The present invention relates to a heat exchanger having a core defined by a plurality of tubes and fins; more particularly, to a heat exchange having means to collect and remove condensate from the core.
Air-conditioning and heat pump systems for residential and commercial applications are known to employ modified automotive heat exchangers because of their high heat transfer efficiency, durability, and relatively ease of manufacturability. A typical automotive heat exchanger includes an inlet manifold, an outlet manifold, and a plurality of extruded multi-port refrigerant tubes for proving hydraulic communication between the inlet and outlet manifolds. The core of the heat exchanger is defined by the plurality of refrigerant tubes and the corrugated fins disposed between the refrigerant tubes for improved heat transfer efficiency and increased structural rigidity. The refrigerant tubes may be aligned in a parallel and substantially upright orientation with respect to the direction of gravity. The corrugated fins may be provided with louvers to increase heat transfer efficiency.
For heat pump applications, in heating mode the outdoor heat exchanger acts as the evaporator and in cooling mode the indoor heat exchanger acts as the evaporator. When the heat exchanger is in evaporative mode, a partially expanded two-phase refrigerant enters the lower portions of the refrigerant tubes from the inlet manifold and travels up the refrigerant tubes expanding into a vapor phase as the refrigerant absorbs heat from the ambient air. As the airflow passing through the core of the heat exchanger is cooled below its dew point, moisture in the air is condensed onto the exterior surfaces of the refrigerant tubes and fins.
For certain residential and/or commercial applications, the size of the heat exchanger core may reach a height of over 5 feet. Condensate accumulating on the core can build up to form a condensate column within the spaces between the refrigerant tubes and fins; thereby, obstructing airflow through the core resulting in reduced heat transfer efficiency. Aside from the reduction in heat transfer efficiency, the accumulation of condensation in the core of the indoor heat exchanger is especially undesirable when the indoor heat exchanger is operating in evaporative mode. The velocity of the airflow across the heat exchanger face can reach upwards of 700 ft/min. At these high velocities, the airflow impacts the condensate column and launches condensate droplets out of the core into the downstream air plenums.
It is desirable to have an elegant solution to extract and convey condensate away from the heat exchanger core, to minimalize obstruction of airflow through the core and eliminate the launching of condensate droplets into the air plenum.
The invention provides for a heat exchanger assembly having a first manifold, a second manifold spaced from the first manifold, a plurality of refrigerant tubes extending between and in hydraulic communication with the first and second manifolds, a plurality of corrugated fins inserted between the plurality of refrigerant tubes, and a condensate extractor having a comb baffle portion with extending fingers inserted between the plurality of refrigerant tubes and a conveyance portion. The comb baffle portion is configured to extract condensate from between the plurality of refrigerant tubes and the conveyance portion is configured to convey condensate away from the heat exchanger assembly.
An advantage of the heat exchanger assembly disclosed herein is that it provides a simple elegant solution to extract and convey condensate away from the heat exchanger core. The conveyance of condensate away from the core minimalizes the obstruction of airflow through the core, thereby improving heat transfer efficiency and eliminates condensate launching from the core into the plenum downstream.
This invention will be further described with reference to the accompanying drawings in which:
Referring to
For residential application of the heat exchanger assembly 10, the manifolds 12, 14 are typically oriented perpendicular to the direction of gravity, while the refrigerant tubes 18 are oriented substantially in or tilted toward the direction of gravity. During operation in evaporative mode, a partially expanded two-phase refrigerant enters the lower portions of the refrigerant tubes 18 from the inlet manifold 12. As the refrigerant rises in the refrigerant tubes 18, it expands into a vapor phase by absorbing heat energy from the airflow that passes through the core 22 of the heat exchanger assembly 10 through the airflow channels 24. As heat energy is transferred from the airflow to the refrigerant, the airflow may be cooled below its dew point. The moisture in the airflow condenses and accumulates onto the exterior surfaces 19 of the refrigerant tubes 18 and exterior surfaces 21 of the fins 20. As the condensation migrates through the louvers 36 of the fins 20 toward the lower portion of the heat exchanger assembly 10, the accumulation of condensate 26 between adjacent refrigerant tubes 18 forms a column of condensate (C); thereby, obstructing the flow of air through the core 22. The obstruction of airflow through the core 22 reduces the heat transfer efficiency of the heat exchanger assembly 10. Furthermore, the high velocity of the airflow across the heat exchanger face can launch condensate droplets out of the core into the downstream air plenums.
