HEAT-CONDUCTING ELEMENT, ASSEMBLY AND USE OF THE SAME

Abstract
The invention relates to a heat-conducting element (10) for arrangement between movable components (B1, B2) in a vacuum, comprising rolling elements (11), which are guided between two running surfaces (12, 13) that can be moved linearly relative to each other, and further comprising at least one supporting element (14), which is mounted so as to spring back elastically against one of the running surfaces (12) and which contacts said running surface (12) in such a manner that a thermal bridge exists between said supporting element (14) and the running surface (12). The invention further relates to an assembly (30) made of two components (B1, B2) which can be moved relative to each other, comprising at least one linear bearing (20) accommodated between said components (B1, B2), and at least one heat-conducting element (10) according to the invention, which is arranged between the components (B1, B2) in an elastically preloaded manner.
Description

The invention relates to the technical field of thermal conductivity in a vacuum and in particular to a heat-conducting element according to claim 1 as well as an assembly of said type of heat-conducting element according to claim 7.


The utilization of fluid streams such as air or water for cooling components or entire assemblies has already been disclosed in the prior art. Similarly, Peltier elements are used for cooling electrical circuits, although their efficiency is limited. Consequently, these technologies for removing large quantities of heat from a vacuum are either not feasible or their realization is associated with major expenditures or maintenance.


The object of the present invention is to overcome the disadvantages of the prior art and to provide a heat-conducting element for removing large quantities of heat from a vacuum, which features a simple design, is reliable and efficient as well as scalable and can hence be used flexibly and operated virtually maintenance-free and therefore cost-effectively.


Said object is solved with a heat-conducting element according to claim 1.


One key aspect of the heat-conducting element according to the invention is the fact that it is indeed designed like a linear bearing, without having to transfer (almost) any loads thanks to its elasticity. Its elastic pre-load is utilized exclusively to establish a solid thermal contact between the movable components. In the process, the heat flux predominantly passes over the supporting element, the running surfaces and the rolling elements retained between them. The connection between the supporting element and the running surface facing said supporting element is of particular significance, because they are both mounted such that they spring back elastically against each other. They establish contact in such a way that a thermal bridge exists between said supporting element and the running surface. In this respect, a particularly wide area of contact is created across the heat-conducting element, said area of contact itself removing large quantities of heat, such as it is released e.g. from electric servomotors. Furthermore, the simple design of the heat-conducting element facilitates an extremely reliable operation which requires hardly any maintenance. At the same time, the element is scalable to almost any size, i.e. adjustable to a large variety of applications by adjusting its dimensions and in particular by selecting the number, type and size of its rolling elements. By providing the rolling elements at a distance from each other that is less than half of their respective diameter, their area of contact on the side of the running surface and hence the cross-section of each individual heat-conducting element increases, via which the heat flux can be removed.


Preferred embodiments of the heat-conducting element according to the invention are described in the sub-claims 2 to 6.


The rolling elements can essentially have any suitable shape that enables a two-way movement of the running faces relative to each other. A common spherical shape can obviously be selected for this purpose. However, a particularly wide two-sided area of contact between the rolling elements and the running surfaces is created if the rolling elements have an elongated cylindrical shape. Because the area of contact is increased, the thermal conductivity of the element according to the invention improves analogously.


The thermal conductivity between the supporting element and the running surface facing said supporting element is in particular also improved if the supporting element comprises at least one projecting part and one of the running surfaces comprises at least one opening allocated to said projecting part and/or vice versa, and the respective projecting part engages in or penetrates said opening. This helps considerably enlarge the thermal bridge between the two parts mounted elastically springing back against each other, which in turn increases the thermal conductivity between the two.


Alternatively or in addition, it can also be preferred if the supporting element at least partly encompasses the running surface and/or the running surface at least partly encompasses the supporting element. This again enlarges the area of contact between the running surface on the side of the supporting element and the supporting element itself and improves the thermal conductivity of the thermal bridge between the two parts.


The individual parts of the heat-conducting element can basically consist of a material whose thermal conductivity meets the specific requirements of the intended area of application. However, in order to achieve a particularly favorable heat conductivity, the supporting element preferably consists of a metallic material.


At least one spring element is preferably provided between the supporting element and the running surface. Depending on the requirement, it is also possible to provide a plurality of them such that an elastic restoring force of the heat-conducting element is flexibly adjustable. The contact between the rolling elements and the running surfaces can in particular be improved with an especially high restoring force. At the same time, the spring elements also form a thermal bridge between the running surface and the supporting element mounted elastically springing back against said running surface. Likewise, if the spring elements are made e.g. of an especially conductive material, the thermal bridge between these two parts is enhanced as the number of spring elements increases.


The object of the present invention mentioned above is solved with an assembly according to claim 7.


