The present disclosure relates to hardware decompression of an encoded data stream that includes multiple deflate blocks. More particularly, the present disclose relates to recycling encoded data through a decoder pipeline after detecting deflate block end of block symbols.
Computer systems compress data for various reasons, such as to reduce storage requirements or to reduce bandwidth requirements when sending data over a computer network. One approach to compress data is referred to as “DEFLATE”. Deflate is a data compression algorithm that uses a combination of an LZ77 algorithm and Huffman coding to compress data. Deflate data streams include a series of “deflate blocks.” Each deflate block includes a header, Huffman encoded deflate elements, and a Huffman encoded end of block element. A deflate block's header includes information to configure a decompression engine that, in turn, decompresses each Huffman element included in the specific deflate block. Deflate blocks may be static deflate blocks (use static Huffman encoding), dynamic deflate blocks (includes a Huffman tree in the header), or non-compressed blocks with varying sizes.
According to one embodiment of the present disclosure, an approach is provided in which a decoder pipeline receives a data stream that includes a stream of deflate blocks. The decoder pipeline decodes an end of block symbol included in one of the deflate blocks and identifies a recycle point in the data stream in response to decoding the end of block symbol. In turn, the decoder pipeline recycles pipeline data residing between the end of block symbol and the recycle point.
The foregoing is a summary and thus contains, by necessity, simplifications, generalizations, and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting. Other aspects, inventive features, and advantages of the present disclosure, as defined solely by the claims, will become apparent in the non-limiting detailed description set forth below.
The present disclosure may be better understood, and its numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings, wherein:
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure. The embodiment was chosen and described in order to best explain the principles of the disclosure and the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.
As will be appreciated by one skilled in the art, aspects of the present disclosure may be embodied as a system, method or computer program product. Accordingly, aspects of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
Aspects of the present disclosure are described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the disclosure. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
The following detailed description will generally follow the summary of the disclosure, as set forth above, further explaining and expanding the definitions of the various aspects and embodiments of the disclosure as necessary.
Decoder pipeline 100 includes header decoder 130 and symbol decoder 140. Header decoder 130 decodes a deflate block's header, loads configuration information in configuration tables 145, and enters bypass mode. In turn, symbol decoder 140 decodes the decode block's deflate elements based upon the loaded configuration information (in configuration tables 145) and provides decoded data 165 for further processing. In one embodiment, symbol decoder 140 utilizes history data from history store 150 to decode particular deflate elements, such as those that include pointer symbols pointing to previously decoded data.
As discussed above, since each deflate block in data stream 110 includes a header with specific configuration information, symbol decoder 140 does not decode a deflate block's deflate elements until header decoder 130 decodes the corresponding deflate block's header and stores the configuration information in configuration tables 145. Decoder pipeline 100, however, does not recognize the end of a deflate block and the start of a new deflate block until symbol decoder 140 decodes the end of block symbol in the deflate block. For example, by the time symbol decoder 140 decodes deflate block 115's end of block symbol, all or a portion of deflate block 120 is loaded into decoder pipeline 100. In this example, deflate block 120's header was not decoded by header decoder 130 and, therefore, symbol decoder 140 is not able to decode deflate block 120's deflate elements correctly.
To resolve this issue, symbol decoder 140 uses recycle path 180 to recycle encoded data that resides in decoder pipeline (e.g., pipeline data 170) back to header decoder 130 (via recycle input 190) when symbol decoder 140 decodes an end of block symbol. As such, when symbol decoder 140 decodes deflate block 115's end of block symbol, symbol decoder 140 recycles deflate block 120 over recycle path 180 (see
In addition, when header decoder 130 detects pipeline data 170 on recycle input 190, header decoder 130 pauses data stream 110 on primary input 125 and identifies a recycle point (e.g., end of the data stream to recycle) in the data stream entering decoder pipeline 100 (see
Symbol decoder 140 continues to recycle pipeline data 170 on recycle path 180 until symbol decoder 140 detects the recycle point/recycle marker (end of pipeline data 170), at which point symbol decoder 140 stops recycling data and passes the received data onto the next stage in symbol decoder 140 (see
Once the header decoder decodes the header (and a Huffman tree if applicable), the header decoder enters bypass mode and passes the data stream to the symbol decoder. Symbol decoder processing commences at 430, whereupon the symbol decoder decodes deflate elements included in the data stream according to the configuration table information stored in configuration tables 145.
