A left ventricular assist device (LVAD) and/or other devices may be used to provide long-term support for heart failure patients or patients suffering from other heart related conditions. Traditionally, many such devices assist heart functioning by generating a continuous blood flow using a constant pumping speed set by clinician based on the patient's physiologic conditions at that time when the particular device is implanted.
However, the natural cardiac cycle of a human being (or other animals) does not usually generate a continuous and constant blood flow. Instead, flow is highest during the systole of a cardiac cycle, and then decreased during the diastole of the cardiac cycle. Thus the heart and the implanted device operate in different fashions (i.e., non-constant versus constant flow) which may be detrimental to the patient.
Embodiments of the present invention provide systems and methods for determining characteristics of a cardiac cycle, so that operation of LVAD and/or other devices may be altered in a dynamic manner when used in a human or other animal experiencing heart related conditions.
In one aspect, a method for synchronizing operation of a heart assist pump device to a patient's cardiac cycle is provided. The method may include obtaining a signal from a motor of a heart assist pump device and filtering the signal to remove noise. The method may also include determining a speed synchronization start point at which time the motor of the heart assist pump device will begin a change in speed of operation based on the filtered signal. The method may further include modulating a speed of the motor of the heart assist pump device to a target speed at the speed synchronization start point, thereby synchronizing the change in speed of operation with a patient's cardiac cycle.
In another aspect, a heart assist pump device is provided. The device may include a motor and a controller. The controller may be configured to obtain frequency range data from the motor and to determine a speed synchronization start point at which time the motor of the heart assist pump device will begin a change in speed of operation based on the frequency range data. The controller may also be configured to modulate a speed of the motor to a target speed at the speed synchronization start point, thereby synchronizing the change in speed of operation with a patient's cardiac cycle.
The present invention is described in conjunction with the appended figures:
The ensuing description provides exemplary embodiments only, and is not intended to limit the scope, applicability or configuration of the disclosure. Rather, the ensuing description of the exemplary embodiments will provide those skilled in the art with an enabling description for implementing one or more exemplary embodiments. It being understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention as set forth herein.
Specific details are given in the following description to provide a thorough understanding of the embodiments. However, it will be understood by one of ordinary skill in the art that the embodiments may be practiced without these specific details. For example, with regard to any specific embodiment discussed herein, any one or more details may or may not be present in all versions of that embodiment. Likewise, any detail from one embodiment may or may not be present in any particular version of another embodiment discussed herein. Additionally, well-known circuits, systems, processes, algorithms, structures, and techniques may be shown without unnecessary detail in order to avoid obscuring the embodiments. The absence of discussion of any particular element with regard to any embodiment herein shall be construed to be an implicit contemplation by the disclosure of the absence of that element in any particular version of that or any other embodiment discussed herein.
Also, it is noted that individual embodiments may be described as a process which is depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process may be terminated when its operations are completed, but could have additional steps not discussed or included in a figure. Furthermore, not all operations in any particularly described process may occur in all embodiments. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination corresponds to a return of the function to the calling function or the main function.
The term “machine-readable medium” includes, but is not limited to portable or fixed storage devices, optical storage devices, wireless channels and various other mediums capable of storing, containing or carrying instructions and/or data. A code segment or machine-executable instructions may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted via any suitable means including memory sharing, message passing, token passing, network transmission, etc.
Furthermore, embodiments of the invention may be implemented, at least in part, either manually or automatically. Manual or automatic implementations may be executed, or at least assisted, through the use of machines, hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof. When implemented in software, firmware, middleware or microcode, the program code or code segments to perform the necessary tasks may be stored in a machine readable medium. One or more processors may perform the necessary tasks.
In some embodiments, a left ventricular assist device (LVAD) or other device may be intended to provide the long-term support for a heart failure patient or a patient suffering from another condition. Many such devices generate a continuous blood flow using a constant pumping speed set by clinician or other process based on the patient's physiologic conditions at that time when such device is implanted. However, there is the potential to vary the speed of the device to be synchronized to the natural cardiac cycle by modulating the speed based on the natural cardiac cycle. Using this approach, the pump speed is increased during systole of a cardiac cycle (the time of highest flow) and decreased during diastole (the time of lowest flow), so that a maximum unloading of a weakened ventricle may be obtained. This may establish stable hemodynamic conditions and enables a variation of the aortic pulse pressure, while keeping the organ perfusion at an even level to benefit the patient's recovery. Although the heart is weakened, it is still beating. The LVAD may support the beating heart such that when the heart pumps the resistance met by the pump goes down and vice versa. This would be seen as a change in the back emf and current. In some embodiments, the change in current may depend on the control scheme. For example, the LVAD may be designed to maintain a set motor speed (rpm). The current needed to maintain the speed goes down during pumping (systole). In other embodiments, the LVAD may be designed to maintain a set flow rate, causing the current to go down during systole. It will be appreciated that the LVAD could be designed to just apply a set current, in which case it doesn't matter what the heart is doing. The flow rate will then go up when the pump and heart are pushing fluid at the same time.
In some embodiments the pump speed of a LVAD or other device may be precisely synchronized to the systolic phases of the cardiac cycle in a reliable real-time mode regardless of the irregular heart beats. This may prevent a lack of synchrony which may cause ventricular load fluctuation or even overloading of the heart which can increase the occurrence of adverse events and affect the recovery of the patient. Unsynchronized increases in pump speed could also increase the risk of ventricular suction, particularly at the end of systole when the ventricle could be nearly empty. Embodiments of the invention reduce such risks by properly identifying regular heart beats and the proper time to increase pump speed relative thereto.
Embodiments of the invention implement real-time speed modulation to at least more precisely synchronize LVAD pumps or other devices with the heart beat cycle that allow for increasing the pump speed before the systolic phase and reducing the speed before the end of systole.
The architecture of speed modulation is shown in
Stage 1—Data Processing—A filter is employed to obtain reasonable frequency range data from the raw motor current or power signal data which is concurrent with, and representative of, the heart beat cycle.
Stage 2—Heart Beat Pulse Identification—The heart beat cycle features are identified from the filtered motor current or power data from Stage 1 to determines the speed synchronization start time point (i.e., the point in time in which the pump speed should increase).
Stage 3—Speed Synchronization and Ramp Control—Based on the speed synchronization start point identified in Stage 2, a pump motor is controlled to synchronize speed increases thereof with heart beats. A targeted speed reference for the motor drive, with ramp up and down control, is specified by a clinician or other method.
