The present invention relates to the field of handling hazardous materials, including but not limited to materials such as drugs used for medical purposes. More particularly, this invention relates to a means and method for enabling a user to transfer a hazardous material from a sealed vial or container without allowing significant leakage of the material to the environment. Specific examples of hazardous materials to which the invention is particularly applicable include but are not limited to liquid, freeze dried or powdered cytotoxic drugs that are used extensively in chemotherapy treatment of cancer patients and radiographic materials.
High toxicity materials, including cytotoxic drugs and radiographic materials, are often enclosed in small bottles or vials that have an opening sealed by an elastomeric plug. It is highly desirable to prevent spillage or escape of even minimal amounts of hazardous materials in either liquid or gas form. Small droplets of materials could undesirably contaminate the ambient environment or come in contact with the person administering the substance.
Hazardous drugs are compounded in different ways. In large hospital pharmacies and homecare pharmacies, pharmacy technicians wearing gowns and double gloves compound hazardous drugs under vented biological laboratory hoods. These specially designed hoods are expensive and take up valuable floor space. In hospital wards, clinics, doctors' offices and other locations, laboratory hoods may not be readily available and the personnel compounding the drugs may not usually wear such elaborate protective equipment. Shelf life limitations and patient specific dosing requirements may demand that the drug be mixed closer in time and space to the point of care.
According to one conventional means and method used at the point of care, the user utilizes a sharp needle attached to a syringe to pierce an elastomeric plug or other cap that seals the vial and draw the drug out, often after injecting a suitable solvent or diluents into the vial. The user then injects the drug into a reseal element on an intravenous (IV) container from which the drug is delivered to the patient. Unfortunately, this method creates another hazard in that the person handling the drug or someone else can be “pricked” by the sharp needle.
Therefore, a principal object of this invention is to provide a method and means for securing a vial within an impermeable isolation enclosure.
A further object of the invention is to provide a method and means for piercing a vial within the impermeable isolation enclosure in a fixed position; and selectively accessing the contents of the vial.
Another object of the invention is to provide a method and means for safely transferring a portion of the vial contents, while the vial remains pierced within an impermeable isolation enclosure.
These and other objects will be apparent to those skilled in the art.
A method and system for handling hazardous materials contained in a vial includes an isolation enclosure having an opening selectively sealable about the vial, a bag body portion, and a cap portion. A latching extraction element is attached to the cap portion and has a preceding engaging member to secure the vial to the isolation enclosure, an extraction member adapted to be inserted into the vial and remove material therefrom, and a primary engaging member to secure the vial to the extraction member. A valve mounted outside the isolation enclosure controls the flow of fluid from the vial. An adaptor having a reseal member permits flow when coupled to the valve and restricts flow when uncoupled from the valve. Once uncoupled, the adaptor is removably associated with a second valve located remotely from the isolation enclosure, allowing fluid to pass into the second valve.
With reference to
The isolation enclosure 14 is impermeable and has a body portion 16, a cap portion 17, and an opening 20 that is selectively sealable by a closure portion 22. In one embodiment, the body portion 16 is a flexible bag constructed of a material that is transparent or translucent. The cap portion 17 is constructed of a rigid material and has an inlet port 18 and an outlet port 19. Of course, one of ordinary skill in the art will recognize that the body portion 16 can be semi-rigid or rigid and the cap portion 17 can be semi-rigid or even flexible in whole or part without detracting from the present invention.
Opening 20 is optionally located in any convenient location on the isolation enclosure 14. In one embodiment, the opening 20 is formed between the body portion 16 and the cap portion 17. The closure portion 22 includes a fastener 24 located on the body portion 16 and a fitting 26 located on the cap portion 17. The fastener 24 and fitting 26 mate to selectively seal the opening 20 and form the closure portion 22. It will be understood by one of ordinary skill in the art that the closure portion 22 may be of any known design, including but not limited to snaps fittings, threaded fittings, latch fittings, hook fittings, and clamp fittings.
With reference to
A latching extraction element 32 is attached to the cap portion 17 and has a preceding engaging member 34 to secure the vial 12 to the material handling system 10, an extraction member 36 to extend into and remove material from the vial 12, and a primary engaging member 38 to secure the vial 12 to the extraction member 36.