The symbol decoder determines whether an end of block symbol in the data stream has been decoded, indicating the end of the deflate block (decision 440). If not, decision 440 branches to the “No” branch to continue decoding the deflate elements included in the deflate block. This looping continues until the symbol decoder decodes the decode block's end of block symbol, at which point decision 440 branches to the “Yes” branch. At this point, the symbol decoder begins recycling data residing in decoder pipeline 100 (pipeline data 170) back to the header decoder via recycle path 180 (see
Referring back to the header decoder, up to this point the header decoder has been in bypass mode (405) and has been monitoring recycle path 180 for recycled pipeline data (decision 410, “No” branch). When the header decoder detects the pipeline data on recycle input 190, decision 410 branches to the “Yes” branch, whereupon the header decoder pauses primary input 125's data stream 210 and inserts a recycle marker (220 shown in
In one embodiment, the header decoder may not add a recycle marker into the data stream if the data stream has already ended, in which case the header decoder already included a stream end indicator into the data stream. In this embodiment, the symbol decoder recycles the pipeline data until the stream end indicator. The header decoder processes the recycled pipeline data (decodes header) and sends the remaining recycled pipeline data back to the symbol decoder along with the stream end signal.
Referring back to the symbol decoder, the symbol decoder continues recycling pipeline data 170 (decision 450, “No” branch, see
Referring back to the header decoder at 420, the header decoder continues to process pipeline data 170 received from the symbol decoder (decision 425 “No” branch) until the header decoder detects the recycle marker at the end of pipeline data 170 (see
Northbridge 515 and Southbridge 535 connect to each other using bus 519. In one embodiment, the bus is a Direct Media Interface (DMI) bus that transfers data at high speeds in each direction between Northbridge 515 and Southbridge 535. In another embodiment, a Peripheral Component Interconnect (PCI) bus connects the Northbridge and the Southbridge. Southbridge 535, also known as the I/O Controller Hub (ICH) is a chip that generally implements capabilities that operate at slower speeds than the capabilities provided by the Northbridge. Southbridge 535 typically provides various busses used to connect various components. These busses include, for example, PCI and PCI Express busses, an ISA bus, a System Management Bus (SMBus or SMB), and/or a Low Pin Count (LPC) bus. The LPC bus often connects low-bandwidth devices, such as boot ROM 596 and “legacy” I/O devices (using a “super I/O” chip). The “legacy” I/O devices (598) can include, for example, serial and parallel ports, keyboard, mouse, and/or a floppy disk controller. The LPC bus also connects Southbridge 535 to Trusted Platform Module (TPM) 595. Other components often included in Southbridge 535 include a Direct Memory Access (DMA) controller, a Programmable Interrupt Controller (PIC), and a storage device controller, which connects Southbridge 535 to nonvolatile storage device 585, such as a hard disk drive, using bus 584.
ExpressCard 555 is a slot that connects hot-pluggable devices to the information handling system. ExpressCard 555 supports both PCI Express and USB connectivity as it connects to Southbridge 535 using both the Universal Serial Bus (USB) the PCI Express bus. Southbridge 535 includes USB Controller 540 that provides USB connectivity to devices that connect to the USB. These devices include webcam (camera) 550, infrared (IR) receiver 548, keyboard and trackpad 544, and Bluetooth device 546, which provides for wireless personal area networks (PANs). USB Controller 540 also provides USB connectivity to other miscellaneous USB connected devices 542, such as a mouse, removable nonvolatile storage device 545, modems, network cards, ISDN connectors, fax, printers, USB hubs, and many other types of USB connected devices. While removable nonvolatile storage device 545 is shown as a USB-connected device, removable nonvolatile storage device 545 could be connected using a different interface, such as a Firewire interface, etcetera.