At Stage 1, high frequency noise data which is out of the general heart beat range (i.e. less than 5 Hz (300 beats/min)) is filtered out of the motor current or power data. Any kind of digital filter, for example, an infinite impulse response filter (IIR) or finite impulse response filter (FIR), may be employed, but the phase delay and computational load may need to be considered when implemented it into an embedded LVAD controller. In one embodiment, a second order IIR is employed.
At Stage 2, the pulse period of heart beat is identified from the filtered motor current or power data from Stage 1. In some embodiments, at least two consecutive and complete prior-occurring heart beats may be analyzed to anticipate the current heart beat cycle features. In other embodiments, the two complete prior-occurring heart beats may not be consecutive, or more than two complete prior-occurring heart beats may be analyzed, either consecutive or non-consecutive. In some embodiments, more than two complete prior-occurring heart beats may be analyzed. For example, three, four, five, or any specific number of heart beats greater than five may be analyzed depending on the embodiment. However, using more than the last two consecutive and complete prior-occurring heart beats may involve older heart beat history data which may include irregular heart beats or inconsistent data, thereby reducing the accuracy of the predicted current heart beats cycle features.
Stage 2 involves three separate steps as shown in
Step 1—Determine if each pulse is complete—To determine if a pulse is complete, characteristics of the pulse may first be determined from the data provided from Stage 1. Those characteristics may include the following (see
The first falling-crossing time (tf) which is the point at which the pulse first crosses the mean value on the downslope
The following rules are then used to determine if two consecutive prior pulses are complete pulses. Both rules must be satisfied to allow the two pulses to be used as a reference for Step 2 of the process which determines the heart beat cycle period.
Rule 1: The amplitude difference between the maximum amplitude and the mean amplitude must satisfy the following:
c1Diffmax2Min[i]<Diffmax2Mean[i]<c2Diffmax2Min[i]
Where,
In one embodiment c1=0.375 and c2=0.75, though in other embodiments other values of c1 and c2 may be possible.
Rule 2: The four pulse periods from different time points must satisfy the following:
Tcyc_min<{Tf2f[i],Tr2r[i]Tmin2min[i],Tmax2max[i]}<Tcyc_max
Where,
In one embodiment Tcyc_min=0.3 seconds (200 beats/min), Tcyc_max=1.25 seconds (48 beats/min), though in other embodiments other values of Tcyc_min and Tcyc_max may be possible.
If these rules are not satisfied for two prior consecutive pulses, then such pulses are not adjudged to be complete pulses and pulses prior to the non-complete pulses are then analyzed until two prior consecutive complete pulse are located. Step 2 is then commenced based on such pulses.
Step 2—Determine the pulse period—To determine the pulse period the median value of the previously discussed four pulse periods is determined per the below:
Tcyc[i]=Median{Tf2f[i],Tr2r[i],Tmin2min[i],Tmax2max[i]}
Step 3—Calculate initial speed synchronization start point—There are at least four possible ways to determine an initial speed synchronization start point (tsync[0]) as shown in the tables in
After completion of Step 2 and Step 3, the process continues to Stage 3, where based on the speed synchronization start point identified in Stage 2, a pump motor is controlled to synchronize speed increases thereof with heart beats. Considering all the timing offsets such as the data filter timing delay, the phase shift between left ventricle pressure and pumping flow and motor drive current or power, pump speed ramp up and down time, all the next series of speed synchronization time points can be finalized as:
tsync[i]=tsync[0]−Toffset+(j−1)*Tcyc[i]
Where Toffset<Tmin2max and in one possible embodiment Toffset≈Toffset≈40˜80 ms, and J is equal to the sequential heart beat to be synchronized (i.e., J=1 at the first heart beat, J=2 at the second heart beat, etc.).
This synchronized heart beat count (J) should not be too large, since the speed synchronization at one round may rely on the results of Stages 1 and 2, which may not be matched with the current heart beat features at after some while probably due to the patient's physiology or other factors, and thus possibly cause asynchrony between the pump and heartbeat. Therefore, to get the precise real-time synchronization, it may be necessary to identify the latest heart beat cycle features and start the synchronization again after several synchronized heart beat counts. Thus Jmax may equal 10, 9, 8, 7, or fewer beats in some embodiments, though in other embodiments may exceed 10, prior to Stages 1-3 being re-initiated to ensure asynchrony between the pump and heartbeat does not occur.
The computer system 500 is shown comprising hardware elements that may be electrically coupled via a bus 590. The hardware elements may include one or more central processing units 510, one or more input devices 520 (e.g., data acquisition subsystems), and one or more output devices 530 (e.g., control subsystems). The computer system 500 may also include one or more storage device 540. By way of example, storage device(s) 540 may be solid-state storage device such as a random access memory (“RAM”) and/or a read-only memory (“ROM”), which can be programmable, flash-updateable and/or the like.
The computer system 500 may additionally include a computer-readable storage media reader 550, a communications system 560 (e.g., a network device (wireless or wired), a Bluetooth™ device, cellular communication device, etc.), and working memory 580, which may include RAM and ROM devices as described above. In some embodiments, the computer system 500 may also include a processing acceleration unit 570, which can include a digital signal processor, a special-purpose processor and/or the like.
The computer-readable storage media reader 550 can further be connected to a computer-readable storage medium, together (and, optionally, in combination with storage device(s) 540) comprehensively representing remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing computer-readable information. The communications system 560 may permit data to be exchanged with a network, system, computer and/or other component described above.
The computer system 500 may also comprise software elements, shown as being currently located within a working memory 580, including an operating system 584 and/or other code 588. It should be appreciated that alternate embodiments of a computer system 500 may have numerous variations from that described above. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Furthermore, connection to other computing devices such as network input/output and data acquisition devices may also occur.
Software of computer system 500 may include code 588 for implementing any or all of the function of the various elements of the architecture as described herein. Methods implementable by software on some of these components have been discussed above in more detail.
The invention has now been described in detail for the purposes of clarity and understanding. However, it will be appreciated that certain changes and modifications may be practiced within the scope of the disclosure.
