This application claims foreign priority under Paris Convention and 35 U.S.C. §119 to each of Korean Patent Application No. 10-2008-0105652, filed 20 Nov. 2008 with the Korean Intellectual Property Office.
1. Field of the Invention
The present invention relates to a headlamp for a vehicle, and more particularly, to a headlamp control device for a vehicle.
2. Description of the Related Art
A lamp of a bulb type has been mainly used as a headlamp for a vehicle however, in recent years, a High Intensity Discharge (HID) lamp has been also widely used as a headlamp for a vehicle. The headlamp can be set for high beams or low beams depending on an irradiation angle of light.
If the headlamp is set for high beams, driver's sight is secured up to a relatively far distance from the front of a vehicle and thus, a driver can safely travel even at night. However, it can give eye dazzling to a driver of a vehicle coming from the other side or a driver of a vehicle of the front. Also, if the headlamp is set for low beams, eye dazzling of the driver of the vehicle coming from the other side or the driver of the vehicle of the front can be reduced. However, compared to the high beams, the low beams are vulnerable to security of driver's sight.
In the conventional headlamp, a driver has to manually manipulate a switch of a headlamp to set the headlamp for high beams or low beams. Thus, when a vehicle approaches from the other side, if the headlamp is not set for the low beams due to driver's carelessness, it gives eye dazzling to a vehicle driver of the other side, thus causing the danger of generation of a traffic accident. Also, because the driver has to manipulate the switch of the headlamp during driving, this manipulation is very trouble to the driver.
An aspect of exemplary embodiments of the present invention is to address at least the problems and/or disadvantages and to provide at least the advantages described below. Accordingly, an aspect of exemplary embodiments of the present invention is to provide a headlamp control device for a vehicle, for preventing a traffic accident and providing a driver with a convenience, by sensing if a vehicle exists within a set range of the front using a front sensor such as a RAdio Detecting And Ranging (RADAR) sensor, a ridar sensor, or a camera and automatically setting a headlamp for high beams or low beams depending on the sense result.
To achieve these and other advantages and in accordance with the purpose of the present invention, there is provided a headlamp control device for a vehicle. The device includes a front sensor, a wheel speed sensor, an Electrical Control Unit (ECU), a first ballaster, a second ballaster, a relay switch, and a power supply switch. The front sensor senses a target vehicle existing within a set area of the front of a reference vehicle, and outputs a sense signal. The wheel speed sensor is installed in a wheel of the reference vehicle, and detects a speed of the reference vehicle on the basis of a rotatory speed of the wheel. The ECU outputs a switching control signal in response to a lighting signal. While first and second high-beam lamps light on, the ECU calculates a relative speed of the target vehicle, a distance between the reference vehicle and the target vehicle, and an angle for a position of the target vehicle based on a moving direction of the reference vehicle, on the basis of the speed of the reference vehicle received from the wheel speed sensor and the sense signal received from the front sensor. On the basis of the calculation result, the ECU outputs a control current. The first ballaster generates a first boosting voltage on the basis of an internal voltage, and supplies the first booting voltage as an operation power source to a first High Intensity Discharge (HID) lamp. The second ballaster generates a second boosting voltage on the basis of the internal voltage, and supplies the second boosting voltage as an operation power source to a second HID lamp. When the internal voltage is applied, the relay switch supplies the internal voltage to the first and second high-beam lamps. While the control current is supplied by the ECU, the relay switch stops supplying the internal voltage to the first and second high-beam lamps and then, supplies the internal voltage to the first and second ballasters. The power supply switch turns on in response to the switching control signal, and applies the internal voltage to the relay switch.
As described above, the headlamp control device for the vehicle according to the present invention senses if a vehicle exists within a set range of the front using a front sensor such as a radar sensor, a ridar sensor, or a camera and, depending on the sense result, automatically sets a headlamp for high beams or low beams, thus being able to prevent a traffic accident and provide a convenience to a driver.
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings in which:
Throughout the drawings, the same drawing reference numerals will be understood to refer to the same elements, features and structures.