Wireless Local Area Network (LAN) device 575 connects to Southbridge 535 via the PCI or PCI Express bus 572. LAN device 575 typically implements one of the IEEE 802.11 standards of over-the-air modulation techniques that all use the same protocol to wireless communicate between information handling system 500 and another computer system or device. Optical storage device 590 connects to Southbridge 535 using Serial ATA (SATA) bus 588. Serial ATA adapters and devices communicate over a high-speed serial link. The Serial ATA bus also connects Southbridge 535 to other forms of storage devices, such as hard disk drives. Audio circuitry 560, such as a sound card, connects to Southbridge 535 via bus 558. Audio circuitry 560 also provides functionality such as audio line-in and optical digital audio in port 562, optical digital output and headphone jack 564, internal speakers 566, and internal microphone 568. Ethernet controller 570 connects to Southbridge 535 using a bus, such as the PCI or PCI Express bus. Ethernet controller 570 connects information handling system 500 to a computer network, such as a Local Area Network (LAN), the Internet, and other public and private computer networks.
While
While particular embodiments of the present disclosure have been shown and described, it will be obvious to those skilled in the art that, based upon the teachings herein, that changes and modifications may be made without departing from this disclosure and its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of this disclosure. Furthermore, it is to be understood that the disclosure is solely defined by the appended claims. It will be understood by those with skill in the art that if a specific number of an introduced claim element is intended, such intent will be explicitly recited in the claim, and in the absence of such recitation no such limitation is present. For non-limiting example, as an aid to understanding, the following appended claims contain usage of the introductory phrases “at least one” and “one or more” to introduce claim elements. However, the use of such phrases should not be construed to imply that the introduction of a claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to disclosures containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an”; the same holds true for the use in the claims of definite articles.
Number | Name | Date | Kind |
---|---|---|---|
5051745 | Katz | Sep 1991 | A |
5440753 | Hou et al. | Aug 1995 | A |
5461679 | Normile et al. | Oct 1995 | A |
5506580 | Whiting et al. | Apr 1996 | A |
5890006 | Tran et al. | Mar 1999 | A |
5963154 | Wise et al. | Oct 1999 | A |
6061775 | Tran et al. | May 2000 | A |
6215424 | Cooper | Apr 2001 | B1 |
6219457 | Potu | Apr 2001 | B1 |
6310563 | Har et al. | Oct 2001 | B1 |
6489902 | Heath | Dec 2002 | B2 |
6657565 | Kampf | Dec 2003 | B2 |
6693567 | Cockburn et al. | Feb 2004 | B2 |
6732198 | Johnson et al. | May 2004 | B1 |
6781529 | Lin et al. | Aug 2004 | B1 |
6822589 | Dye et al. | Nov 2004 | B1 |
6865668 | Benes et al. | Mar 2005 | B1 |
6944751 | Fetzer et al. | Sep 2005 | B2 |
7180433 | Grotmol | Feb 2007 | B1 |
7233265 | Cockburn et al. | Jun 2007 | B2 |
7305542 | Madduri | Dec 2007 | B2 |
7439883 | Moni et al. | Oct 2008 | B1 |
7453377 | Lee et al. | Nov 2008 | B2 |
7492290 | Schneider | Feb 2009 | B1 |
7500103 | Cockburn et al. | Mar 2009 | B2 |
