The present invention relates to a heat exchanger and an air conditioning apparatus.
This U.S. National stage application claims priority under 35 U.S.C. § 119(a) to Japanese Patent Application No. 2014-202334, filed in Japan on Sep. 30, 2014, the entire contents of which are hereby incorporated herein by reference.
In the prior art, there are well-known heat exchangers that are provided with a plurality of flat tubes, fins that are joined to the plurality of flat tubes, and header collecting tubes respectively connected to a first end side and another end side of the plurality of flat tubes. In these heat exchangers, heat is exchanged between refrigerant flowing through the interior of the flat tubes and air passing the exterior of the flat tubes.
For example, in the heat exchanger disclosed in Japanese Laid-open Patent Publication No. H02-219966, a configuration is adopted in which both ends of a plurality of outflow tubes that extend in a horizontal direction are respectively connected to header collecting tubes that extend in a vertical direction.
The heat exchanger disclosed in Japanese Laid-open Patent Publication No. H02-219966 addresses the problem that, within the header collecting tubes that extend in the vertical direction, liquid phase refrigerant having a high specific gravity collects at the lower part and gas phase refrigerant having a low specific gravity collects at the upper part, whereby an unevenly distributed flow is generated. In order to solve this problem, a configuration is proposed in which a throttle is formed within the header collecting tubes.
Passing the refrigerant through the throttle formed in this manner facilitates mixing of the gas phase refrigerant and the liquid phase refrigerant, while at the same time increases the flow rate, making it easy for the refrigerant to be caused to reach the upper part within the header collecting tubes, thereby minimizing unevenly distributed flow of the refrigerant.
However, in the heat exchanger illustrated in Japanese Laid-open Patent Publication No. H02-219966 as described above, no consideration whatsoever has been given to minimizing unevenly distributed flow in cases of use under conditions of varied refrigerant circulation rate, and there has been no investigation into a structure by which the effect for minimizing unevenly distributed flow is obtained irrespective of whether low circulation rates, high circulation rates, or both occur.
Specifically, in a case of a low circulation rate, forming the throttle increases the flow rate, allowing the refrigerant to reach the upper part within the header collecting tubes, thereby making it possible to minimize unevenly distributed flow. However, in a case of a high circulation rate, the flow rate increases too much due to the throttle, and therefore too much of the liquid phase refrigerant having a high specific gravity collects at the top, and an unevenly distributed flow results instead.
However, even when the degree of throttle is adjusted so that the flow rate does not increase too much in a case of a high circulation rate, thereby making it possible to minimize unevenly distributed flow when the circulation rate is high, it will be difficult for the refrigerant to be caused to reach the top in a case of a low circulation rate, and an unevenly distributed flow may still be generated.
By contrast, a configuration has been considered in which a refrigerant loop structure in the headers is employed, such that when the circulation rate is low, the refrigerant is facilitated in reaching the top, while when the circulation rate is high, refrigerant having reached the top is caused to move from the corresponding ascending space to another space and descend, and is subsequently caused to ascend again. In such a loop structure, it is possible to provide an upper communication port via which the refrigerant that has ascended in the ascending space is allowed to move to a descending space, and a lower communication port (return hole) for returning the refrigerant that has descended in the descending space to the ascending space again.
However, the inventors discovered that, in the lower communication port (return hole), no following current flowing from the descending space to the ascending space was produced, and there was a risk that a reverse current flowing from the ascending space toward the descending space could be produced.
The present invention was contrived in view of the foregoing, it being a purpose of the present invention to provide a heat exchanger and an air conditioning apparatus with which it is possible to minimize unevenly distributed flow of refrigerant and minimize reverse current of the refrigerant flowing from the ascending space toward the descending space even in cases of use under conditions such that the circulation rate of the refrigerant varies.
A heat exchanger according to a first aspect of the present invention is provided with a plurality of flat tubes, a header part, and a guide part. The plurality of flat tubes are arranged mutually side by side. The header part extends upward so as to follow the direction in which the plurality of flat tubes are arranged side by side, the interior of the header part being partitioned into a first space and a second space. One end of each of the plurality of flat tubes is connected to the first space. The plurality of flat tubes are not connected to the second space. The guide part has a guide space positioned below the first space. The guide space communicates with the first space via an ascending opening. The first space and the second space communicate with each other via an upper communication port and a lower communication port. The upper communication port is provided within the upper side of the header part. The lower communication port is provided within the lower side of the header part. When the heat exchanger is viewed from above after having been installed, the ascending opening and the plurality of flat tubes have an area of overlap. When the heat exchanger is viewed from above after having been installed, either the ascending opening and the space where the lower communication port is extended along the direction in which the flat tubes extend do not overlap, or the ascending opening and the space where the lower communication port is extended along the direction in which the flat tubes extend have an area of overlap, which is up to 50% of the ascending opening.
The upper communication port and/or the lower communication port may be configured so as to include a plurality of openings. The flat tubes may be connected to the guide space. The guide space may be configured in a widened manner so as not only to connect to the bottom of the first space, but also to span between the bottom of the first space and the bottom of the second space.
The plurality of flat tubes connected to the first space may be disposed with the ends being in alignment such that the first-space-inner-side ends are side by side in the vertical direction, or may be disposed without the ends being in alignment. In cases where the plurality of flat tubes are disposed with the ends on the inner side of the first space being in alignment, the ascending opening and all of the flat tubes are disposed such that there is at least some overlap when the heat exchanger is viewed from above after having been installed. In cases where the plurality of flat tubes are disposed without the ends on the inner side of the first space being in alignment, the ascending opening and a specific flat tube among the plurality of flat tubes are disposed such that there is at least some overlap when the heat exchanger is viewed from above after having been installed. In cases where the plurality of flat tubes are disposed without the ends on the inner side of the first space being in alignment, the flat tube that has the area of overlap with the ascending opening when the heat exchanger is viewed from above after having been installed is preferably positioned in the lower half of the first space, and is more preferably positioned in the lower one-third of the first space.
In the heat exchanger according to the aspect described above, the internal space of the header part is partitioned into a first space and a second space. Therefore, the area through which the refrigerant passes when the refrigerant is to pass through the ascending opening and ascend can be reduced to only the first space, in contrast to when the internal space is not partitioned. Therefore, it is possible to minimize any reduction in the flow rate of the refrigerant ascending through the first space. In a case where this heat exchanger is used in a refrigerating apparatus provided with a refrigerant circuit, it will be easy for the refrigerant to be caused to reach the upper part or top within the header collecting tubes even when the flow rate of the refrigerant passing through the ascending opening is low and the velocity at which the refrigerant having passed through the ascending opening contacts the flat tubes decreases, such as in a case where the circulation rate of the refrigerant in the refrigerant circuit is low.