Referring to the
The plurality of refrigerant tubes 118 and corrugated fins 120 between adjacent refrigerant tubes 118 define the heat exchanger core 122. The heat exchanger core 122 includes an upstream face 138 oriented into the direction of airflow and an opposite downstream face 140. The flat exterior surfaces 119 of the refrigerant tubes 118 together with the exterior surfaces 121 of the corrugated fins 120 between adjacent refrigerant tubes 118 define a plurality of airflow channels 124 for airflow through the core 122 from the upstream face 138 to the downstream face 140. The louvers 136 direct airflow through the fins 120 between adjacent airflow channels 124. The refrigerant tubes 118 and fins 120 may be formed from a heat conductive material, such as aluminum. The manifolds 112, 114, refrigerant tubes 118, and fins 120 may be assembled into the heat exchanger assembly 100 and brazed by any known methods in the art to provide a solid liquid tight heat exchanger assembly 100.
The moisture in the airflow through the airflow channels 124 condenses into condensate 26 near the upper portion of the core 122 and migrates downward through the louvers 136 of the fins 120 between adjacent refrigerant tubes 122. As the rate of condensation exceeds the rate of drainage, a condensation column (C) may be formed between the refrigerant tubes 122. The stream of oncoming airflow pushes the condensate 26 within the airflow channels 124 toward the rear noses 130 of the refrigerant tubes 118, leaving only a thin film of condensate 26 on the overhangs 146, thus rendering a drier surface that has a higher heat transfer rate. Once the condensate 26 gathers along the gap surface (G), adhesion forces and capillary action of the condensate 26 forms a steady stream of condensate 26 along the gap surfaces (G) of the refrigerant tubes 118 to the bottom of the heat exchanger assembly 100. It was found that the adhesion of this stream of condensate 26 along the exposed gap surfaces (G) of the refrigerant tubes 118 withstand the force of the on-coming stream of airflow, thereby preventing the launching or spitting of the condensate from the core 122 of the heat exchanger assembly 100 into a downstream air plenum.
Referring back to
The condensate extractor 200 may be formed from a sheet of material amendable to brazing. The sheet metal may be cut into a pattern that may be folded to form the condensate conveyance portion 210 and comb baffle portion 220. The condensate extractor 200 may also be stamped from a sheet of material to define the conveyance portion 210 and comb baffle portion 220. Shown in
Shown in
The heat exchanger assembly 10 having a condensate extractor 200 disclosed herein provides a simple elegant solution to extract and convey condensate away from the heat exchanger core 122. The conveyance of condensate 26 away from the core 122 minimalizes the obstruction of airflow through the core 122, thereby improving heat transfer efficiency and eliminates condensate launching from the core 122 into the plenum downstream.
While a specific embodiment of the invention have been described and illustrated, it is to be understood that the embodiment is provided by way of example only and that the invention is not to be construed as being limited but only by proper scope of the following claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/648,852 for an HEAT EXCHANGER HAVING A CONDENSATE EXTRACTOR, filed on May 18, 2012, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2251649 | Wichmann | Aug 1941 | A |
2553143 | McNeely | May 1951 | A |
2667041 | Henderson | Jan 1954 | A |
4715433 | Schwarz | Dec 1987 | A |
4950316 | Harris | Aug 1990 | A |
6000467 | Tokizaki | Dec 1999 | A |
6932153 | Ko | Aug 2005 | B2 |
7552756 | Riniker | Jun 2009 | B2 |
8555668 | Lee | Oct 2013 | B2 |
9174511 | Seto | Nov 2015 | B2 |
20100011795 | Stokke | Jan 2010 | A1 |
20100078159 | Kim | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
2010019534 | Jan 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20130306280 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61648852 | May 2012 | US |