This application is a continuation of U.S. patent application Ser. No. 16/050,889, filed Jul. 31, 2018, now U.S. Pat. No. 10,506,935 issued Dec. 17, 2019, and entitled “HEART BEAT IDENTIFICATION AND PUMP SPEED SYNCHRONIZATION,” which is a continuation application of U.S. patent application Ser. No. 15/041,716, filed Feb. 11, 2016, now U.S. Pat. No. 10,052,420, issued Aug. 21, 2018, and entitled “HEART BEAT IDENTIFICATION AND PUMP SPEED SYNCHRONIZATION,” which claims priority to U.S. Provisional Application No. 62/114,886, filed Feb. 11, 2015 and entitled “HEART BEAT IDENTIFICATION AND PUMP SPEED SYNCHRONIZATION.” This application is also related to co-pending and commonly assigned U.S. patent application Ser. No. 13/873,551, filed Apr. 30, 2013, and entitled “CARDIAC PUMP WITH SPEED ADAPTED FOR VENTRICLE UNLOADING.” These Applications are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1093868 | Leighty | Apr 1914 | A |
2684035 | Kemp | Jul 1954 | A |
3023334 | Burr et al. | Feb 1962 | A |
3510229 | Smith | May 1970 | A |
3620638 | Kaye et al. | Nov 1971 | A |
3870382 | Reinhoudt | Mar 1975 | A |
3932069 | Giardini et al. | Jan 1976 | A |
3960468 | Boorse et al. | Jun 1976 | A |
4149535 | Voider | Apr 1979 | A |
4382199 | Isaacson | May 1983 | A |
4392836 | Sugawara | Jun 1983 | A |
4434389 | Langley et al. | Feb 1984 | A |
4507048 | Belenger et al. | Mar 1985 | A |
4528485 | Boyd, Jr. | Jul 1985 | A |
4540402 | Aigner | Sep 1985 | A |
4549860 | Yakich | Oct 1985 | A |
4645961 | Maisky | Feb 1987 | A |
4686982 | Nash | Aug 1987 | A |
4688998 | Olsen et al. | Aug 1987 | A |
4753221 | Kensey et al. | Jun 1988 | A |
4769006 | Papatonakos | Sep 1988 | A |
4779614 | Moise | Oct 1988 | A |
4790843 | Carpentier et al. | Dec 1988 | A |
4806080 | Mizobuchi et al. | Feb 1989 | A |
4817586 | Wampler | Apr 1989 | A |
4846152 | Wampler et al. | Jul 1989 | A |
4857781 | Shih | Aug 1989 | A |
4888011 | Kung et al. | Dec 1989 | A |
4895557 | Moise et al. | Jan 1990 | A |
4900227 | Troup lin | Feb 1990 | A |
4902272 | Milder et al. | Feb 1990 | A |
4906229 | Wampler | Mar 1990 | A |
4908012 | Moise et al. | Mar 1990 | A |
4919647 | Nash | Apr 1990 | A |
4930997 | Bennett | Jun 1990 | A |
4944722 | Carriker et al. | Jul 1990 | A |
4957504 | Chardack | Sep 1990 | A |
4964864 | Summers et al. | Oct 1990 | A |
4969865 | Hwang et al. | Nov 1990 | A |
4985014 | Orejola | Jan 1991 | A |
4995857 | Arnold | Feb 1991 | A |
5021048 | Buckholtz | Jun 1991 | A |
5078741 | Bramm et al. | Jan 1992 | A |
5092844 | Schwartz et al. | Mar 1992 | A |
5092879 | Jarvik | Mar 1992 | A |
5100374 | Kageyama | Mar 1992 | A |
5106263 | Irie | Apr 1992 | A |
5106273 | Lemarquand et al. | Apr 1992 | A |
5106372 | Ranford | Apr 1992 | A |
5112202 | Ozaki et al. | May 1992 | A |
5129883 | Black | Jul 1992 | A |
5145333 | Smith | Sep 1992 | A |
5147186 | Buckholtz | Sep 1992 | A |
5112349 | Summers et al. | Dec 1992 | A |
5190528 | Fonger et al. | Feb 1993 | A |
5201679 | Velte et al. | Apr 1993 | A |
5211546 | Isaacson et al. | May 1993 | A |
5229693 | Futami et al. | Jul 1993 | A |
5275580 | Yamazaki | Jan 1994 | A |
5290227 | Pasque | Jan 1994 | A |
5360445 | Goldowsky | Jan 1994 | A |
5290236 | Mathewson | Mar 1994 | A |
5300112 | Barr | Apr 1994 | A |
5306295 | Kolff et al. | Apr 1994 | A |
5312341 | Turi | May 1994 | A |
5313128 | Robinson et al. | May 1994 | A |
5332374 | Kricker et al. | Jul 1994 | A |
5346458 | Afield | Sep 1994 | A |
5350283 | Nakazeki et al. | Sep 1994 | A |
5354331 | Schachar | Nov 1994 | A |
5370509 | Golding et al. | Dec 1994 | A |
5376114 | Jarvik | Dec 1994 | A |
5385581 | Bramm et al. | Jan 1995 | A |
5405383 | Barr | Nov 1995 | A |
5449342 | Hirose et al. | Dec 1995 | A |
5478222 | Heidelberg et al. | Dec 1995 | A |
5504978 | Meyer, III | Apr 1996 | A |
5507629 | Jarvik | Apr 1996 | A |
5519270 | Yamada et al. | May 1996 | A |
5533957 | Aldea | Sep 1996 | A |
5569111 | Cho et al. | Oct 1996 | A |
5575630 | Nakazawa et al. | Nov 1996 | A |
5588812 | Taylor et al. | Dec 1996 | A |
5595762 | Derrieu et al. | Jan 1997 | A |
5643226 | Cosgrove et al. | Jan 1997 | A |
5611679 | Ghosh et al. | Mar 1997 | A |
5613935 | Jarvik | Mar 1997 | A |
5678306 | Bozeman, Jr. et al. | Oct 1997 | A |
5692882 | Bozeman, Jr. et al. | Dec 1997 | A |
5695471 | Wampler | Dec 1997 | A |
5708346 | Schob | Jan 1998 | A |
5725357 | Nakazeki et al. | Mar 1998 | A |
5738649 | Macoviak | Apr 1998 | A |
5746575 | Westphal et al. | May 1998 | A |
5746709 | Rom et al. | May 1998 | A |
5755784 | Jarvik | May 1998 | A |
5776111 | Tesio | Jul 1998 | A |
5795074 | Rahman et al. | Aug 1998 | A |
5800559 | Higham et al. | Sep 1998 | A |
5807311 | Palestrant | Sep 1998 | A |
5814011 | Corace | Sep 1998 | A |
5824069 | Lemole | Oct 1998 | A |
5749855 | Reitan | Dec 1998 | A |
5843129 | Larson et al. | Dec 1998 | A |