With reference to
With reference to
With reference to
With reference to
With reference to
International Publication Number WO 94/08549 describes one embodiment of a latching extraction element or piercing pin suitable for the present invention; said description is expressly incorporated herein in its entirety.
As best seen in
With reference to
U.S. Pat. No. 5,738,663 describes one embodiment of a valve suitable for the present invention; said description is expressly incorporated herein in its entirety. The valve described in U.S. Pat. No. 5,738,663 is commonly known as a CLAVE® valve and is commercially available from ICU Medical Inc. of San Clemente, Calif., U.S.A.
With reference to
An actuating post 70 is located at the proximal end of the body 64 and along the fluid passage 66. The actuating post 70 extends beyond the fastening element 68 in the proximal direction. The actuating post 70 is adapted to penetrate the valve 54, compress the seal member 60, and expose the hollow spiked pin 58, thus opening the valve 54.
The adaptor 62 has a reseal member 72 coupled to the actuating post 70 and in fluid communication with the fluid passage 66. The reseal member 72 is preferably formed of a resilient elastomeric material and has a preslit opening 74 that is normally closed due to the resiliency of the reseal member 72. The preslit opening 74 is adapted to receive the hollow spiked pin 58, opening the adaptor 62 to fluid flow from the valve 54. The preslit opening 74 closes when uncoupled from the valve 54, thus restricting flow out of the fluid passage 66.
A port 76 is located at a distal end of the body 64 and along the fluid passage 66. The port 76 is adapted to fluidly connect the adaptor 62 to a needleless syringe 78. Raised grips, threads, or lugs 80 are provided on the body 64 for facilitating connecting the adaptor 62 to the needleless syringe 78. It will be understood to one skilled in the art, that the adaptor 62 and needleless syringe 78 could be made of a unitary construction.
With reference to
Alternatively, the latching extraction element 32 is provided separate from the isolation enclosure 14. In this case, the vial 12 is first secured to the preceding engaging member 34 outside the isolation enclosure 14. Once the latching extraction element 32 and vial 12 are secured together, they are placed within the open isolation enclosure 14. The connecting member 52 of the latching extraction element is then attached to the inlet port 18 of the cap portion 17, securing the vial 12 within the isolation enclosure 14. Once the vial 12 is secured, the isolation enclosure 14 is closed.
The vial 12 can then be safely punctured by gripping the vial through the flexible bag body portion 16 and forcing the vial 12 to simultaneously engage the extraction member 36 and the primary engaging member 38. The extraction member 36 thus punctures the vial 12 and permits access to the vial 12. The primary engaging member 38 secures the vial 12 to the extraction member 36.
Typically, a diluent will be added at this point to the vial 12. To accomplish this, a diluent containing needleless syringe 78 is equipped with the adaptor 62. The adaptor 62 is engaged to the valve 54, opening both the hollow spiked pin 58 and the preslit opening 74 to fluid flow. The diluent is added to the vial 12, and excess gas is vented from the vial through vent port 48.
Once diluted, a portion of the vial 12 contents is removed into the syringe 78. The adaptor 62 and syringe 78 are disconnected from the valve 54. When disconnected, the hollow spiked pin 58 and the preslit opening 74 are resealed, maintaining their respective contents in isolation. At this point the vial 12 remains pierced by the extraction member 36 and fixed by the primary engaging member 38.
The contents of the syringe 78 are now transferred to a desired destination. The transfer occurs by removably associating the adaptor 62 and syringe 78 to a second valve 54 located remotely from the isolation enclosure 14. Again, both the hollow spiked pin 58 and the preslit opening 74 are opened allowing fluid to pass into the second valve 54.
It is therefore seen that the present invention provides a method and means capable of securing a vial within an impermeable isolation enclosure. The present invention further provides a method and means capable of piercing a vial within the impermeable isolation enclosure in a fixed position; and selectively accessing the contents of the vial. The present invention also provides a method and means capable of safely transferring a portion of the vial contents, while the vial remains pierced within an impermeable isolation enclosure.
It is therefore seen that this invention will accomplish at least all of its stated objectives.
Number | Date | Country | |
---|---|---|---|
Parent | 10453393 | Jun 2003 | US |
Child | 11490903 | Jul 2006 | US |