In the heat exchanger according to the aspect described above, the plurality of flat tubes and the ascending opening have an area of overlap when the heat exchanger is viewed from above after having been installed. Therefore, in a case where the flow rate at which the refrigerant has passed through the ascending opening is high, such as in a case where the circulation rate of the refrigerant in the refrigerant circuit is high, it is possible to cause the refrigerant to make violent contact with the flat tubes and agitate the gas phase refrigerant and the liquid phase refrigerant. Therefore, when the circulation rate is high, the refrigerant can be more evenly supplied to both the flat tubes positioned at the top within the first space and the flat tubes positioned at the bottom within the first space.
In a case where the flow rate at which the refrigerant has passed through the ascending opening is low, such as in a case where the circulation rate of the refrigerant in the refrigerant circuit is low, the refrigerant is caused to make contact with the flat tubes more gently, and therefore it is easy for the refrigerant to be caused to reach the upper part within the first space without losing much momentum when ascending. Therefore, even when the circulation rate is low, the refrigerant can be more evenly supplied to both the flat tubes positioned at the top within the first space and the flat tubes positioned at the bottom within the first space.
In the heat exchanger according to the aspect described above, in cases where the heat exchanger functions as an evaporator for the refrigerant, even when the flow rate at which the refrigerant has passed through the ascending opening is high enough that the liquid phase refrigerant diverges upward merely by the refrigerant being caused to make violent contact with the flat tubes, such as in a case of a high circulation rate, this divergence can be reduced by furthermore providing an upper communication port and a lower communication port. Specifically, in this heat exchanger, the liquid phase refrigerant having reached the upper part of the first space after the refrigerant is caused to make violent contact with the flat tubes can be guided into the second space via the upper communication port and caused to descend through the second space, after which the refrigerant can be returned to the first space via the lower communication port. Accordingly, even in cases where the flow rate at which the refrigerant has passed through the ascending opening is high such as in a case of a high circulation rate, and the liquid phase refrigerant is likely to diverge upward even when the refrigerant having passed through the ascending opening is caused to make contact with the flat tubes, it will be possible to keep unevenly distributed flow of the refrigerant flowing within the plurality of flat tubes to a minimum.
In the heat exchanger according to the aspect described above, when the heat exchanger is viewed from above after having been installed, either the ascending opening and the space where the lower communication port is extended along the direction in which the flat tubes extend do not overlap, or the ascending opening and the space where the lower communication port is extended along the direction in which the flat tubes extend have an area of overlap that is up to 50% of the ascending opening. This arrangement makes it more difficult for the refrigerant having passed through the ascending opening from the guide space and ascended toward the first space to form a reverse current from the first space toward the second space via the lower communication port.
This makes it possible to minimize unevenly distributed flow of the refrigerant even when the refrigerant circulation rate varies, and to minimize reverse current from the first space toward the second space via the lower communication port.
A heat exchanger according to a second aspect of the present invention is the heat exchanger according to the first aspect of the present invention, wherein the ascending opening and/or the lower communication port is configured so as to include a plurality of ports positioned so as to be set apart from each other. The port that is configured so as to include a plurality of ports may be only the ascending opening, or may be only the lower communication port. Alternatively, both the ascending opening and the lower communication port may be configured so as to include a plurality of ports.
In the heat exchanger according to the aspect described above, the ascending opening and/or the lower communication port are/is constituted by a plurality of ports. Therefore, it will be possible to keep divergence of the distribution of refrigerant less than when there is one port.
A heat exchanger according to a third aspect of the present invention is the heat exchanger according to the second aspect of the present invention, wherein each of the plurality of flat tubes has a plurality of inflow ports arranged side by side in a horizontal direction in the ends within the first space. With respect to the space where the lower communication port is extended along the direction in which the flat tubes extend, the ascending opening includes a first ascending opening provided to one side of the space and a second ascending opening provided to the other side of the space when the heat exchanger is viewed from above after having been installed.
In the heat exchanger according to the aspect described above, some of the refrigerant flowing into the first space from the guide space passes through the first ascending opening, and the rest of the refrigerant passes through the second ascending opening. Therefore, it will be possible to send refrigerant to both the one side and the other side of the space where the lower communication port is extended along the direction in which the flat tubes extend. Accordingly, it will be possible to minimize any variance in the amounts of refrigerant fed to the plurality of inflow ports arranged side by side in the ends of the flat tubes.
A heat exchanger according to a fourth aspect of the present invention is the heat exchanger according to any of the first to third aspects of the present invention, wherein the lower end of the lower communication port is positioned further downward than is the lower end of a lowest-stage flat tube. The lowest-stage flat tube is the flat tube arranged furthest downward above the ascending opening among the plurality of flat tubes connected to the first space.
The upper end of the lower communication port is preferably positioned further downward than is the lower end of the lowest-stage flat tube.
In the heat exchanger according to the aspect described above, in a state in which the refrigerant having passed through the ascending opening and flowed upward ascends until colliding with the lowest-stage flat tube, the refrigerant will already have passed the lower end of the lower communication port and been positioned higher. Therefore, even when the refrigerant having passed through the ascending opening collides with the lowest-stage flat tube, the refrigerant is not likely to flow toward the lower communication port, and reverse current of the refrigerant via the lower communication port can be more effectively minimized.
In a configuration in which the upper end of the lower communication port is positioned further downward than is the lower end of the lowest-stage flat tube, reverse current of the refrigerant via the lower communication port can be even more effectively minimized.
A heat exchanger according to a fifth aspect of the present invention is the heat exchanger according to any of the first to fourth aspects of the present invention, wherein the heat exchanger is furthermore provided with a guide partition member. The header part has a header partition member for partitioning the first space and the second space. The guide partition member partitions the guide space and the first space of the header part. The upper surface of the guide partition member includes a portion in contact with the header partition member. The ascending opening is provided so as to pass through the guide partition member in the plate-thickness direction at a position set apart from the position of contact between the guide partition member and the header partition member.
In the heat exchanger according to the aspect described above, the ascending opening is provided at a position set apart from the position of contact between the guide partition member and the header partition member; therefore, even in cases where the heat exchanger is manufactured through brazing, the brazing material is not likely to reach the position of the ascending opening and it will be possible to minimize obstruction of the ascending opening.
An air conditioning apparatus according to a sixth aspect of the present invention is provided with a refrigerant circuit. The refrigerant circuit is constituted by connecting the heat exchanger according to any of the first to fifth aspects of the present invention, and a variable-capacity compressor.