Exemplary embodiments of the present invention will now be described in detail with reference to the annexed drawings. In the following description, a detailed description of known functions and configurations incorporated herein has been omitted for conciseness.
The headlamp control device 100 for the vehicle includes a wheel speed sensor 110, a front sensor 120, an Electrical Control Unit (ECU) 130, first and second ballasters 140 and 150, a relay switch 161, a power supply switch 162, a lighting switch 163, first and second leveling units 170 and 180, and a communication unit 190. The first leveling unit 170 includes a first driver 171 and a first motor 172. The second leveling unit 180 includes a second driver 181 and a second motor 182.
The wheel speed sensor 110 is installed in a wheel of a reference vehicle, and detects a speed of the reference vehicle on the basis of a speed of revolution of the wheel. The front sensor 120 senses a target vehicle existing within a set area of the front of the reference vehicle, and outputs a sense signal (SEN) to the ECU 130. The ECU 130 outputs a switching control signal (SWCTL) to the power supply switch 162 in response to a lighting signal (LGT). When a user powers on a headlamp through an input unit (not shown), the lighting signal (LGT) is input to the ECU 130.
While first and second high-beam lamps 201 and 202 light on, the ECU 130 receives a speed (SPD) of the reference vehicle from the wheel speed sensor 110, and receives a sense signal (SEN) from the front sensor 120. The ECU 130 calculates a relative speed of the target vehicle, a distance between the reference vehicle and the target vehicle, and an angle for a position of the target vehicle based on a moving direction of the reference vehicle, on the basis of peed of the reference vehicle and the sense signal (SEN). The ECU 130 outputs a control current (Ic) to the relay switch 161 on the basis of the calculation result. The ECU 130 can accurately recognize a time to change the headlamp from high beams to low beams on the basis of the relative speed of the target vehicle.
When a distance (R1 or R2) between a reference vehicle (‘B’ in
The first ballaster 140 generates a first boosting voltage (VBST1) on the basis of an internal voltage (VB), and supplies the first boosting voltage (VBST1) to a first High Intensity Discharge (HID) lamp 203 as an operation power source. The second ballaster 150 generates a second boosting voltage (VBST2) on the basis of the internal voltage (VB), and supplies the second boosting voltage (VBST2) to a second HID lamp 204 as an operation power source.
When the internal voltage (VB) is applied, the relay switch 161 supplies the internal voltage (VB) to the first and second high-beam lamps 201 and 202. While the control current (Ic) is supplied by the ECU 130, the relay switch 161 stops supplying the internal voltage (VB) to the first and second high-beam lamps 201 and 202 and then, supplies the internal voltage (VB) to the first and second ballasters 140 and 150.
A construction of the relay switch 161 is described in more detail. A contact point (a) of the relay switch 161 connects to one side terminal of the power supply switch 162. The first and second high-beam lamps 201 and 202 connect to a contact point (b) of the relay switch 161. The first and second drivers 171 and 181 and the first and second ballasters 140 and 150 connect to a contact point (c) of the relay switch 161.
When the control current (Ic) flows in a coil (L) of the relay switch 161, the contact point (a) of the relay switch 161 connects to the contact point (c). When the control current (Ic) does not flow in the coil (L), the contact point (a) of the relay switch 161 connects to the contact point (b).
The power supply switch 162 turns on in response to a switching control signal (SWCTL) received from the ECU 130. When the power supply switch 162 turns on, the internal voltage (VB) is applied to the relay switch 161.
The internal voltage (VB) is input to one side terminal of the lighting switch 163, and the other side terminal of the lighting switch 163 connects to a terminal of the power supply switch 162. When a lighting key (not shown) of a vehicle is ON, the lighting switch 163 turns on, thus supplying the internal voltage (VB) to the ECU 130 and the power supply switch 162.
