This invention is related to a heat dissipation structure inside a computer mainframe, it is more specifically related to designs which have the same mainframe case but different mother boards or have CPU located at different locations but heat back flow issue can still be effectively controlled and the entrance temperature of the air can still be effectively reduced.
2. Description of the Related Art
Taking computer as an example, traditionally heat sink is installed above a CPU, it is used to help the release of heat generated by the CPU chip. The heat sink is used to generate convective air, and the heat on the heat-dissipating fin, which is used to absorb heat from heat generation source, is taken away through air convection (through either air extracting or blowing will be depending on the computer internal space available and design requirement) in order to reduce CPU temperature. But in the real test for conventional heat dissipation structure, the fan entrance end has a temperature as high as 46˜47° C., the heat dissipation efficiency is thus limited; since the efficiency in traditional way of heat conduction and heat dissipation cannot meet the requirement of high speed and high power consumption trend today, therefore, to dissipate heat by introducing directly cold air from mainframe case or from other external areas to the heat sink of CPU can have better cooling efficiency, and it is the main stream currently used in the industry, an air-guiding mask need to be installed and fixed on the outer case of motherboard in order to be able to dissipate heat by the above-mentioned method, but here comes the problem, since the CPU location in different mother board is different, therefore, the air-guiding mask fixed above mainframe case can not provide effectively lower temperature air to the heat sink, a problem of hot air back flow inside the mainframe case thus appears.
To solve the problem associated with the conventional heat dissipation structure of CPU, we propose an improvement heat dissipation air-guiding mask structure which possesses direct and universal design and therefore, can effectively cool and reduce the temperature inside the computer mainframe.
The main purpose of this invention is to provide a design which can solve the problem associated with CPU location change in different mother boards while the heat dissipation hole location for air entrance on the mainframe case remains unchanged, with the combination of heat dissipation module and CPU, the colder air on the mainframe case can still be effectively introduced into the equipment and the hot air back flow from the inside of mainframe case can be prevented, in this way, the air entrance end temperature on the heat dissipation module can be maintained at low temperature. In addition, if the heat dissipation hole area covered by air-guiding mask is greater than the entrance area of heat-dissipation fan, the air flow speed and air resistance can thus be reduced and heat-dissipation fan efficiency can in turn be enhanced and finally CPU temperature be effectively lowered.
Yet another purpose of this invention is to provide an universal heat-dissipating structure which can be used to cope with the change in mother board, there is no need to develop and invest multiple sets of molds for in a single application, lower manufacturing cost and shorter time-to-the-market can thus be guaranteed.
The detailed embodiments for this invention are described with the help from attached figures:
First, please refer to
An air-guiding mask 3 is further installed above fans 12, air-guiding mask 3 is equipped with air-guiding end 31 in the front and combination part end 32 in the back wherein air-guiding end 31 can have a diameter larger than that of the combination part end 32 to form a cone-shaped body, or the diameters of the two ends can be the same, or even any other forms of combinations are allowed; there are through holes 33 located on 4 peripherals of combination part end 32, locking component 7 can be used to lock air-guiding mask 3 and fan 12 to the open slot 112 of heat-dissipating fin 11 by passing it through the through holes 33 on the air-guiding mask and through holes 121 on fan 12, a heat-dissipating module 1 formed by heat-dissipating fin 11 and fan 12 can thus be in tight combination with air-guiding mask 3.
The above-mentioned heat-dissipating module 1 is located at the side board of mainframe case 4, and since the mother board 5 inside the mainframe of normal computer is seated at one side of mainframe case 4, the CPU 6 is therefore also installed vertically as mother board 5. Multiple heat-dissipating holes 41 correspond to the CPU 6 location are opened on the mainframe case 4, when air-guiding mask 3 is combined in the heat-dissipating module 1, the air-guiding end 31 on air-guiding mask 3 can thus be correlated spatially to these heat-dissipating holes 41, therefore, when the fan 2 is running, it can bring cold air from outside and let it enter air-guiding mask 3, helping to cool the heat-dissipating fin 1 which has absorbed lots of heat generated by CPU 6.
Although there is still gap between air-guiding mask 3 and mainframe case 4 as shown in
In addition, please refer to
Furthermore, after real test, we find that the entrance point right before fan 12 installed above CPU 6 has a temperature of 46.4° C. when it is not installed with air-guiding mask 3, but that temperature is reduced to 36.4° C. when an air-guiding mask 3 is installed, therefore, heat exchange performed by exterior cold air introduced directly can effectively lower the high temperature on CPU 6.
In addition, as shown in
Please refer to
To prevent the issue of air back flow associated with the gap formed, and in turn the efficiency of temperature lowering and cooling efficiency of CPU 6, therefore, in the current embodiment a baffle 2 is locked above fan 12 of heat-dissipating module 1, the area of baffle 2 is greater than that of air-guiding end 31 of air-guiding mask 3, it can effectively increase the hot air back flow resistance. When fan 12 is running, the cold air taken in by air-guiding mask 3 will be directed into fan 2 to dissipate heat on the heat-dissipating fin 11; because there is a gap between air-guiding mask 3 and fan 12, part of the hot air will be sucked in again due to the operation of fan 12, at this time, baffle to function to increase the hot air back flow resistance, the hot air back flow re-sucking quantity caused by the existence of gap will then be greatly reduced.
We find from real experimental data for the current invention that when heat-dissipating structure was installed in the entrance of the fan of CPU inside the mainframe, the entrance has a temperature as high as 46.4° C., but when air-guiding mask 3 and the baffle 2 in front of heat-dissipating module 1 are installed, the entrance temperature is then reduced to 37.9° C., therefore, the direct heat exchange effect produced by exterior cold air can effectively reduce the heat produced by CPU 6.
Please further refer to
To summarize the above descriptions, we find the heat-dissipating structure inside computer mainframe for the current invention can achieve the expected effect of reducing hot air back flow, it can be used in different kinds of mother boards, it possesses an universal feature and the advantage of lower cost, it has shorter time-to-the-market and has the saving of cost and time on building new molds, etc.; therefore, this invention does fit the requirements for the application of a patent, we thus submit a patent application. The above-mentioned are only some of the better embodiments for the current invention, for those skilled in the art can still make tiny modification or variation, they should all fall within the spirit and scope of the current invention.
Number | Date | Country | Kind |
---|---|---|---|
93208811 | Jun 2004 | TW | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10878995 | Jun 2004 | US |
Child | 11713661 | Mar 2007 | US |