With this air conditioning apparatus, driving by the variable-capacity compressor causes the circulation rate of the refrigerant flowing through the refrigerant circuit to fluctuate, and the amount of refrigerant passing through the heat exchanger to fluctuate. In cases where the heat exchanger functions as an evaporator, it will be possible to keep unevenly distributed flow of the refrigerant within the heat exchanger to a minimum, even when the amount of the refrigerant passing therethrough increases and the mixture ratio of liquid phase refrigerant increases, or the flow rate increases.
With the heat exchanger according to the first aspect of the present invention it is possible to minimize unevenly distributed flow of the refrigerant even when the refrigerant circulation rate varies, and to minimize reverse current of the refrigerant from the first space toward the second space via the lower communication port.
With the heat exchanger according to the second aspect of the present invention, it is possible to keep divergence of the distribution of refrigerant less than when there is one port.
With the heat exchanger according to the third aspect of the present invention, it is possible to minimize any variance in the amounts of refrigerant fed to the plurality of inflow ports arranged side by side in the ends of the flat tubes.
With the heat exchanger according to the fourth aspect of the present invention, it is possible to more effectively minimize reverse current of the refrigerant via the lower communication port.
With the heat exchanger according to the fifth aspect of the present invention, it is possible to minimize obstruction of the ascending opening.
With the air conditioning apparatus according to the sixth aspect of the present invention, in cases where the heat exchanger functions as an evaporator, it is possible to keep unevenly distributed flow of the refrigerant within the heat exchanger to a minimum, even when the amount of the refrigerant passing therethrough increases and the mixture ratio of liquid phase refrigerant increases, or the flow rate increases.
This air conditioning apparatus 1 is a device used for cooling and heating, through vapor compression refrigerating cycle operation, of a building interior in which an air conditioning indoor unit 3 has been installed, and is constituted by an air conditioning outdoor unit 2 as a heat source-side unit and the air conditioning indoor unit 3 as a usage-side unit, which are connected by refrigerant interconnecting pipelines 6, 7.
The refrigerant circuit constituted by connection of the air conditioning outdoor unit 2, the air conditioning indoor unit 3, and the refrigerant interconnecting pipelines 6, 7 is further constituted by connecting a compressor 91, a four-way switching valve 92, an outdoor heat exchanger 20, an expansion valve 33, an indoor heat exchanger 4, an accumulator 93, and the like, through refrigerant pipelines. A refrigerant is sealed within this refrigerant circuit, and refrigerating cycle operation involving compression, cooling, depressurization, and heating/evaporation of the refrigerant, followed by re-compression, is carried out. As the refrigerant, there may be employed one selected, for example, from R410A, R32, R407C, R22, R134a, carbon dioxide, and the like.
(2-1) Air Conditioning Indoor Unit 3
The air conditioning indoor unit 3 is installed by being wall-mounted on an indoor wall or the like, or by being recessed within or suspended from an indoor ceiling of a building or the like. The air conditioning indoor unit 3 includes the indoor heat exchanger 4 and an indoor fan 5. The indoor heat exchanger 4 is, for example, a fin-and-tube heat exchanger of cross fin type, constituted by a heat transfer tube and a multitude of fins. In cooling operation, the heat exchanger functions as an evaporator for the refrigerant to cool the indoor air, and in heating operation functions as a condenser for the refrigerant to heat the indoor air.
(2-2) Air Conditioning Outdoor Unit 2
The air conditioning outdoor unit 2 is installed outside a building or the like, and is connected to the air conditioning indoor unit 3 by the refrigerant interconnecting pipelines 6, 7. As shown in
As shown in
The unit casing 10 constitutes a chassis and is provided with a bottom panel 12, a top panel 11, a side panel 13 at the blower chamber side, a side panel 14 at the machinery chamber side, a blower chamber-side front panel 15, and a machinery chamber-side front panel 16.
The air conditioning outdoor unit 2 is configured in such a way that outdoor air is drawn into the blower chamber S1 within the unit casing 10 from parts of the rear surface and the side surface of the unit casing 10, and the suctioned outdoor air is vented from the front surface of the unit casing 10. In specific terms, an intake port 10a and an intake port 10b facing the blower chamber S1 within the unit casing 10 are formed between the rear face-side end of the side panel 13 at the blower chamber side and the blower chamber S1-side end of the side panel 14 at the machinery chamber side. The blower chamber-side front panel 15 is furnished with a vent 10c, the front side thereof being covered by a fan grill 15a.
The compressor 91 is, for example, a sealed compressor driven by a compressor motor, and is configured such that the operating capacity can be varied through inverter control.
The four-way switching valve 92 is a mechanism for switching the direction of flow of the refrigerant. In cooling operation, the four-way switching valve 92 connects a refrigerant pipeline from the discharge side of the compressor 91 and the gas refrigerant pipeline 31 which extends from a first end (the gas-side end) of the outdoor heat exchanger 20, as well as connecting, via the accumulator 93, the refrigerant interconnecting pipeline 7 for the gas refrigerant and the refrigerant pipeline at the intake side of the compressor 91 (see the solid lines of the four-way switching valve 92 in
The outdoor heat exchanger 20 is arranged upright in a vertical direction (perpendicular direction) in the blower chamber S1, and faces the intake ports 10a, 10b. The outdoor heat exchanger 20 is a heat exchanger made of aluminum; in the present embodiment, one having design pressure of about 3-4 MPa is employed. The gas refrigerant pipeline 31 extends from the first end (the gas-side end) of the outdoor heat exchanger 20, so as to connect to the four-way switching valve 92. The liquid refrigerant pipeline 32 extends from the other end (the liquid-side end) of the outdoor heat exchanger 20, so as to connect to the expansion valve 33.
The accumulator 93 is connected between the four-way switching valve 92 and the compressor 91. The accumulator 93 is equipped with a gas-liquid separation function for separating the refrigerant into a gas phase and a liquid phase. Refrigerant inflowing to the accumulator 93 is separated into the gas phase and the liquid phase, and the gas phase refrigerant which collects in the upper spaces is supplied to the compressor 91.
The outdoor fan 95 supplies the outdoor heat exchanger 20 with outdoor air for heat exchange with the refrigerant flowing through the outdoor heat exchanger 20.
The expansion valve 33 is a mechanism for depressurizing the refrigerant in the refrigerant circuit, and is an electrically-operated valve, the opening degree of which is adjustable. In order to make adjustments to the refrigerant pressure and the refrigerant flow rate, the expansion valve 33 is disposed between the outdoor heat exchanger 20 and the refrigerant interconnecting pipeline 6 for the liquid refrigerant, and has the function of expanding the refrigerant, both in air-cooling operation and air-warming operation.