One key aspect of the assembly according to the invention consists in the fact that the heat-conducting element described above is indeed used between two movable components similar to a linear bearing although it is (almost) not carrying any load here. In fact, it is restricted to mere pre-load. Consequently, it simply acts as a thermal bridge, without countering the movement of the components with the frictional resistance commonly generated by a linear bearing under load. Consequently, the design of the heat-conducting element is intent on thermal optimization, while load-related disadvantages have deliberately been excluded. All in all, this achieves an optimal heat removal between components in a vacuum.


Preferred embodiments of the assembly according to the invention are described in the sub-claims 8 and 9.


Accordingly, it is advantageous if a drive is arranged between the components for moving them relative to each other. The heat of the drive, e.g. an electric motor, normally accumulates between the components and heats in particular the top one when viewed in a vertical direction. As a consequence, thermal stress is generated between the two components, which can lead to an unacceptably high expansion of materials resulting in processing inaccuracies especially in ultra-precise production facilities. While the drive predominantly releases heat to the component at the top, the pre-loaded heat-conducting element arranged between the components counters this phenomenon by ensuring an effective heat removal from the component at the top to the one at the bottom. If the latter is e.g. installed permanently, the heat can finally be removed into the surroundings through its base. Thus, a heat flux is created that originates from the drive and passes the component at the top, the heat-conducting element according to the invention, the component at the bottom before it is released into the surroundings. If a plurality of heat-conducting elements is provided, said heat flux can be multiplied analogously. So far, said type of heat removal in a vacuum cannot yet be produced with common technologies, neither at this scale nor in such a simple and reliable manner. It helps minimize the temperature difference between the two components, thus preventing further thermal stress.


In so doing, it is preferred if the drive is arranged closer with respect to space to the at least one heat-conducting element than to the at least one linear bearing. This way, the linear bearing is not directly exposed to heat which might impact its efficiency, in particular increase its frictional losses. On the contrary, the heat is conducted away from said bearing and can be removed into the surroundings.


The assembly described above should preferably be used in a manufacturing device for wafers, because especially their ultra-precise orientation to the laser beam should not be subject to any fluctuations.





The present invention is explained in detail below, based on an exemplary embodiment with reference to the enclosed figures. Identical components or components with identical functions are labeled with the same reference numbers. In the figures:



FIG. 1 shows a perspective angular front and top view of a heat-conducting element according to the invention;



FIG. 2A shows a front view of the heat-conducting element of FIG. 1;



FIG. 2B shows a longitudinal side view of a part of the heat-conducting element of FIG. 2A, and



FIG. 3 shows a front view of a part of an assembly according to the invention.






FIG. 1 shows a perspective diagonal partial front and top view of a heat-conducting element 10 according to the invention. Its rolling elements 11 . . . 11′″″ are designed as cylindrical rolls resembling a needle bearing and arranged between two running surfaces 12 and 13. The top running surface 12 is laterally encompassed by the supporting element 14 such that a thermal bridge is formed on the side between the two parts 12 and 14. In so doing, the supporting element 10 is mounted elastically springing back against the running surface 12 by means of a spring element 15. The thermal bridge remains intact even during the spring deflection and rebound of the supporting element 14 against the running surface 12. Therefore, the heat-conducting element 10 can be installed pre-loaded between two components, and allows a heat flux across the supporting element 14, the spring element 15 and the thermal bridge between the supporting element 14 and the running surface 12, the rolling elements 11 . . . 11″″′ toward the running surface 13, or vice versa in every position of the spring element 15. Especially the supporting element 14, the rolling elements 11 . . . 11′″″ and the running surfaces 12 and 13 are made of a metallic material with good thermal conductivity for this purpose. The spring element 15 itself can also contribute to the thermal conduction and be made of said type of material, especially if a leaf spring element with a wide area of contact on the side of the supporting element and/or the side of the running surface is selected.


The thermal bridge between the supporting element 14 and the associated running surface 12 can alternatively or additionally be created or upgraded with projecting parts or openings (not illustrated) arranged opposite of each other in said parts 14 and 12, in which the projecting parts are engaged with the respective openings, in particular irrespective of the respective position of the spring element 15. This creates or further enlarges an area via which heat can be transferred from one part to the other part, thus considerably improving the thermal conductivity of the heat-conducting element.


At the same time, the supporting element 14 including spring 15 and running surface 12 can be moved linearly relative to the running surface 13, albeit without picking up and transferring any loads. Potential heat stress and the associated possible expansion of materials of the individual parts are compensated by the spring element 15 such that—unlike with a load-bearing linear bearing—no increased frictional losses develop in connection with this movement. Moreover, a high directional stability is achieved because the rolling elements 11 . . . 11″″′ are encompassed and guided by the running surface 13 at the bottom in a similar fashion as the running surface 12 at the top is encompassed and guided by the supporting element 14. Furthermore, the simple design facilitates an (almost) maintenance-free operation of the heat-conducting element 10.