5851174 | Jarvik et al. | Dec 1998 | A |
5853394 | Tolkoff et al. | Dec 1998 | A |
5890883 | Golding et al. | Apr 1999 | A |
5911685 | Siess et al. | Jun 1999 | A |
5917295 | Mongeau | Jun 1999 | A |
5917297 | Gerster et al. | Jun 1999 | A |
5921913 | Siess | Jul 1999 | A |
5924848 | Izraelev | Jul 1999 | A |
5924975 | Goldowsky | Jul 1999 | A |
5928131 | Prem | Jul 1999 | A |
5938412 | Israelev | Aug 1999 | A |
5941813 | Sievers et al. | Aug 1999 | A |
5945753 | Maegawa et al. | Aug 1999 | A |
5868702 | Stevens et al. | Sep 1999 | A |
5868703 | Bertolero et al. | Sep 1999 | A |
5947703 | Nojiri et al. | Sep 1999 | A |
5951263 | Taylor et al. | Sep 1999 | A |
5984892 | Bedingham | Nov 1999 | A |
5964694 | Siess et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6007479 | Rottenberg et al. | Dec 1999 | A |
6030188 | Nojiri et al. | Feb 2000 | A |
6042347 | Scholl et al. | Mar 2000 | A |
6053705 | Schob et al. | Apr 2000 | A |
6066086 | Antaki et al. | May 2000 | A |
6071093 | Hart | Jun 2000 | A |
6074180 | Khanwilkar et al. | Jun 2000 | A |
6080133 | Wampler | Jun 2000 | A |
6082900 | Takeuchi et al. | Jul 2000 | A |
6083260 | Aboul-Hosn et al. | Jul 2000 | A |
6100618 | Schoeb et al. | Aug 2000 | A |
6058593 | Siess | Sep 2000 | A |
6123659 | leBlanc et al. | Sep 2000 | A |
6123726 | Mori et al. | Sep 2000 | A |
6139487 | Siess | Oct 2000 | A |
6086527 | Talpade | Nov 2000 | A |
6142752 | Akamatsu et al. | Nov 2000 | A |
6143025 | Stobie et al. | Nov 2000 | A |
6146325 | Lewis et al. | Nov 2000 | A |
6149683 | Lancisi et al. | Nov 2000 | A |
6158984 | Cao et al. | Dec 2000 | A |
6171078 | Schob | Jan 2001 | B1 |
6176822 | Nix et al. | Jan 2001 | B1 |
6176848 | Rau et al. | Jan 2001 | B1 |
6179773 | Prem et al. | Jan 2001 | B1 |
6190304 | Downey et al. | Feb 2001 | B1 |
6200260 | Bolling | Mar 2001 | B1 |
6206659 | Izraelev | Mar 2001 | B1 |
6254359 | Aber | Mar 2001 | B1 |
6222290 | Schob et al. | Apr 2001 | B1 |
6227797 | Watterson et al. | May 2001 | B1 |
6227820 | Jarvik | May 2001 | B1 |
6234772 | Wampler et al. | May 2001 | B1 |
6234998 | Wampler | May 2001 | B1 |
6247892 | Kazatchkov et al. | Jun 2001 | B1 |
6249067 | Schob et al. | Jun 2001 | B1 |
6264635 | Wampler et al. | Jul 2001 | B1 |
6268675 | Amrhein | Jul 2001 | B1 |
6276831 | Takahashi et al. | Aug 2001 | B1 |
6293901 | Prem | Sep 2001 | B1 |
6295877 | Aboul-Hosn et al. | Oct 2001 | B1 |
6319231 | Andrulitis | Nov 2001 | B1 |
6320731 | Eeaves et al. | Nov 2001 | B1 |
6245007 | Bedingham et al. | Dec 2001 | B1 |
6458163 | Slemker et al. | Jan 2002 | B1 |
6351048 | Schob et al. | Feb 2002 | B1 |
6355998 | Schob et al. | Mar 2002 | B1 |
6365996 | Schob | Apr 2002 | B2 |
6375607 | Prem | Apr 2002 | B1 |
6387037 | Bolling et al. | May 2002 | B1 |
6394769 | Beamson et al. | May 2002 | B1 |
6422990 | Prem | Jul 2002 | B1 |
6425007 | Messinger | Jul 2002 | B1 |
6428464 | Bolling | Aug 2002 | B1 |
6439845 | Veres | Aug 2002 | B1 |
6447266 | Antaki et al. | Sep 2002 | B2 |
6447441 | Yu et al. | Sep 2002 | B1 |
6508777 | Macoviak et al. | Jan 2003 | B1 |
6508787 | Erbel et al. | Jan 2003 | B2 |
6517315 | Belady | Feb 2003 | B2 |
6522093 | Hsu et al. | Feb 2003 | B1 |
6532964 | Aboul-Hosn et al. | Mar 2003 | B2 |
6533716 | Schmitz-Rode et al. | Mar 2003 | B1 |
6544216 | Sammler et al. | Apr 2003 | B1 |
6547519 | deBlanc et al. | Apr 2003 | B2 |
6547530 | Ozaki et al. | Apr 2003 | B2 |
6575717 | Ozaki et al. | Jun 2003 | B2 |
6589030 | Ozaki | Jul 2003 | B2 |
6595762 | Khanwilkar et al. | Jul 2003 | B2 |
6605032 | Benkowski et al. | Aug 2003 | B2 |
6609883 | Woodard et al. | Aug 2003 | B2 |
6610004 | Viole et al. | Aug 2003 | B2 |
6623420 | Reich et al. | Sep 2003 | B2 |
6641378 | Davis et al. | Nov 2003 | B2 |
6641558 | Aboul-Hosn et al. | Nov 2003 | B1 |
6688861 | Wampler | Feb 2004 | B2 |
6692318 | McBride | Feb 2004 | B2 |
6698097 | Miura et al. | Mar 2004 | B1 |
6709418 | Aboul-Hosn et al. | Mar 2004 | B1 |
6716157 | Goldowsky | Apr 2004 | B2 |
6716189 | Jarvik et al. | Apr 2004 | B1 |
6732501 | Yu et al. | May 2004 | B2 |
6749598 | Keren et al. | Jun 2004 | B1 |
6776578 | Belady | Aug 2004 | B2 |
6790171 | Griindeman et al. | Sep 2004 | B1 |
6794789 | Siess et al. | Sep 2004 | B2 |
6808371 | Niwatsukino et al. | Oct 2004 | B2 |
6817836 | Nose et al. | Nov 2004 | B2 |
6846168 | Davis et al. | Jan 2005 | B2 |
6860713 | Hoover | Jan 2005 | B2 |
6884210 | Nose et al. | Apr 2005 | B2 |
6935344 | Aboul-Hosn et al. | Aug 2005 | B1 |
6926662 | Aboul-Hosn et al. | Sep 2005 | B1 |
6942672 | Heilman et al. | Sep 2005 | B2 |
6949066 | Beamson et al. | Sep 2005 | B2 |
6966748 | Woodard et al. | Nov 2005 | B2 |
6974436 | Aboul-Hosn et al. | Dec 2005 | B1 |
6991595 | Burke et al. | Jan 2006 | B2 |
7010954 | Siess et al. | Mar 2006 | B2 |
7011620 | Siess | Mar 2006 | B1 |
7022100 | Aboul-Hosn et al. | Apr 2006 | B1 |