The outdoor fan 95 is arranged facing the outdoor heat exchanger 20 in the blower chamber S1. The outdoor fan 95 sucks outdoor air into the unit, and after heat exchange between the outdoor air and the refrigerant has taken place in the outdoor heat exchanger 20, discharges the heat-exchanged air to the exterior. This outdoor fan 95 is a fan in which it is possible to adjust the airflow volume of the air supplied to the outdoor heat exchanger 20, and could be, for example, a propeller fan driven by a motor, such as a DC fan motor, or the like.
(3-1) Cooling Operation
In cooling operation, the four-way switching valve 92 assumes the state shown by the solid lines in
This low-pressure gas refrigerant is fed to the air conditioning outdoor unit 2 through the refrigerant interconnecting pipeline 7, and is again suctioned into the compressor 91. In this cooling operation, the air conditioning apparatus 1 prompts the outdoor heat exchanger 20 to function as a condenser for the refrigerant compressed in the compressor 91, and the indoor heat exchanger 4 to function as an evaporator for the refrigerant condensed in the outdoor heat exchanger 20.
In the refrigerant circuit during cooling operation, while degree of superheat control by the expansion valve 33 is taking place, the compressor 91 is inverter-controlled to a set temperature (such that the cooling load can be processed), and therefore the circulation rate of the refrigerant may be high in some cases, and low in others.
(3-2) Heating Operation
In heating operation, the four-way switching valve 92 assumes the state shown by broken lines in
The high-pressure gas refrigerant fed to the air conditioning indoor unit 3 then undergoes heat exchange with indoor air in the indoor heat exchanger 4, is condensed to become high-pressure liquid refrigerant, and then while passing through the expansion valve 33 is depressurized to an extent commensurate with the opening degree of the expansion valve 33. The refrigerant having passed through the expansion valve 33 flows into the outdoor heat exchanger 20. The refrigerant in a low-pressure, gas-liquid two-phase state having flowed into the outdoor heat exchanger 20 undergoes heat exchange with outdoor air supplied by the outdoor fan 95, evaporates to become low-pressure gas refrigerant, and is again suctioned into the compressor 91 through the four-way switching valve 92. In this heating operation, the air conditioning apparatus 1 prompts the indoor heat exchanger 4 to function as a condenser for the refrigerant compressed in the compressor 91, and the outdoor heat exchanger 20 to function as an evaporator for the refrigerant condensed in the indoor heat exchanger 4.
In the refrigerant circuit during heating operation, while degree of supercooling control by the expansion valve 33 is taking place, the compressor 91 is inverter-controlled to a set temperature (such that the heating load can be processed), and therefore the circulation rate of the refrigerant may be high in some cases, and low in others.
(4-1) Overall Configuration of the Outdoor Heat Exchanger 20
The outdoor heat exchanger 20 is provided with a heat exchange part 21 via which heat is exchanged between the outside air and the refrigerant, an outlet/inlet header collecting tube 26 and a folding-back header 24 provided to a first end of the heat exchange part 21, a connecting header 23 provided to the other end of the heat exchange part 21, an interconnecting part 25 for interconnecting the bottom of the folding-back header 24 and the top of the folding-back header 24, and a distributor 22 for guiding refrigerant that has been diverted to the bottom of the outlet/inlet header collecting tube 26.
(4-2) Heat Exchange Part 21
The heat exchange part 21 is constituted by a multitude of the heat transfer fins 21a and a multitude of the flat perforated tubes 21b. The heat transfer fins 21a and the flat perforated tubes 21b are both fabricated from aluminum or aluminum alloy.
The heat transfer fins 21a are flat members, and a plurality of cutouts 21aa extending in a horizontal direction for insertion of flat tubes are formed side by side in a vertical direction in the heat transfer fins 21a. The heat transfer fins 21a are attached so as to have innumerable sections protruding towards the upstream side of the air flow.
The flat perforated tubes 21b function as heat transfer tubes via which heat moving between the heat transfer fins 21a and the outside air is transferred to the refrigerant flowing through the interior. The flat perforated tubes 21b have vertical flat-surface parts that constitute heat transfer surfaces, and a plurality of inflow ports 21ba, formed side by side in a horizontal direction, through which the refrigerant flows. A plurality of flat perforated tubes 21b having this configuration are provided, and are arranged at prescribed intervals in the vertical direction. The flat perforated tubes 21b, configured so as to have a slightly greater vertical width than the cutouts 21aa, are aligned in a plurality of stages at intervals in a state in which the flat-surface parts are oriented vertically, and are provisionally secured by being fitted into the cutouts 21aa. With the flat perforated tubes 21b provisionally secured by being fitted into the cutouts 21aa of the heat transfer fins 21a in this manner, the heat transfer fins 21a and the flat perforated tubes 21b are brazed. Both ends of each of the flat perforated tubes 21b are brazed in a state of being fitted into the outlet/inlet header collecting tube 26, the folding-back header 24, and the connecting header 23.
As shown in
This heat exchange part 21 is configured by having, with respect to a direction of airflow produced by the outdoor fan 95 (flow from the rear surface and the left side surface of the chassis toward the fan grill 15a on the front surface of the chassis), an upstream-side heat exchange part 211 provided so as to border on an upstream side and a downstream-side heat exchange part 212 provided so as to border on a downstream side. The upstream-side heat exchange part 211 includes the plurality of flax perforated tubes 21b arranged side by side in a vertical direction extending so as to border on the upstream side, and the heat transfer fins 21a secured to these flat perforated tubes 21b. Similarly, the downstream-side heat exchange part 212 includes the plurality of flat perforated tubes 21b arranged side by side in a vertical direction extending so as to border on the downstream side, and the heat transfer fins 21a secured to these flat perforated tubes 21b.
(4-3) Distributor 22
The distributor 22 is connected such that the liquid refrigerant pipeline 32 and the lower portion of the outlet/inlet header collecting tube 26 are interconnected, the refrigerant having flowed from the liquid refrigerant pipeline 32 being diverted in a height direction by the distributor 22 and guided to the lower portion of the outlet/inlet header collecting tube 26 when the outdoor heat exchanger 20 functions as an evaporator for the refrigerant.
