Heat exchanger, heat pump, dehumidifier, and dehumidifying method

Abstract
A heat exchanger of a high heat exchange efficiency with a small size for its large heat exchanger duty is provided. The heat exchanger comprises: a first compartment 310 for flowing a first fluid A; a second compartment 320 for flowing a second fluid B; a first flow passage 251 passing through the compartment and for flowing the third fluid for exchanging heat with the first fluid A; and a second flow passage 252 passing through the compartment and for flowing the third fluid for exchanging heat with the first fluid B; the first and second flow passages 251, 252 are formed as an integral passage; the third fluid flows through from the first flow passage 251 to the second flow passage 252; the third fluid evaporates in the first flow passage 251 at a specific pressure; the third fluid condenses in the second flow passage 252 at the approximately specific pressure. Since the third fluid flows from the first flow passage to the second flow passage, heat transfer from the first compartment to the second compartment is allowed. High heat transfer coefficient is achieved due to evaporating heat transfer or condensing heat transfer.
Description




TECHNICAL FIELD




The invention relates to a heat exchanger, a heat pump, a dehumidifier, and dehumidifying method, in particular to a heat exchanger for exchanging heat between two fluids through a third fluid, a heat pump and a dehumidifier provided with such a heat exchanger and to a dehumidifying method by exchanging heat through the third fluid.




BACKGROUND ART




In order to exchange heat between large amounts of fluids of a relatively small mutual temperature difference, for instance between air conditioning process air and ambient air for cooling, a rotary type heat exchanger of a large capacity and a cross flow heat exchanger


3


as shown in

FIG. 49

have been used. Such heat exchangers have been used for instance in a desiccant air conditioning system to cool in advance process air A to be introduced into a room using ambient air B before such introduction occurs.




Such conventional heat exchangers have problems in that they are large in volume and take up too large an installation area, and that heat cannot be utilized sufficiently due to poor heat exchange efficiency.




Therefore, the object of the invention is to provide a heat exchanger of a high heat exchange efficiency with a small size relative to its large heat exchanging duty.




DISCLOSURE OF INVENTION




The heat exchanger of the invention comprises a first compartment for flowing a first fluid; a second compartment for flowing a second fluid; a first fluid passage passing through the first compartment for flowing a third fluid for exchanging heat with the first fluid; and a second fluid passage passing through the second compartment for flowing the third fluid for exchanging heat with the second fluid; and is configured such that the first and second flow passages are formed as an integral flow passage, the third fluid flows through from the first flow passage to the second flow passage, the third fluid evaporates on the heat transfer surface located on the flow passage side of the first flow passage at a specific pressure, and condenses on the heat transfer surface located on the flow passage side of the second flow passage at approximately the specific pressure.




With such configuration described above, since the third fluid, or a refrigerant for example, flows from the first to the second fluid passages it can transfer heat from the first to the second compartment. Since the third fluid evaporates at the specific pressure on the heat transfer surface located on the flow path side of the first flow passage, the third fluid can take heat from the first fluid. Since the third fluid


250


condenses at almost the specific pressure on the heat transfer surface located on the flow path side of the second flow path, the third fluid can give heat to the second fluid. Since the above-mentioned heat transfer is evaporating heat transfer or condensing heat transfer, the heat transfer coefficient is much higher in comparison with only heat transfer by conduction or convection. Since the first and second flow passages are made as an integral body, arrangement as a whole is made compact. In the description above, the expression of “at almost the specific condensing pressure” is used because a flow is present from the first to the second flow passages, and there is a flow loss even though it is very small. Substantially, the pressure can be deemed to be the same.




With another configuration in which the second fluid contains moisture, the efficiency of cooling the third fluid by means of the second fluid can be enhanced by utilizing the latent heat of evaporation of water.