7048681 | Tsubouchi et al. | May 2006 | B2 |
7089059 | Pless | Aug 2006 | B1 |
7090401 | Rahman et al. | Aug 2006 | B2 |
7112903 | Schob | Sep 2006 | B1 |
7122019 | Kesten et al. | Oct 2006 | B1 |
7128538 | Tsubouchi et al. | Oct 2006 | B2 |
7027875 | Siess et al. | Nov 2006 | B2 |
7156802 | Woodard et al. | Jan 2007 | B2 |
7160243 | Medvedev | Jan 2007 | B2 |
7175588 | Morello | Feb 2007 | B2 |
7202582 | Eckert et al. | Apr 2007 | B2 |
7172551 | Leasure | Jun 2007 | B2 |
7241257 | Ainsworth et al. | Oct 2007 | B1 |
7284956 | Nose et al. | Oct 2007 | B2 |
7331921 | Viole et al. | Feb 2008 | B2 |
7335192 | Keren et al. | Feb 2008 | B2 |
7393181 | McBride et al. | Jul 2008 | B2 |
7431688 | Wampler et al. | Oct 2008 | B2 |
7329236 | Kesten et al. | Dec 2008 | B2 |
7462019 | Allarie et al. | Dec 2008 | B1 |
7467930 | Ozaki et al. | Dec 2008 | B2 |
7470246 | Mori et al. | Dec 2008 | B2 |
7476077 | Woodard et al. | Jan 2009 | B2 |
7491163 | Viole et al. | Feb 2009 | B2 |
7575423 | Wampler | Aug 2009 | B2 |
7645225 | Medvedev et al. | Jan 2010 | B2 |
7660635 | Verness et al. | Feb 2010 | B1 |
7699586 | LaRose et al. | Apr 2010 | B2 |
7748964 | Yaegashi et al. | Jul 2010 | B2 |
7731675 | Aboul-Hosn et al. | Aug 2010 | B2 |
7802966 | Wampler et al. | Sep 2010 | B2 |
7841976 | McBride et al. | Nov 2010 | B2 |
7862501 | Woodard | Jan 2011 | B2 |
7888242 | Tanaka et al. | Feb 2011 | B2 |
7934909 | Nuesser et al. | May 2011 | B2 |
7972122 | LaRose et al. | Jul 2011 | B2 |
7976271 | LaRose et al. | Jul 2011 | B2 |
7997854 | LaRose et al. | Aug 2011 | B2 |
8007254 | LaRose et al. | Aug 2011 | B2 |
8096935 | Sutton et al. | Jan 2012 | B2 |
8123669 | Siess et al. | Feb 2012 | B2 |
8152493 | LaRose et al. | Apr 2012 | B2 |
8177703 | Smith et al. | May 2012 | B2 |
8226373 | Yaehashi | Jul 2012 | B2 |
8282359 | Ayre et al. | Oct 2012 | B2 |
8283829 | Yamamoto et al. | Oct 2012 | B2 |
8366381 | Woodard et al. | Feb 2013 | B2 |
8403823 | Yu et al. | Mar 2013 | B2 |
8512012 | Mustafa et al. | Aug 2013 | B2 |
8535211 | Campbell et al. | Sep 2013 | B2 |
8585290 | Bauer | Nov 2013 | B2 |
8686674 | Bi et al. | Apr 2014 | B2 |
8770945 | Ozaki et al. | Jul 2014 | B2 |
8821365 | Ozaki et al. | Sep 2014 | B2 |
8827661 | Mori | Sep 2014 | B2 |
8652024 | Yanai et al. | Oct 2014 | B1 |
8864644 | Yomtov | Oct 2014 | B2 |
8870552 | Ayre et al. | Oct 2014 | B2 |
8968174 | Yanai et al. | Mar 2015 | B2 |
9039595 | Ayre et al. | May 2015 | B2 |
9067005 | Ozaki et al. | Jun 2015 | B2 |
9068572 | Ozaki et al. | Jun 2015 | B2 |
9109601 | Mori | Aug 2015 | B2 |
9132215 | Ozaki et al. | Sep 2015 | B2 |
9133854 | Okawa et al. | Sep 2015 | B2 |
9371826 | Yanai et al. | Jun 2016 | B2 |
9381285 | Ozaki et al. | Jul 2016 | B2 |
9382908 | Ozaki et al. | Jul 2016 | B2 |
9410549 | Ozaki et al. | Aug 2016 | B2 |
9556873 | Yanai et al. | Jan 2017 | B2 |
9713663 | Medvedev et al. | Jul 2017 | B2 |
10052420 | Medvedev et al. | Aug 2018 | B2 |
10506935 | Medvedev et al. | Dec 2019 | B2 |
20010039369 | Terentiev | Nov 2001 | A1 |
20020051711 | Ozaki | May 2002 | A1 |
20020058994 | Hill et al. | May 2002 | A1 |
20020094281 | Khanwilkar et al. | Jul 2002 | A1 |
20020095210 | Finnegan et al. | Jul 2002 | A1 |
20030023302 | Moe et al. | Jan 2003 | A1 |
20030045772 | Reich et al. | Mar 2003 | A1 |
20030072656 | Niwatsukino et al. | Apr 2003 | A1 |
20030144574 | Heilman et al. | Jul 2003 | A1 |
20030199727 | Burke | Oct 2003 | A1 |
20030236488 | Novak | Dec 2003 | A1 |
20030236490 | Novak | Dec 2003 | A1 |
20040007515 | Geyer | Jan 2004 | A1 |
20040015232 | Shu et al. | Jan 2004 | A1 |
20040024285 | Muckter | Feb 2004 | A1 |
20040030381 | Shu | Feb 2004 | A1 |
20040064012 | Yanai | Apr 2004 | A1 |
20040143151 | Mori et al. | Jul 2004 | A1 |
20040145337 | Morishita | Jul 2004 | A1 |
20040152944 | Medvedev et al. | Aug 2004 | A1 |
20040171905 | Yu et al. | Sep 2004 | A1 |
20040210305 | Shu et al. | Oct 2004 | A1 |
20040215050 | Morello | Oct 2004 | A1 |
20040263341 | Enzinna | Dec 2004 | A1 |
20050004418 | Morello | Jan 2005 | A1 |
20050008496 | Tsubouchi et al. | Jan 2005 | A1 |
20050025630 | Ayre et al. | Feb 2005 | A1 |
20050043665 | Vinci et al. | Feb 2005 | A1 |
20050073273 | Maslov et al. | Apr 2005 | A1 |
20050089422 | Ozaki et al. | Apr 2005 | A1 |
20050131271 | Benkowski et al. | Jun 2005 | A1 |
20050141887 | Lelkes | Jun 2005 | A1 |
20050194851 | Eckert et al. | Sep 2005 | A1 |
20050261542 | Abe et al. | Nov 2005 | A1 |
20050287022 | Yaegashi et al. | Dec 2005 | A1 |
20060024182 | Akdis et al. | Feb 2006 | A1 |
20060055274 | Kim | Mar 2006 | A1 |
20060127227 | Mehlhorn et al. | Jun 2006 | A1 |
20070073393 | Kung et al. | Mar 2007 | A1 |
20070078293 | Shambaugh, Jr. | Apr 2007 | A1 |
20070095648 | May et al. | May 2007 | A1 |
20070114961 | Schwarzkopf | May 2007 | A1 |
20070134993 | Tamez et al. | Jun 2007 | A1 |