(4-4) Outlet/Inlet Header Collecting Tube 26
The outlet/inlet header collecting tube 26 is a cylindrical member extending in the vertical direction and fabricated from aluminum or aluminum alloy. The portions of the outdoor heat exchanger 20 where the refrigerant enters and exits are set apart to the top and bottom. The lower portion of the outlet/inlet header collecting tube 26 is connected to the liquid refrigerant pipeline 32 via the distributor 22 as described above. The upper portion of the outlet/inlet header collecting tube 26 is connected to the gas refrigerant pipeline 31. The outlet/inlet header collecting tube 26 is formed in a substantially cylindrical shape, the internal space of the upper portion and the internal space of the lower portion being vertically partitioned by a baffle provided in the interior. The lower portion of the outlet/inlet header collecting tube 26 is vertically partitioned by a plurality of baffles so that the distribution of the refrigerant diverted by the distributor 22 is maintained. Specifically, a configuration is adopted such that each of the refrigerant flows set apart to the top and bottom by the distributor 22 are caused to flow to the heat exchange part 21 while remaining set apart.
According to the above configuration, in cases where the outdoor heat exchanger 20 functions as an evaporator for the refrigerant, the refrigerant having flowed into the heat exchange part 21 via the liquid refrigerant pipeline 32, the distributor 22, and the lower portion of the outlet/inlet header collecting tube 26 and evaporated flows to the exterior via the upper portion of the outlet/inlet header collecting tube 26 and the gas refrigerant pipeline 31. In cases where the outdoor heat exchanger 20 functions as a radiator for the refrigerant, the refrigerant flows in the direction opposite that described above.
(4-5) Connecting Header 23
The connecting header 23 is provided to the heat exchange part 21 on the opposite side from the end where the outlet/inlet header collecting tube 26 and the folding-back header 24 are provided, and is configured so as to guide refrigerant having flowed through the flat perforated tubes 21b of the upstream-side heat exchange part 211 into the flat perforated tubes 21b of the downstream-side heat exchange part 212 at the same height position, or to guide refrigerant having flowed through the flat perforated tubes 21b of the downstream-side heat exchange part 212 into the flat perforated tubes 21b of the upstream-side heat exchange part 211 at the same height position. This connecting header 23 fulfills the role whereby flow paths of the refrigerant within the outdoor heat exchanger 20 are merely linked up at the same height position, without any vertical movement of the refrigerant being produced.
(4-6) Folding-Back Header 24
The folding-back header 24 is provided to the end of the heat exchange part 21 opposite the end where the connecting header 23 is provided, so as to extend in the vertical direction further downstream than the outlet/inlet header collecting tube 26. This folding-back header 24 is connected to the end of the heat exchange part 21 opposite the connecting header 23 of the downstream-side heat exchange part 212. The folding-back header 24 is also fabricated from aluminum or aluminum alloy.
As shown in the exploded schematic perspective view of the folding-back header 24 and the interconnecting part 25 in
The perforated-side member 61 constitutes a wall surface at the heat exchange part 21 side of the folding-back header 24, and is formed in a substantially semicircular-arcuate shape as viewed from above. This perforated-side member 61 has a shape such that the semicircular-arc shape extends in the vertical direction, and is provided, at each height position, with openings that pass through in the plate-thickness direction and are used for the insertion of the flat perforated tubes 21b.
The pipeline-side member 62 constitutes a wall surface at the side of the folding-back header 24 opposite the heat exchange part 21, and is formed in a substantially semicircular-arcuate shape as viewed from above. This pipeline-side member 62 has a shape such that the semicircular-arc shape extends in the vertical direction, and is provided, at each height position, with openings that pass through in the plate-thickness direction and are used for the insertion of the interconnecting pipelines of the interconnecting part 25 (described later). This pipeline-side member 62 is also provided, at each height position, with openings for fastening first ends of the baffles 80.
The partition member 70 extends vertically so as to partition the space within the folding-back header 24 in the horizontal direction to form a perforated-side member 61-side space and a pipeline-side member 62-side space. The partition member 70 is provided with openings, at each height position, for inserting and fastening the baffles 80.
As shown in
A configuration is adopted in which the number of flat perforated tubes 21b connected to the second upper folding-back portion 24bb of the upper folding-back portion 24b is greater than the number of flat perforated tubes 21b connected to the first lower folding-back portion 24aa of the lower folding-back portion 24a. Additionally, a configuration is adopted in which the number of flat perforated tubes 21b connected to the first upper folding-back portion 24ba of the upper folding-back portion 24b is greater than the number of flat perforated tubes 21b connected to the second lower folding-back portion 24ab of the lower folding-back portion 24a. Any increase or decrease in the ratio of gas phase components in the refrigerant flowing through the outdoor heat exchanger 20 is thereby addressed.
A plurality of flow paths are arranged within the first lower folding-back portion 24aa of the lower folding-back portion 24a so as to be set apart to the top and bottom. In order to maintain the vertical-direction distribution of refrigerant flowing through the heat exchange part 21, the plurality of flow paths in the interior of the first lower folding-back portion 24aa are arranged one by one in the vertical direction while being vertically partitioned by a plurality of baffles 80 in which no openings are formed.
The first lower folding-back portion 24aa and the second lower folding-back portion 74ab of the lower folding-back portion 24a are vertically partitioned by baffles 80 in which no openings are formed.
The lower folding-back portion 24a and the upper folding-back portion 24b (the second lower folding-back portion 24ab of the lower folding-back portion 24a and the first upper folding-back portion 24ba of the upper folding-back portion 24b) are vertically partitioned by baffles 80 (rectifier plates 82) in which ascending openings 82a, 82b that pass through in the plate-thickness direction are formed.
The internal space of the second lower folding-back portion 24ab of the lower folding-back portion 24a is partitioned by the partition member 70, and includes a first guide space 61a on the flat perforated tube 21b side and a second guide space 62a on the side opposite the flat perforated tube 21b side.
The first upper folding-back portion 24ba and the second upper folding-back portion 24bb of the upper folding-back portion 24b are vertically partitioned by the baffles 80 in which no openings are formed.
The internal space of the first upper folding-back portion 24ba of the upper folding-back portion 24b is partitioned by the partition member 70, and includes an ascending space 61b on the flat perforated tube 21b side and a descending space 62b on the side opposite the flat perforated tube 21b side.
A plurality of flow paths are arranged within the second upper folding-back portion 24bb of the upper folding-back portion 24b so as to be separated vertically. In order to maintain the vertical-direction distribution of refrigerant flowing through the heat exchange part 21 in each of the flow paths, in the interior of the second upper folding-back portion 24bb, the plurality of flow paths are arranged one by one in the vertical direction while being vertically partitioned by the plurality of baffles 80 (lower partition plate 81 and upper partition plate 83 in
The rectifier plate 82 is provided with a plurality of ascending openings 82a, 82b (first ascending opening 82a and second ascending opening 82b), as shown in
The position and size of the lower communication port 72, as well as the positional relationship between the lower communication port 72 and the closest flat perforated tube 21b, are described with reference to
Both the lower partition plate 81 and the upper partition plate 83 constitute the baffle 80, both having the same shape and dimensions, and both having no openings formed therein; for expedience of description, the baffle 80 that constitutes the lower end of the group of spaces is described as the lower partition plate 81, and the baffle 80 that constitutes the upper end of the group of spaces is described as the upper partition plate 83. The upper partition plate 83 of a given group of spaces also functions as the lower partition plate 81 of the next higher group of spaces.