When the lighting switch 163 and the power supply switch 162 all turn on, the internal voltage (VB) is supplied to the first and second high-beam lamps 201 and 202. Also, when the lighting switch 163 and the power supply switch 162 all turn on and the contact point (a) of the relay switch 161 connects to the contact point (c), the internal voltage (VB) is supplied to the first and second drivers 171 and 181 and the first and second ballasters 140 and 150.
The first driver 171 controls an operation of the first motor 172 on the basis of a leveling control signal (LCTL) received from the ECU 130. The second driver 181 controls an operation of the second motor 182 on the basis of the leveling control signal (LCTL). The first motor 172 changes an irradiation angle of the first HID lamp 203 by moving a housing (not shown) of the first HID lamp 203 or a reflection plate (not shown) installed within the housing of the first HID lamp 203.
The second motor 182 changes an irradiation angle of the second HID lamp 204 by moving a housing (not shown) of the second HID lamp 204 or a reflection plate (not shown) installed within the housing of the second HID lamp 204.
The communication unit 190 provides communication between an external diagnosis unit 205 and the ECU 130. The diagnosis unit 205 diagnoses the normality or abnormality of each constituent element of the headlamp control device 100 through communication with the ECU 130.
Meantime, the front sensor 120 can be realized by a radar sensor or a ridar sensor.
A case of realizing the front sensor 120 as the radar sensor 120 is described with reference to
A process of calculating, by the ECU 130, a relative speed of a target vehicle, a distance between a reference vehicle and the target vehicle, and an angle for a position of the target vehicle based on a moving direction of the reference vehicle, on the basis of a reflection radar signal (RRSIG) and a speed (SPD) of the reference vehicle can be well understood by those skilled in the art and thus, its detailed description is omitted.
Referring to
The rotatory mirror 222 is rotated at a set speed by a motor 223 and controls a transmit direction of the infrared signal (IRSIG) such that the infrared signal (IRSIG) scans a set area of the front of the reference vehicle (‘B’ in
A process of calculating, by the ECU 130, a relative speed of a target vehicle, a distance between a reference vehicle and the target vehicle, and an angle for a position of the target vehicle based on a moving direction of the reference vehicle, on the basis of a reflection infrared signal (RIRSIG) and a speed (SPD) of the reference vehicle can be well understood by those skilled in the art and thus, its detailed description is omitted.
A difference between the headlamp control devices 101 and 100 for the vehicle is that the headlamp control device 101 for the vehicle includes a steering wheel angle sensor 200, and the front sensor 120 is realized as the camera 120″. The steering wheel angle sensor 200 detects a rotatory angle (CLAG) of a steering wheel of the reference vehicle and outputs the detected rotatory angle (CLAG) to the ECU 130. As illustrated in
While the first and second high-beam lamps 201 and 202 light on, the ECU 130 calculates a relative speed of a target vehicle (‘F’ or ‘G’ in
This is described in more detail. The ECU 130 obtains a direction of a vector dependent on the moving direction of the reference vehicle on the basis of the rotatory angle (CLAG) of the steering wheel, and calculates a magnitude of the vector on the basis of the speed (SPD) of the reference vehicle.
The ECU 130 converts a color video expressed by the photograph data signal (PDAT) into a black-and-white video whose specific color component (e.g., a lane and a vehicle) is highlighted. After that, the ECU 130 filters the black-and-white video and extracts only a lane and vehicle portion. At this time, in the extracted video, an image of a vehicle is displayed bigger compared to an image of a lane.
For example, a process of, when a target vehicle is the target vehicle (F) moving oppositely to the moving direction of the reference vehicle (E), calculating, by the ECU 130, a relative speed of the target vehicle (F), a distance between the reference vehicle (E) and the target vehicle (F), and an angle (θ11) for a position of the target vehicle (F) based on a moving direction (D1) of the reference vehicle (E) is described with reference to
The ECU 130 calculates a distance (R11 in
Meantime, the ECU 130 calculates a relative speed (VF in
VF=√{square root over (VX02+VY02)} (1)
The ECU 130 can calculate speeds (VX1 and VX2 in
For example, if photograph is taken from a first frame to a third frame during three seconds, and the vehicle (E) moves from a position at the first frame to a position at the third frame in a horizontal direction as much as three pixels, when a distance per pixel is equal to one meter, the speed (VX1) is 1 m/sec. Similarly with this, the speeds (VX2 and VY2) can be also calculated. Meantime, the ECU 130 obtains a direction of a vector (i.e., a speed (VY1)) dependent on the moving direction of the reference vehicle, on the basis of a rotatory angle (CLAG) of a steering wheel, and calculates a magnitude of the vector on the basis of a speed (SPD) of the reference vehicle.