With still another configuration in which a third fluid passage for flowing the third fluid for exchanging heat with the second fluid is additionally arranged parallel to the second flow passage and passes through the second compartment, and in which the third fluid substantially bypasses the first compartment and is supplied to the third flow passage and flows through the second compartment, it allows the third fluid to be of a phase different from the phase of the third fluid flowing through the first fluid passage to flow through the third flow passage.




It may also be configured such that the third fluid in liquid phase is introduced to the first flow passage and the third fluid in vapor phase is introduced to the third flow passage. For example, the fluid is separated into vapor phase and liquid phase using a vapor-liquid separator. In this way, it is possible to evaporate the liquid-phase third fluid in the first flow passage, and condense the vapor-phase third liquid in the third flow passage.




Another heat exchanger of the invention is configured such that a plurality of the first passages are disposed with different evaporating pressures in the respective passages. With such a configuration, pressures in the plurality of flow passages are arranged in the high to low or low to high order of the different pressures in the plurality of flow passages according to the temperature changes of the first fluid flowing through the first compartment or of the second fluid flowing through the second compartment. With such a configuration, the plurality of flow passages in which evaporation or condensation occurs at different pressures are arranged for example in the order of high to low pressure. Therefore, for example, in case the first fluid is deprived of sensible heat, temperature of the first fluid lowers during the time it enters and exits the first compartment. If the specific temperatures are arranged in the high to low order according to the temperature drop, heat exchange efficiency can be enhanced. This, in turn, enables effective use of heat. In other words, a plurality of flow passages are arranged such that the first and second fluids flow in normal and reverse directions, respectively. In this way, the first and second fluids flow in a counterflow manner to each other.




The heat pump of the invention comprises a pressure raiser for raising the pressure of a refrigerant; a first heat exchanger for condensing the refrigerant whose pressure has been boosted with the pressure raiser by taking heat from the refrigerant with a high temperature fluid under a first pressure; a first throttle for reducing to a second pressure the refrigerant that has been condensed with the first heat exchanger; a second heat exchanger for evaporating the refrigerant that has been reduced in pressure with the first throttle by the heat from the first fluid under the second pressure, and for condensing the refrigerant, after the evaporation, by taking heat from the refrigerant with a second fluid; a second throttle for reducing the pressure of the refrigerant to a third pressure, after being condensed with the second heat exchanger; and a third heat exchanger for evaporating the refrigerant that has been reduced in pressure with the second throttle, by imparting heat from low temperature fluid under the third pressure. With such a configuration, since the second heat exchanger is provided for performing heat exchange utilizing the evaporation and condensation of the refrigerant, heat can be exchanged between the first and the second fluids with a high heat exchange efficiency. Incidentally, while the word “pressure raiser” in the above description typically refers to the compressor for compressing the refrigerant in vapor phase, it can also refer to a device comprising for example, an absorber that can be installed in an absorption refrigerator, a lean absorption pump for pumping up lean solution which has absorbed refrigerant in the absorber, and a generator for generating the refrigerant from lean solution pumped up with the pump.




A dehumidifier of the invention comprises a moisture adsorber containing a desiccant for adsorbing moisture in the process air; and a process air cooler for cooling the process air from which moisture has been adsorbed with the desiccant. The process air cooler is configured to cool the process air by the evaporation of the refrigerant and to cool and condense the evaporated refrigerant by means of a cooling fluid in the process air cooler.




The evaporated refrigerant is condensed typically by cooling with the cooling fluid on the downstream side as it flows in one direction as a whole in the process air cooler. The phrase “in one direction as a whole” refers to the fact that the vapor and also the liquid phase refrigerant as a whole flow in the same direction, although there may be local reverse eddies if the flow is turbulent.