7640417 | Madduri | Dec 2009 | B2 |
7681013 | Trivedi et al. | Mar 2010 | B1 |
7817069 | Schneider | Oct 2010 | B2 |
7872598 | Baktir et al. | Jan 2011 | B2 |
8013762 | Matthews et al. | Sep 2011 | B2 |
8125357 | Hamlet et al. | Feb 2012 | B1 |
8244911 | Bass et al. | Aug 2012 | B2 |
8325069 | Gopal et al. | Dec 2012 | B2 |
20030091242 | Kakarala et al. | May 2003 | A1 |
20030163672 | Fetzer et al. | Aug 2003 | A1 |
20030185305 | Macinnis et al. | Oct 2003 | A1 |
20030236964 | Madduri | Dec 2003 | A1 |
20040028141 | Hsiun et al. | Feb 2004 | A1 |
20040116143 | Love et al. | Jun 2004 | A1 |
20040120404 | Sugahara et al. | Jun 2004 | A1 |
20040221143 | Wise et al. | Nov 2004 | A1 |
20040264696 | Cockburn et al. | Dec 2004 | A1 |
20050128109 | Sane et al. | Jun 2005 | A1 |
20050169364 | Singh | Aug 2005 | A1 |
20060291560 | Penna et al. | Dec 2006 | A1 |
20070113222 | Diqnum et al. | May 2007 | A1 |
20070174588 | Fuin | Jul 2007 | A1 |
20080022074 | Madduri | Jan 2008 | A1 |
20080198047 | Niemi et al. | Aug 2008 | A1 |
20080232461 | Dachiku | Sep 2008 | A1 |
20090006510 | Laker et al. | Jan 2009 | A1 |
20090220009 | Tomita et al. | Sep 2009 | A1 |
20100020825 | Bass et al. | Jan 2010 | A1 |
20100141488 | Baktir et al. | Jun 2010 | A1 |
20110208833 | Fallon | Aug 2011 | A1 |
20110280314 | Sankaran et al. | Nov 2011 | A1 |
20130103695 | Rarrick et al. | Apr 2013 | A1 |
20130147644 | Agarwal et al. | Jun 2013 | A1 |
20130148745 | Agarwal et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
0877320 | Apr 1998 | EP |
0891089 | Jan 1999 | EP |
2009134932 | Nov 2009 | WO |
Entry |
---|
Office Action for U.S. Appl. No. 13/313,072, U.S. Patent and Trademark Office, mailed May 13, 2013, 16 pages. |
Office Action for U.S. Appl. No. 13/313,072, U.S Patent and Trademark Office, mailed Dec. 31, 2013, 16 pages. |
Office Action for U.S. Appl. No. 13/555,547, U.S. Patent and Trademark Office, mailed Jun. 4, 2013, 14 pages. |
Notice of Allowance for U.S. Appl. No. 13/555,547, U.S. Patent and Trademark Office, mailed Jan. 2, 2014, 14 pages. |
Deutsch, “DEFLATE Compressed Data Format Specification version 1.3,” Network Working Group RFC 1951, May 1996, 25 pages. |
Lee et al., “Token-Ring Reservation Enhancer for Early Token Release,” IBM Technical Disclosure Bulletin, vol. 33, No. 7, IPCOMM000102647D, Dec. 1, 1990, 6 pages. |
Moertl et al., “Direct Access Storage Device Compression and Decompression Data Flow,” IBM Technical Disclosure Bulletin, vol. 38, No. 11, IPCOM000116855D, Nov. 1, 1995, 5 pages. |
Blanco et al., “Dynamic Random Access Memory Refresh Method in Triple-Modular-Redundant System,” IBM Technical Disclosure Bulletin, Jul. 1, 1993, vol. 36, No. 07, pp. 7-12. |
Burger et al., “A Session Initiation Protocol (SIP) Event Package for Key Press Stimulus (KPML),” Internet Society, Standards Track, Request for Comments 4730, Nov. 1, 2006, 58 pages. |
Surtees et al., “Signaling Compression (SigComp) User's Guide,” Internet Society, ip.com, IPCOM000136745D, May 1, 2006, 45 pages. |
ASPRS Board, “LAS Specification Version 1.2,” ASPRS Board Meeting, Sep. 2, 2008, 13 pages. |
Pereira, “IP Payload Compression Using DEFLATE,” Internet Society, ip.com, IPCOM000002967D, Dec. 1, 1998, 6 pages. |
Deutsch et al, “ZLIB Compressed Data Format Specification Version 3.3,” Internet Society, ip.com, IPCOM000004248D, May 1, 1996, 13 pages. |