20070189648 | Kita et al. | Aug 2007 | A1 |
20070213690 | Phillips et al. | Sep 2007 | A1 |
20070231135 | Wampler et al. | Oct 2007 | A1 |
20070282298 | Mason | Dec 2007 | A1 |
20070297923 | Tada | Dec 2007 | A1 |
20080007196 | Tan et al. | Jan 2008 | A1 |
20080021394 | La Rose et al. | Jan 2008 | A1 |
20080030895 | Obara et al. | Feb 2008 | A1 |
20080119777 | Vinci et al. | May 2008 | A1 |
20080124231 | Yaegashi | May 2008 | A1 |
20080183287 | Ayre | Jul 2008 | A1 |
20080211439 | Yokota et al. | Sep 2008 | A1 |
20080281146 | Morello | Nov 2008 | A1 |
20090041595 | Garzaniti et al. | Feb 2009 | A1 |
20090060743 | McBride et al. | Mar 2009 | A1 |
20090074336 | Engesser et al. | Mar 2009 | A1 |
20090099406 | Salmonsen et al. | Apr 2009 | A1 |
20090171136 | Shambaugh, Jr. | Jul 2009 | A1 |
20090257693 | Aiello | Oct 2009 | A1 |
20090318834 | Fujiwara et al. | Dec 2009 | A1 |
20100185280 | Ayre et al. | Jun 2010 | A1 |
20100168534 | Matsumoto et al. | Jul 2010 | A1 |
20100222634 | Poirier | Sep 2010 | A1 |
20100234835 | Horikawa et al. | Sep 2010 | A1 |
20100256440 | Maher | Oct 2010 | A1 |
20100262039 | Fujiwara et al. | Oct 2010 | A1 |
20100266423 | Gohean et al. | Oct 2010 | A1 |
20100268333 | Gohean et al. | Oct 2010 | A1 |
20100305692 | Thomas et al. | Dec 2010 | A1 |
20100324465 | Vinci et al. | Dec 2010 | A1 |
20110015732 | Kanebako | Jan 2011 | A1 |
20110077531 | Watson et al. | Mar 2011 | A1 |
20110112354 | Nishimura et al. | May 2011 | A1 |
20110118766 | Reichenbach et al. | May 2011 | A1 |
20110118829 | Hoarau et al. | May 2011 | A1 |
20110118833 | Reichenbach et al. | May 2011 | A1 |
20110129373 | Mori | Jun 2011 | A1 |
20110160519 | Arndt et al. | Jun 2011 | A1 |
20110218383 | Broen et al. | Sep 2011 | A1 |
20110218384 | Bachman et al. | Sep 2011 | A1 |
20110218385 | Bolyare et al. | Sep 2011 | A1 |
20110237978 | Fujiwara et al. | Sep 2011 | A1 |
20110243759 | Ozaki et al. | Oct 2011 | A1 |
20110318203 | Ozaki et al. | Dec 2011 | A1 |
20120003108 | Ozaki et al. | Jan 2012 | A1 |
20120016178 | Woodard et al. | Jan 2012 | A1 |
20120022645 | Burke | Jan 2012 | A1 |
20120035411 | LaRose et al. | Feb 2012 | A1 |
20120078030 | Bourque | Mar 2012 | A1 |
20120078031 | Burke et al. | Mar 2012 | A1 |
20120095281 | Reichenbach et al. | Apr 2012 | A1 |
20120130152 | Ozaki et al. | May 2012 | A1 |
20120226350 | Ruder et al. | Sep 2012 | A1 |
20120243759 | Fujisawa | Sep 2012 | A1 |
20120245681 | Casas et al. | Sep 2012 | A1 |
20120253103 | Jarvik | Oct 2012 | A1 |
20120308363 | Ozaki et al. | Dec 2012 | A1 |
20130030240 | Schima et al. | Jan 2013 | A1 |
20130121821 | Ozaki et al. | May 2013 | A1 |
20130158521 | Sobue | Jun 2013 | A1 |
20130170970 | Ozaki et al. | Jul 2013 | A1 |
20130178694 | Jeffery et al. | Jul 2013 | A1 |
20130225909 | Dormanen et al. | Aug 2013 | A1 |
20130243623 | Okawa et al. | Sep 2013 | A1 |
20130289334 | Badstibner et al. | Oct 2013 | A1 |
20130331711 | Mathur et al. | Dec 2013 | A1 |
20140030122 | Ozaki et al. | Jan 2014 | A1 |
20140066690 | Siebenhaar et al. | Mar 2014 | A1 |
20140066691 | Siebenhaar | Mar 2014 | A1 |
20140100413 | Casas et al. | Apr 2014 | A1 |
20140107399 | Spence | Apr 2014 | A1 |
20140142367 | Ayre et al. | May 2014 | A1 |
20140155682 | Jeffery et al. | Jun 2014 | A1 |
20140200389 | Yanai et al. | Jul 2014 | A1 |
20140205467 | Yanai et al. | Jul 2014 | A1 |
20140241904 | Yanai et al. | Aug 2014 | A1 |
20140275721 | Yanai et al. | Sep 2014 | A1 |
20140275727 | Bonde et al. | Sep 2014 | A1 |
20140296615 | Franano | Oct 2014 | A1 |
20140309481 | Medvedev et al. | Oct 2014 | A1 |
20140314597 | Allaire et al. | Oct 2014 | A1 |
20140323796 | Medvedev et al. | Oct 2014 | A1 |
20140343352 | Ardt et al. | Nov 2014 | A1 |
20150017030 | Ozaki | Jan 2015 | A1 |
20150023803 | Fritz et al. | Jan 2015 | A1 |
20150057488 | Yomtov | Feb 2015 | A1 |
20150078936 | Mori | Mar 2015 | A1 |
20150306290 | Rosenberg et al. | Oct 2015 | A1 |
20150367048 | Brown et al. | Dec 2015 | A1 |
20150374892 | Yanai et al. | Dec 2015 | A1 |
20160058929 | Medvedev et al. | Mar 2016 | A1 |
20160058930 | Medvedev et al. | Mar 2016 | A1 |
20160235898 | Yanai et al. | Aug 2016 | A1 |
20160235899 | Yu et al. | Aug 2016 | A1 |
20160235900 | Yanai et al. | Aug 2016 | A1 |
20160281720 | Yanai et al. | Sep 2016 | A1 |
20160281728 | Ozaki et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
1347585 | May 2002 | CN |
1462344 | Dec 2003 | CN |
102239334 | Nov 2011 | CN |
102341600 | Feb 2012 | CN |
2945662 | Sep 1999 | EP |
971212 | Jan 2000 | EP |
1113117 | Jul 2001 | EP |
1327455 | Jul 2003 | EP |
1430919 | Jun 2004 | EP |
1495773 | Jan 2005 | EP |
1495773 | Jan 2005 | EP |
1598087 | Mar 2005 | EP |
1526286 | Apr 2005 | EP |
1495773 | Feb 2009 | EP |
2292282 | Mar 2011 | EP |
2298375 | Mar 2011 | EP |
2372160 | Oct 2011 | EP |
2405140 | Jan 2012 | EP |
2405141 | Jan 2012 | EP |