As shown in
The second upper folding-back portion 24bb of the upper folding-back portion 24b of the folding-back header 24 is also provided with an ascending space 61b and a descending space 62b as spaces (header part 60b) vertically bounded by the upper partition plate 83 and the rectifier plate 82 in which the ascending openings 82a, 82b are formed. The ascending space 61b and the descending space 62b are partitioned by the partition member 70, in which the upper communication port 73 and the lower communication port 72 are formed. The upper sections of the ascending space 61b and the descending space 62b communicate via the upper communication port 73. The lower sections of the ascending space 61b and the descending space 62b communicate via the lower communication port 72.
The second lower folding-back portion 24ab of the lower folding-back portion 24a of the folding-back header 24 and the first upper folding-back portion 24ba of the upper folding back portion 24b of the folding-back header 24 are interconnected not via the interconnecting pipeline, etc., of the interconnecting part 25, but by the interior of the folding-back header 24, and therefore the interconnecting pipeline of the interconnecting part 25 is not connected to the second guide space 62a of the first upper folding-back portion 24ba. The structures of the first guide space 61a, second guide space 62a, ascending space 61b, and descending space 62b and the like are the same as those in the second upper folding-back portion 24bb of the upper folding-back portion 24b, and therefore no description is given therefor.
(4-7) Interconnecting Part 25
The interconnecting part 25 has a plurality of interconnecting pipelines. Each of the interconnecting pipelines is connected, in a one-to-one relationship, to each of the space vertically divided into a plurality in the first lower folding-back portion 24aa of the lower folding-back portion 24a of the folding-back header 24, and to each of the space in which the first guide space 61a, the second guide space 62a, the ascending space 61b, and the descending space 62b are grouped (the group of spaces), the group of spaces being arranged in a plurality of sets side by side in the vertical direction in the second upper folding-back portion 24bb of the upper folding-back portion 24b of the folding-back header 24.
The interconnecting pipelines are provided such that the lower-positioned space in the first lower folding-back portion 24aa of the lower folding-back portion 24a is connected to the higher-positioned group of spaces in the second upper folding-back portion 24bb of the upper folding-back portion 24b.
In cases where the outdoor heat exchanger 20 functions as an evaporator for the refrigerant, the refrigerant flowing through the lower portion of the downstream-side heat exchange part 212 of the heat exchange part 21 first flows into each of the spaces in the lower folding-back portion 24a with the diverged state maintained, as shown by arrows in
However, the second lower folding-back portion 24ab, which is the uppermost of the plurality of spaces within the lower folding-back portion 24a, and the first upper folding-back portion 24ba, which is the lowermost of the plurality of spaces within the upper folding-back portion 24b, are not connected by the interconnecting pipelines of the interconnecting part 25. As shown in
The folding-back header 24 thus properly constitutes a folding-back portion in the flow paths for refrigerant in the outdoor heat exchanger 20.
In cases where the outdoor heat exchanger 20 functions as an evaporator for the refrigerant, the refrigerant having flowed out from the folding-back header 24 to the upper portion of the downstream-side heat exchange part 212 flows through the upper portion of the downstream-side heat exchange part 212 to the connecting header 23 at the other end with the diverged state maintained, moves in the connecting header 23 toward the upstream-side heat exchange part 211, and flows through the upper portion of the upstream-side heat exchange part 211 toward the upper portion of the outlet/inlet header collecting tube 26 of the upstream-side heat exchange part 211 with the diverged state maintained, as shown by arrows in
The loop structure is described below with reference to
The rectifier plate 82 is a plate-shaped member in which the group of spaces described above, within the folding-back header 24, are vertically partitioned into the first guide space 61a and second guide space 62a, located below, and the ascending space 61b and descending space 62b, located above.
The partition member 70 partitions the first guide space 61a and second guide space 62a into a perforated-side member 61-side first guide space 61a and a pipeline-side member 62-side second guide space 62a. The partition member 70 also partitions the ascending space 61b and descending space 62b into a perforated-side member 61-side ascending space 61b and a pipeline-side member 62-side descending space 62b.
The guide communication port 71, upper communication port 73, and lower communication port 72 provided to the partition member 70 all extend in the horizontal direction.
The interconnecting pipelines of the interconnecting part 25 are connected to the second guide space 62a.
The rectifier plate 82 is disposed such that the vertical-direction distance between the rectifier plate 82 and the flat perforated tube 21b (the lowest-stage flat tube) positioned closest to the top of the rectifier plate 82 is less than a predetermined interval between flat perforated tubes 21b arranged side by side in the vertical direction.
The ascending space 61b-side outlet of the lower communication port 72 is positioned further downward than is the flat perforated tube 21b that is positioned lowest (the lowest-stage flat tube) among the flat perforated tubes 21b that are connected to the ascending space 61b.
The rectifier plate 82 is provided with the ascending openings 82a, 82b, which are openings that extend in the vertical direction so that the first guide space 61a and the ascending space 61b communicate. The refrigerant having been directed from the first guide space 61a to the higher ascending space 61b passes through the ascending openings 82a, 82b provided in the manner of nozzles for narrowing the flow paths of the rectifier plate 82, therefore making it possible to sufficiently narrow down the refrigerant flow and increase the flow rate of refrigerant flowing in the vertically upward direction.
The ascending space 61b is partitioned from the descending space 62b by the partition member 70, thereby making it possible to reduce the passage area when the refrigerant ascends in the ascending space 61b to less than the total horizontal area of the ascending space 61b and the descending space 62b. Therefore, the ascent velocity of the refrigerant having flowed into the ascending space 61b via the ascending openings 82a, 82b is easily maintained, making it easy to allow the refrigerant to reach the top portion within the ascending space 61b even when the circulation rate is low.