The ECU 130 can calculate speeds (VX0 and VY0), on the basis of the speeds (VX1, VX2, VY1, and VY2) obtained by the aforementioned calculation process and Equation 2 below.
VX0=VX2−VX1,
VY0=VY2−(−VY1) (2)
In Equation 2, a negative sign (−) is affixed before ‘VY1’ because the moving direction of the target vehicle (F) and the moving direction of the reference vehicle (E) are opposite to each other. The ECU 130 can calculate the relative speed (VF) of the target vehicle (F), on the basis of Equation 1 and Equation 2.
Next, the angle (θ11) for the position of the target vehicle (F) based on the moving direction (D1) of the reference vehicle (E) can be calculated in two methods. The first method is a calculation method using the speeds (VX0 and VY0). The second method is a calculation method using distances (L1 and L2 in
The angle (θ11) can be expressed using the speeds (VX0 and VY0) as in Equation 3 below.
Also, the angle (θ11) can be expressed using the distances (L1 and L2) as in Equation 4 below.
For example, a process of, when a target vehicle is the target vehicle (G) moving identically with a moving direction of the reference vehicle (E), calculating, by the ECU (130), a relative speed of the target vehicle (G), a distance between the reference vehicle (E) and the target vehicle (G), and an angle (θ12) for a position of the target vehicle (G) based on the moving direction (D1) of the reference vehicle (E) is described with reference to
The ECU 130 calculates a distance (R12 in
Meantime, the ECU 130 calculates a relative speed (VF′ in
VF′=√{square root over (VX0′2+VY0′2)} (5)
The ECU 130 can calculate speeds (VX1 and VX3 in
The ECU 130 can calculate speeds (VX0′ and VY0′) on the basis of the speeds (VX1, VX3, VY1, and VY3) obtained in the aforementioned calculation process and Equation 6 below.
VX0′=VX2−VX1,
VY0′=VY2−VY1 (6)
In Equation 6, in contrast to Equation 2, a negative sign (−) is not affixed before ‘VY1’ because the moving direction of the target vehicle (G) and the moving direction of the reference vehicle (E) are the same direction as each other. The ECU 130 can calculate the relative speed (VF′) of the target vehicle (G) on the basis of Equations 5 and 6.
Next, similarly with the aforementioned, the angle (θ12) for the position of the target vehicle (G) based on the moving direction (D1) of the reference vehicle (E) can be calculated on the basis of the speeds (VX0′ and VY0′), and can be also calculated on the basis of the distances (L11 and L12 in
When the angle (θ12) is calculated on the basis of the speeds (VX0′ and VY0′), it can be expressed as in Equation 7 below.
Also, when the angle (θ12) is calculated on the basis of the distances (L11 and L12), it can be expressed as in Equation 8 below.
As aforementioned, the headlamp control devices 100 and 101 for the vehicle recognize a time when a target vehicle enters within a set distance and set angle range of the vehicle front by the front sensor 120 such as a radar sensor, a ridar sensor, or a camera and automatically adjust a headlamp from high beams to low beams and therefore, can reduce opponent driver's eye dazzling. Also, if the target vehicle does not enter within the set distance and set angle range of the vehicle front, the headlamp control devices 100 and 101 for the vehicle keep the headlamp in a high-beams state and therefore, can sufficiently guarantee a driver's visibility range.
While the invention has been shown and described with reference to a certain preferred embodiment thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2008-0115652 | Nov 2008 | KR | national |