2461465 | Jun 2012 | EP |
2538086 | Dec 2012 | EP |
2554191 | Feb 2013 | EP |
2594799 | May 2013 | EP |
2618001 | Jul 2013 | EP |
2693609 | Feb 2014 | EP |
2948202 | Dec 2015 | EP |
2961987 | Jan 2016 | EP |
3013385 | May 2016 | EP |
58-9535 | Jan 1983 | JP |
61-293146 | Dec 1986 | JP |
H02-007780 | Jan 1990 | JP |
H02-033590 | Mar 1990 | JP |
04-091396 | Mar 1992 | JP |
04-148094 | May 1992 | JP |
05-021197 | Mar 1993 | JP |
06-014538 | Feb 1994 | JP |
06-053790 | Jul 1994 | JP |
2006-070476 | Sep 1994 | JP |
2006-245455 | Sep 1994 | JP |
07-014220 | Mar 1995 | JP |
07-042869 | Aug 1995 | JP |
07-509156 | Oct 1995 | JP |
09-122228 | May 1997 | JP |
10-331841 | Dec 1998 | JP |
11-244377 | Sep 1999 | JP |
2001-309628 | Nov 2001 | JP |
2003-135592 | May 2003 | JP |
2004-166401 | Jun 2004 | JP |
2004-209240 | Jul 2004 | JP |
2004-332566 | Nov 2004 | JP |
2004-346925 | Dec 2004 | JP |
2005-094955 | Apr 2005 | JP |
2005-127222 | May 2005 | JP |
2005-245138 | Sep 2005 | JP |
2005-270345 | Oct 2005 | JP |
2005-270415 | Oct 2005 | JP |
2005-287599 | Oct 2005 | JP |
2006-167173 | Jun 2006 | JP |
2007-002885 | Jan 2007 | JP |
2007-043821 | Feb 2007 | JP |
2007-089972 | Apr 2007 | JP |
2007-089974 | Apr 2007 | JP |
2007-215292 | Aug 2007 | JP |
2007-247489 | Sep 2007 | JP |
2008-011611 | Jan 2008 | JP |
2008-104278 | May 2008 | JP |
2008-132131 | Jun 2008 | JP |
2008-99453 | Aug 2008 | JP |
2008-193838 | Aug 2008 | JP |
2008-297997 | Dec 2008 | JP |
2008-301634 | Dec 2008 | JP |
2006-254619 | Sep 2009 | JP |
2010-133381 | Jun 2010 | JP |
2010-136863 | Jun 2010 | JP |
2010-203398 | Sep 2010 | JP |
2010-209691 | Sep 2010 | JP |
2011-169166 | Sep 2011 | JP |
2012-021413 | Feb 2012 | JP |
2012-062790 | Mar 2012 | JP |
5171953 | Mar 2013 | JP |
5572832 | Aug 2014 | JP |
5656835 | Jan 2015 | JP |
1993-07388 | Apr 1993 | WO |
94-14226 | Jun 1994 | WO |
1996-31934 | Oct 1996 | WO |
1997-42413 | Nov 1997 | WO |
2000-64509 | Nov 2000 | WO |
2004-098677 | Nov 2004 | WO |
2005-011087 | Feb 2005 | WO |
2005-028000 | Mar 2005 | WO |
2005-034312 | Apr 2005 | WO |
2009-157408 | Dec 2009 | WO |
2010-067682 | Jun 2010 | WO |
2010-101082 | Sep 2010 | WO |
2010-101107 | Sep 2010 | WO |
2011-013483 | Feb 2011 | WO |
2012-036059 | Mar 2012 | WO |
2012-040544 | Mar 2012 | WO |
2012-047550 | Apr 2012 | WO |
2012-132850 | Oct 2012 | WO |
2014-113533 | Jul 2014 | WO |
2014-116676 | Jul 2014 | WO |
2014-133942 | Sep 2014 | WO |
2014-179271 | Nov 2014 | WO |
2016-033131 | Mar 2016 | WO |
2016-033133 | Mar 2016 | WO |
2016-130944 | Aug 2016 | WO |
2016-130955 | Aug 2016 | WO |
2016-130989 | Aug 2016 | WO |
Entry |
---|
Extended European Search report dated Apr. 2, 2013, in European Patent Application No. 10748702.7, all pages. |
Extended European Search Report dated Nov. 19, 2012, in European Patent Application No. 10748677.1, all pages. |
Extended European Search Report dated Jun. 18, 2015, in European Patent Application No. 11825062.0, all pages. |
Extended European Search Report dated Oct. 8, 2014, in European Patent Application No. 11806627.3, all pages. |
Extended European Search Report dated Apr. 2, 2015, in European Patent Application No. 09770118.9 filed Jun. 22, 2009, all pages. |
Extended European Search Report dated Feb. 4, 2016 in European Patent Application No. 12764433.4, all pages. |
Extended European Search report dated Sep. 8, 2016 in European Patent Application No. 14741174, all pages. |
Extended European Search Report dated Sep. 29, 2016 in European Patent Application No. 14743371, all pages. |
Supplementary European Search Report dated Jan. 7, 2013, in European Application No. 09831788.6, 7 pages. |
Office Action dated Jan. 27, 2016 in European Patent Application No. 10804230.0, all pages. |
Office Action dated Jul. 22, 2016 in European Patent Application No. 09770118.9, all pages. |
Office Action dated Oct. 31, 2016 in European Patent Application No. 10804230.0, all pages. |
Office Action dated Jul. 19, 2016, in European Patent Application No. 11825062.0 all pages. |
Office Action dated Dec. 11, 2015 in Japanese Patent Application No. 2013-507344, all pages. |
Notice of Decision to Grant dated Jun. 15, 2016, in Japanese Patent Application No. 2013-507344, all pages. |
International Search Report and Written Opinion dated Jul. 14, 2009 in International Patent Application No. PCT/JP2009/061318 filed Jun. 22, 2009, all pages. |
International Search Report and Written Opinion dated Apr. 12,2011, in International Patent Application No. PCT/JP2011/050925 filed Jan. 20, 2011, all pages. |
International Search Report and Written Opinion dated Apr. 12, 2011 in International Patent Application No. PCT/JP2011/054134, filed Feb. 24, 2011, all pages. |
International Search Report and Written Opinion dated Sep. 13, 2011 in International Patent Application No. PCT/JP2011/064768, filed Jun. 28, 2011, all pages. |