The area obtained by subtracting “the horizontal area of the portions of the flat perforated tubes 21b that protrude into the ascending space 61b” from “the horizontal area of the ascending space 61b at a height position at which no flat perforated tubes 21b are present” (i.e., the area of a portion of the ascending space 61b in which the refrigerant ascends avoiding the flat perforated tubes 21b) is disposed so as to be greater than the refrigerant passage area of the lower communication port 72. Consequently, the refrigerant having flowed into the ascending space 61b via the ascending openings 82a, 82b of the rectifier plate 82 does not form a reverse current toward the descending space 62b via the lower communication port 72, which is narrower and more difficult to pass through, but rather flows through a portion of the ascending space 61b that excludes the flat perforated tubes 21b, this portion being wider and easier to pass through. Moreover, as described above, the ascending openings 82a, 82b of the rectifier plate 82 are disposed so as not to overlap the lower communication port 72 (so as not to overlap a region obtained by extending the lower communication port 72 along the longitudinal direction of the flat perforated tubes 21b); therefore, reverse current of the refrigerant toward the descending space 62b via the lower communication port 72 can be more effectively minimized.
The ascending openings 82a, 82b provided to the rectifier plate 82 and the flat perforated tube 21b (the lowest-stage flat tube) positioned above the ascending openings 82a, 82b so as to be closest to and directly above the ascending openings 82a, 82b are disposed so as to have an area of overlap as viewed from above. The area of this area of overlap is disposed so as to be greater than the area of non-overlap of the ascending openings 82a, 82b and the flat perforated tube 21b directly above the ascending openings 82a, 82b as viewed from above. In the present embodiment, at least 70% of the ascending openings 82a, 82b is provided so as to overlap the flat perforated tube 21b (the lowest-stage flat tube) as viewed from above, but no limitation is provided thereby.
A loop structure is employed in the partition member 70 through the formation of the upper communication port 73 and the lower communication port 72. Therefore, the refrigerant having reached the upper part of the ascending space 61b without flowing into the flat perforated tubes 21b is guided into the descending space 62b via the upper communication port 73, descending by gravity in the descending space 62b, and returning to the lower part of the ascending space 61b via the lower communication port 72, as shown by arrows in
The manner in which flow of the refrigerant in the outdoor heat exchanger 20 in a case of a low circulation rate during heating operation shall now be described.
Refrigerant having flowed into the ascending space 61b from the first guide space 61a via the interconnecting part 25, the second guide space 62a, and the guide communication port 71 is in a state in which a gas phase component and a liquid phase component having different specific gravities are mixed.
In a case of a low circulation rate, the per-unit-time amount of refrigerant flowing into the ascending space 61b will be low, and the flow rate of the refrigerant will be relatively low. Therefore, if the flow rate remains unchanged, the high-specific-gravity liquid phase component of the refrigerant is not likely to rise, making it difficult for the refrigerant to reach the flat perforated tubes 21b positioned higher among the plurality of flat perforated tubes 21b in the ascending space 61b, causing the amount passing through the plurality of flat perforated tubes 21b in the ascending space 61b to become non-uniform in accordance with height position, and presenting a risk that unevenly distributed flow will be generated. When primarily the gas phase component having a low specific gravity in the refrigerant flows into a first end of the flat perforated tubes 21b arranged comparatively higher in this manner, the degree of superheat of the refrigerant flowing out from the other end of the flat perforated tubes 21b becomes too high, failing to produce a phase change while the refrigerant passes through the flat perforated tubes 21b and producing portions in which sufficient heat exchange capability cannot be exhibited. On the other hand, when primarily the liquid phase component having a high specific gravity in the refrigerant flows into the first end of the flat perforated tubes 21b arranged comparatively lower, the degree of superheat of the refrigerant flowing out from the other end of the flat perforated tubes 21b does not readily rise, allowing the refrigerant to reach the other end of the flat perforated tubes 21b without evaporating in some cases, and thus producing portions in which sufficient heat exchange capability cannot be exhibited.
However, in cases where the outdoor heat exchanger 20 of the present embodiment is used in a state in which the circulation rate is low, the flow of refrigerant in the ascending openings 82a, 82b of the rectifier plate 82 is narrowed and the passage area of the ascending space 61b is kept small due to being partitioned by the partition member 70, whereby the liquid phase component having a high specific gravity in the refrigerant supplied to the ascending space 61b is guided higher than in the prior art, making it possible to ameliorate unevenly distributed flows even when the circulation rate is low.
This makes it possible, in the outdoor heat exchanger 20 of the present embodiment, to keep the state of the refrigerant flowing into the plurality of flat perforated tubes 21b disposed in portions at differing height positions in the ascending space 61b as uniform as possible even when the circulation rate is low.
The manner in which the refrigerant in the outdoor heat exchanger 20 flows in a case of a high circulation rate during heating operation shall now be described.
Refrigerant having flowed into the ascending space 61b from the first guide space 61a via the interconnecting part 25, the second guide space 62a, and the guide communication port 71 is in a state in which a gas phase component and a liquid phase component having different specific gravities are mixed, in the same manner as in a case of a low circulation rate.
In a case of a high circulation rate, the per-unit-time amount of refrigerant flowing into the ascending space 61b will be high, and the flow rate of the refrigerant will be relatively high. Moreover, a throttle function of the ascending opening 82a, 82b is employed as a measure against the low circulation rate described above, whereby the flow rate further increases. Furthermore, the refrigerant passage cross-sectional area of the ascending space 61b is reduced by the partition member 70 as a measure against the low circulation rate described above, and therefore the ascent velocity of the refrigerant is not likely to decline. Consequently, in a case of a high circulation rate, the liquid phase component having a high specific gravity in the refrigerant violently passing through the ascending openings 82a, 82b passes through the ascending space 61b without flowing into the flat perforated tubes 21b and tends to collect in the upper side. In this case, the liquid phase component having a high specific gravity readily collects in the upper side and the gas phase component having a low specific gravity readily collects in the lower side. The distribution will be different from that in a case of a low circulation rate, but an unevenly distributed flow will still occur.
By contrast, in the outdoor heat exchanger 20 of the present embodiment, a loop structure is employed by providing the upper communication port 73 to the upper portion of the partition member 70 and providing the lower communication port 72 to the lower portion of the partition member 70. Therefore, even when a large amount of the liquid phase component of the refrigerant reaches the upper end of the ascending space 61b, the refrigerant can be guided to the descending space 62b via the upper communication port 73, caused to descend by gravity in the descending space 62b, and then returned to the lower side of the ascending space 61b again via the lower communication port 72.
The refrigerant having been returned to the ascending space 61b via the lower communication port 72 can be drawn into the ascending flow of the refrigerant passing through the ascending openings 82a, 82b, and again caused to ascend into the ascending space 61b and flow into the flat perforated tubes 21b (the refrigerant may be made to form a loop multiple times).
This makes it possible, in the outdoor heat exchanger 20 of the present embodiment, for the state of the refrigerant flowing into the plurality of flat perforated tubes 21b disposed in portions at differing height positions of the ascending space 61b to be kept as uniform as possible even when the circulation rate is high.
