130146720 Meyers et al. Jun 2013 A1
20130146721 White Jun 2013 A1
20130175407 Williams et al. Jul 2013 A1
20130187012 Blakeley Jul 2013 A1
20130320157 Carter et al. Dec 2013 A1
20130320182 Kataoka et al. Dec 2013 A1
20140054425 Jang Feb 2014 A1
20140259620 Hicks Sep 2014 A1
20140260083 Zhang et al. Sep 2014 A1
20140306071 Stechmann Oct 2014 A1
20150136473 Jafari et al. May 2015 A1
20150155669 Chamberlain et al. Jun 2015 A1
20150159781 Wilson et al. Jun 2015 A1
20160281881 Vaccaro et al. Sep 2016 A1
20160281883 Vaccaro Sep 2016 A1
20160327187 Brown Nov 2016 A1
20160341340 Gomes Fernandes Nov 2016 A1
20170122460 Joshi et al. May 2017 A1
20180045336 Vaccaro Feb 2018 A1
20180172183 Joshi et al. Jun 2018 A1
20180202580 Joshi et al. Jul 2018 A1
20200041039 Varale Feb 2020 A1
20210108742 Varale Apr 2021 A1
20210151971 Vaccaro May 2021 A1
Foreign Referenced Citations (28)
Number Date Country
102014007903 Dec 2015 BR
1520498 Aug 2004 CN
101589513 Nov 2009 CN
845808 Aug 1952 DE
2401187 Jan 1975 DE
2903306 Aug 1979 DE
3823578 Feb 1989 DE
202015007620.3 Dec 2015 DE
102017106520 Sep 2018 DE
3539191 Sep 2019 EP
2145985 Feb 1973 FR
2145985 Feb 1973 FR
2176184 Oct 1973 FR
1599416 Sep 1981 GB
5775283 May 1982 JP
61200974 Dec 1986 JP
08086386 Apr 1996 JP
09144719 Jun 1997 JP
10019168 Jan 1998 JP
11223281 Aug 1999 JP
2002130539 May 2002 JP
3653346 May 2005 JP
2012002323 Jan 2012 JP
2012222986 Nov 2012 JP
101399938 Jun 2014 KR
2002095956 Nov 2002 WO
2008082595 Jul 2008 WO
2010143222 Dec 2010 WO
Non-Patent Literature Citations (16)
Entry
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration corresponding to International Application No. PCT/US2017/056109 dated Jan. 24, 2018.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration corresponding to International Application No. PCT/US2017/060115 dated Feb. 14, 2018.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration corresponding to International Application No. PCT/US2017/062730 dated Mar. 13, 2018.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration corresponding to International Application No. PCT/US2017/062743 dated Mar. 12, 2018.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration corresponding to International Application No. PCT/US2017/065801 dated Apr. 13, 2018.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration corresponding to International Application No. PCT/US2017/068510 dated Apr. 17, 2018.
Office Action corresponding to Chinese Application No. 201780067453.8 dated Jan. 22, 2020.
Office Action corresponding to Chinese Application No. 201780075198.5 dated Jan. 21, 2020.
Office Action corresponding to Chinese Application No. 201780065736.9 dated Mar. 2, 2020.
Office Action corresponding to Chinese Application No. 201780067503.2 dated Feb. 3, 2020.
Extended European Search Report corresponding to European Application No. 17870023.3 dated Jun. 3, 2020.
Extended European Search Report corresponding to European Application No. 17870144.7 dated Jun. 3, 2020.
Extended European Search Report corresponding to European Application No. 17875334.9 dated Jun. 2, 2020.
“Extended European Search Report corresponding to European Patent Application No. 17892843.8 dated Oct. 1, 2020, 8 pages”.
Communication Pursuant to Article 94(3) EPC, dated Apr. 22, 2021 in corresponding European Patent Application No. 17870144.7.
“Office Action corresponding to Chinese Application No. 201780075195.8 dated Mar. 29, 2021”.
Related Publications (1)
Number Date Country
20190360614 A1 Nov 2019 US
Provisional Applications (2)
Number Date Country
62437195 Dec 2016 US
62438480 Dec 2016 US
Divisions (1)
Number Date Country
Parent 15842108 Dec 2017 US
Child 16538944 US