International Search Report and Written Opinion dated Dec. 13, 2011 in International Patent Application No. PCT/JP2011/070450, filed Sep. 8, 2011, all pages. |
International Search Report and Written Opinion dated Feb. 19, 2014 in International Patent Application No. PCT/US2014/012448, filed Jan. 22, 2014, all pages. |
International Search Report and Written Opinion dated May 5, 2014, in International Patent Application No. PCT/US2014/011786, filed Jan. 16, 2014, all pages. |
International Preliminary Report on Patentability dated Jul. 30, 2015 for International Patent Application No. PCT/US2014/011786, filed on Jan. 16, 2014, all pages. |
International Search Report and Written Opinion dated May 9, 2014, in International Patent Application No. PCT/US2014/012502, filed Jan. 22, 2014, all pages. |
International Preliminary Report on Patentability dated Aug. 6, 2015 for International Patent Application No. PCT/US2014/012502 filed on Jan. 22, 2014, all pages. |
International Search Report and Written Opinion dated May 14, 2014 in International Patent Application No. PCT/US2014/012511, filed Jan. 22, 2014, all pages. |
International Preliminary Report on Patentability dated Aug. 6, 2015 for International Patent Application No. PCT/US2014/012511 filed on Jan. 22, 2014, all pages. |
International Search Report and Written Opinion dated Jun. 16, 2014 in International Patent Application No. PCT/US2014/017932, filed Feb. 24, 2014, all pages. |
International Preliminary Report on Patentability dated Sep. 11, 2015 in International Patent Application No. PCT/US2014/017932, filed Feb. 24, 2014, all pages. |
International Search Report and Written Opinion dated Feb. 11, 2016, in International Patent Application No. PCT/US2014/035798, filed Apr. 29, 2014, all pages. |
International Preliminary Report on Patentability dated Feb. 25, 2016 in International Patent Application No. PCT/US2014/035798, filed on Apr. 29, 2014, all pages. |
International Search Report and Written Opinion dated May 16, 2016, in International Patent Application No. PCT/US2016/017611, all pages. |
International Search Report and Written Opinion dated May 16, 2016, in International Patent Application No. PCT/US2016/017791, all pages. |
International Search Report and Written Opinion dated Jun. 7, 2016, in International Patent Application No. PCT/US2016/017812, all pages. |
International Search Report and Written Opinion dated Jun. 8, 2016, in International Patent Application No. PCT/US2016/017864, all pages. |
International Search Report and Written Opinion dated Oct. 27, 2015, in International Patent Application No. PCT/US2015/046844, all pages. |
International Search Report and Written Opinion dated Oct. 27, 2015, in International Patent Application No. PCT/US2015/046846, all pages. |
International Search Report and Written Opinion dated Feb. 24, 2017, in International Patent Application No. PCT/US2016/062284, all pages. |
Asama, J., et al., “A Compact Highly Efficient and Low Hemolytic Centrifugal Blood Pump With a Magnetically Levitated Impeller”, Artificial Organs, vol. 30, No. 3, Mar. 1, 2006, pp. 160-167. |
Asama, J., et al., “A New Design for a Compact Centrifugal Blood Pump with a Magnetically Levitated Rotor”, Asaio Journal, vol. 50, No. 6, Nov. 1, 2004, pp. 550-556. |
Asama, J., et al., “Suspension Performance of a Two-Axis Actively Regulated Consequent-Pole Bearingless Motor,” IEEE Transactions on Energy Conversion, vol. 28, No. 4, Dec. 2013, 8 pages. |
Kosaka, R., et al., “Operating Point Control System for a Continuous Flow Artificial Heart: In Vitro Study,” ASAIO Journal 2003, vol. 49, DOI:10.1097/01.MAT.0000065376.28871.A8, pp. 259-264. |
Neethu, S., et al., “Novel design, optimization and realization of axial flux motor for implantable blood pump”, Power Electronics, Drives and Energy Systems (PEDES) & 2010 Power Indian, 2010 Joint International Conference on, IEEE, Dec. 20, 2010 (Dec. 20, 2010), pp. 1-6. |
Sandtner, J., et al., “Electrodynamic Passive Magnetic Bearing with Planar Halbach Arrays”, Ninth International Symposium on Magnetic Bearings, Aug. 3-6, 2004, retrieved from the internet: <http://www.silphenix.ch/lexington.pdf>, all pages. |
Terumo Heart, Inc., “Handled With Care—Significantly Reduce the Risk of Cell Damage,” Terumo brochure, Apr. 2010, 2 pages. |
Yamazaki, K., et al., “Development of a Miniature Intraventricular Axial Flow Blood Pump,” ASAIO Journal, 1993, vol. 39, pp. M224-M230. |
Gieras, et al., “Advancements in Electric Machines—2.5 Permanent Magnets”, Nov. 14, 2008, pp. 43-48. |
Number | Date | Country | |
---|---|---|---|
20200187787 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62114886 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16050889 | Jul 2018 | US |
Child | 16714287 | US | |
Parent | 15041716 | Feb 2016 | US |
Child | 16050889 | US |