(8-1)
The outdoor heat exchanger 20 of the present embodiment makes it possible, in a case of a high circulation rate, to return the refrigerant having formed a loop via the upper communication port 73, the descending space 62b, and the lower communication port 72 to the ascending space 61b again and guide the refrigerant to the flat perforated tubes 21b, even when the liquid phase component of the refrigerant reaches the upper side within the ascending space 61b.
Even in a case of a low circulation rate, the rate at which the refrigerant flows is increased when the refrigerant passes through the ascending openings 82a, 82b formed in the rectifier plate 82, and the ascending space 61b is narrowed by being partitioned by the partition member 70. Therefore, the outdoor heat exchanger 20 of the present embodiment makes it possible to minimize any decline in the ascent velocity of the refrigerant and facilitate causing the refrigerant to reach the upper side within the ascending space 61b.
According to the above, the outdoor heat exchanger 20 of the present embodiment makes it possible for the unevenly distributed flow of the refrigerant flowing to the plurality of flat perforated tubes 21b disposed so as to be arranged side by side in the vertical direction to be kept to a minimum irrespective of whether low circulation rates, high circulation rates, or both occur.
(8-2)
In the outdoor heat exchanger 20 of the present embodiment, the ascending openings 82a, 82b formed in the rectifier plate 82 and the lower communication port 72 used when forming the refrigerant into a loop as described above are disposed such that a region obtained by extending the lower communication port 72 along the longitudinal direction of the flat perforated tubes 21b as viewed from above and the ascending openings 82a, 82b do not overlap as viewed from above. Therefore, the refrigerant having passed through the ascending openings 82a, 82b of the rectifier plate 82 and flowed into the ascending space 61b is not readily guided into the lower communication port 72 even when colliding with the lower surface of the closest flat perforated tube 21b (lowest-stage flat tube). Therefore, it is possible to minimize reverse current of the refrigerant flowing from the ascending space 61b to the descending space 62b via the lower communication port 72.
The lower communication port 72 and the inflow port 21ba of the flat perforated tube 21b (lowest-stage flat tube) closest to the rectifier plate 82 are not present at the same height, therefore making it possible to minimize the chance that the refrigerant having been formed into a loop via the lower communication port 72 will flow in a concentrated manner to a specific flat perforated tube 21b.
The lower end of the lower communication port 72 is positioned further downward than is the lower end of the flat perforated tube 21b (lowest-stage flat tube) closest to the rectifier plate 82. In particular, in the embodiment described above, the lower surface of the flat perforated tube 21b (lowest-stage flat tube) closest to the rectifier plate 82 is disposed at a position higher than the upper end of the lower communication port 72. Therefore, when the refrigerant having ascended in the ascending space 61b has collided with the lower surface of the flat perforated tube 21b (lowest-stage flat tube) closest to the rectifier plate 82, the refrigerant will already have passed above the lower communication port 72 in the height direction. Accordingly, even when the refrigerant flow is disrupted after the collision, the refrigerant is not likely to form a reverse current toward the descending space 62b via the lower communication port 72.
(8-3)
In the outdoor heat exchanger 20 of the present embodiment, the plurality of ascending openings 82a, 82b of the rectifier plate 82 are symmetrically arranged side by side in the width direction with respect to the flat perforated tubes 21b; therefore, the refrigerant having been directed from the plurality of ascending openings 82a, 82b to the flat perforated tubes 21b can be equalized in the width direction of the flat perforated tubes 21b without collecting in the center portion. As shown in
The preceding embodiment has been described as but one example of embodiment of the present invention, but is in no way intended to limit the invention of the present application, which is not limited to the afore described embodiment. The scope of the invention of the present application would as a matter of course include appropriate modifications that do not depart from the spirit thereof.
(9-1) Additional Embodiment: A
The above embodiment describes, by way of example, a case in which only one lower communication port 72 for returning refrigerant from one descending space 62b to one ascending space 61b is formed.
However, the present invention is not limited to this configuration; for example, as shown in
(9-2) Additional Embodiment B
In the embodiment described above and the additional embodiment A described above, a configuration in which a region obtained by extending the lower communication port 72, etc., along the longitudinal direction of the flat perforated tubes 21b as viewed from above and the ascending openings 82a, 82b provided to the rectifier plate 82 do not overlap at all as viewed from above was described as an example.
However, the present invention is not limited to this configuration; for example, the area of overlap, as viewed from above, between the ascending openings 82a, 82b provided to the rectifier plate 82 and a region obtained by extending the lower communication port 72, etc., along the longitudinal direction of the flat perforated tubes 21b may be up to 50% of the area of the ascending openings 82a, 82b as viewed from above. Although the effect achieved in this case is diminished in comparison with a case in which there is no overlap at all, a sufficient effect can be achieved to a greater extent than in a case of complete overlap.
Number | Date | Country | Kind |
---|---|---|---|
2014-202334 | Sep 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/076926 | 9/24/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/052299 | 4/7/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2099186 | Anderegg | Nov 1937 | A |
5203407 | Nagasaka | Apr 1993 | A |
5743329 | Damsohn | Apr 1998 | A |
6688137 | Gupte | Feb 2004 | B1 |
20030010484 | Chikuma | Jan 2003 | A1 |
20050006070 | Kamiyama | Jan 2005 | A1 |
20080023185 | Beamer | Jan 2008 | A1 |
20090025914 | Knight | Jan 2009 | A1 |
20100314090 | Moriya et al. | Dec 2010 | A1 |
20140123696 | Kim et al. | May 2014 | A1 |
20140311703 | Takagi | Oct 2014 | A1 |
20140338874 | Jindou | Nov 2014 | A1 |
20150021003 | Cho | Jan 2015 | A1 |
20150053383 | Citti | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
2-219966 | Sep 1990 | JP |
11-337293 | Dec 1999 | JP |
2009-41876 | Feb 2009 | JP |
2013-137193 | Jul 2013 | JP |
WO 2014188714 | Nov 2014 | JP |
2007094422 | Aug 2007 | WO |
Entry |
---|
Decision to Grant a Patent of corresponding JP Application No. 2014-202334 dated Oct. 29, 2015. |
International Preliminary Report of corresponding PCT Application No. PCT/JP2015/076926 dated Apr. 13, 2017. |
International Search Report of corresponding PCT Application No. PCT/JP2015/076926 dated Nov. 10, 2015. |
European Search Report of corresponding EP Application No. 15 84 7695.2 dated May 14, 2018. |
Number | Date | Country | |
---|---|---|---|
20170292741 A1 | Oct 2017 | US |