FIG. 2A shows a front view of the heat-conducting element 10 of FIG. 1 with the already known parts 11 . . . 15, which by the way are scalable to any size, depending on the desired area of application of the element 10. This creates a considerable flexibility in the use of the element 10 according to the invention without the need to change its basic design. Finally, FIG. 2B shows a longitudinal side view of a part of the heat-conducting element 10 of FIG. 2A along its mid-line A-A. Differently than in the previous figures, two spring elements 15, 15′ are illustrated here, which provide a particularly favorable thermal conduction on the one hand and an extensive spring suspension of the supporting element 14 against the running surface 12 on the other hand. Furthermore, a particularly strong contact between its rolling elements 11 . . . 11′″″ and the running surfaces 12 and 13 is ensured in the pre-loaded status of the heat-conducting element 10.



FIG. 3 shows a front view of a part of an assembly 30 according to the invention with the heat-conducting element 10 arranged between two movable components B1 and B2 and a load-bearing linear bearing 20. In so doing, the component B1 at the top should be movable vertically to the leaf level by means of a drive (not illustrated). The heat-conducting element 10 and the linear bearing 20 are aligned analogously.


The heat-conducting element itself consists of three already known parts 11 . . . 15 and is ideally arranged near a drive such that the heat of the drive is conducted past component B1 at the top and the heat-conducting element 10 to component B2. In the present example, a drive could be arranged e.g. between the linear bearing 20 and the heat-conducting element 10. Its supporting element 14 can be permanently connected with component B1 at the top and its lower running surface 13 can be permanently connected with component B2, e.g. by means of a screwed connection. If component B2 is arranged permanently and component B1 is mounted linearly movable, the heat can be removed into the surroundings e.g. through a suitable base of component B2. This helps minimize a temperature difference between the components B1 and B2 such that the development of heat stress between them is prevented. Therefore, the assembly 10 is especially suitable for storing wafers which are transported on component B1 and processed under vacuum. A corresponding processing table can be movable e.g. in two spatial axes, wherein said axes are designed in the form of assemblies 30 according to the invention. In the process, the heat to be removed can also be guided across multi-stage series-connected heat-conducting elements 10, including multiple times parallel to each other. The basic design of the assembly 30 according to the invention remains unaffected thereof.


Structural adaptations of the exemplary embodiment above can also comprise a spring mounted support of both running surfaces 12 and 13, wherever this is needed because of the specific requirements of the area of application, without impairing the heat-removing effect of the heat-conducting element according to the invention.


In any case, a simple and effective, at the same time low-maintenance and flexibly adjustable heat removal is provided which has never been disclosed in the past.

Claims
  • 1.-10. (canceled)
  • 11. A heat-conducting element for arrangement between movable components in a vacuum, comprising rolling elements which are guided between two running surfaces that can be moved linearly relative to each other, and further comprising at least one supporting element which is mounted elastically springing back against one of the running surfaces and which is in contact with said running surface such that a thermal bridge exists between said supporting element and the running surface, wherein the rolling elements are arranged at a distance from each other which is less than half of their respective diameter.
  • 12. A heat-conducting element according to claim 1, in which the rolling elements have an elongated cylindrical shape.
  • 13. A heat-conducting element according to claim 1, in which the supporting element comprises at least one projecting part and one of the running surfaces comprises at least one opening allocated to said projecting part and/or vice versa, and the respective projecting part engages with or penetrates said opening.
  • 14. A heat-conducting element according to claim 1, in which the supporting element at least partly encompasses the running surface and/or the running surface at least partly encompasses the supporting element.
  • 15. A heat-conducting element according to claim 1, in which the supporting element consists of a metallic material.
  • 16. A heat-conducting element according to claim 1, in which at least one spring element is provided between the supporting element and the running surface.
  • 17. An assembly comprising two components which are movable relative to each other in a vacuum, having at least one linear bearing retained between said components and at least one heat-conducting element according to claim 1, arranged elastically pre-loaded between the components.
  • 18. An assembly according to claim 7, having a drive for moving at least one of the components relative to the respective other component, said drive being arranged between said two components.
  • 19. An assembly according to claim 8, in which the drive is arranged closer with respect to space to the at least one heat-conducting element than to the at least one linear bearing.
  • 20. A manufacturing device for wafers comprising an assembly according to claim 7.
Priority Claims (1)
Number Date Country Kind
202010007905.5 Jun 2010 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/CH2011/000138 6/9/2011 WO 00 2/28/2013