A dehumidifying method of the invention comprises a first step of cooling the process air with a refrigerant that evaporates at a low pressure; a second step of raising to a high pressure the pressure of the refrigerant that has evaporated in the first step; a third step of heating regeneration air for regenerating the desiccant with the refrigerant that condenses at the high pressure; a fourth step of regenerating the desiccant by desorbing moisture from the desiccant with the regeneration air heated in the third step; a fifth step of adsorbing moisture in the process air with the desiccant regenerated in the fourth step; a sixth step of cooling the process air from which moisture has been removed by adsorption in the fifth step, by evaporating the refrigerant that has condensed in the third step at an intermediate pressure between the low and high pressures; and a seventh step of condensing the refrigerant that has evaporated at the intermediate pressure, at a pressure which is approximately the same as the intermediate pressure.




With the dehumidifying method described above, since the so-called economizer cycle can be utilized, the refrigerating effect of the refrigerant can be enhanced and, in its turn, air can be dehumidified with a high COP.




Another dehumidifier of the invention comprises a first refrigerant-air heat exchanger having a first refrigerant inlet-outlet and a second refrigerant inlet-outlet, and for causing heat exchange between the refrigerant and the process air; a compressor having an intake port and a discharge port for taking in and discharging the refrigerant, the second refrigerant inlet-outlet being disposed to be selectively connectable to either the intake port or the discharge port; a second refrigerant-air heat exchanger having a third refrigerant inlet-outlet and a fourth refrigerant inlet-outlet and for causing heat exchange between the refrigerant and the process air, with either the intake or discharge port whichever has not been connected to the second refrigerant inlet-outlet, being disposed to be connectable to the third refrigerant inlet-outlet; and a third refrigerant-air heat exchanger disposed on the upstream side of the process air flow through the first refrigerant-air heat exchanger, having a fifth refrigerant inlet-outlet and a sixth refrigerant inlet-outlet and for causing heat exchange between the process air, the refrigerant and the cooling fluid, with the fourth refrigerant inlet-outlet being disposed to be connectable to either the fifth refrigerant inlet-outlet or the sixth refrigerant inlet-outlet; and a moisture adsorber disposed on the upstream side of the process air flow passing through the third refrigerant-air heat exchanger and having a desiccant for adsorbing moisture in the process air; and is configured such that whichever of the fifth refrigerant inlet-outlet or the sixth refrigerant inlet-outlet that has not been connected to the fourth refrigerant inlet-outlet is connected to the first refrigerant inlet-outlet; when the fourth refrigerant inlet-outlet and the fifth refrigerant inlet-outlet are interconnected, the third refrigerant-air heat exchanger cools the process air passing through the third refrigerant-air heat exchanger by the evaporation of the refrigerant supplied from the fourth refrigerant inlet-outlet to the fifth refrigerant inlet-outlet, and cools and condenses the evaporated refrigerant with the cooling fluid, so that the condensed refrigerant can be supplied to the first refrigerant-air heat exchanger.




In that case, since devices are arranged to permit selective connections, the operation mode of the dehumidifier can be changed.




Still another dehumidifier of the invention comprises a moisture adsorber having a desiccant for adsorbing moisture in the process air; and a process air cooler, disposed on the downstream side of the process air flow relative to the moisture adsorber, for cooling the process air from which moisture has been adsorbed with the desiccant; and is configured such that the process air cooler cools the process air by the evaporation of the refrigerant and condenses the evaporated refrigerant in the process air cooler; and the process air cooler has a plurality of evaporating pressures of the process air cooling refrigerant and, corresponding thereto, a plurality of condensing pressures at which the refrigerant is cooled and condensed with the cooling fluid. In that case, since there are a plurality of refrigerant evaporating pressures and, corresponding thereto, a plurality of refrigerant condensing pressures, and since the plurality of evaporating pressures are set to be different from each other, the plurality of evaporating pressures and condensing pressures can be arranged in the high to low order or low to high. This makes it possible to perform the heat exchange between the process air and the cooling fluid in almost the so-called counter flow manner.




Still another dehumidifier of the invention comprises a moisture adsorber having a desiccant which adsorbs moisture from the process air and which is regenerated with the regeneration air; a heat pump, having a compressor for compressing a refrigerant, for pumping up heat from a low temperature heat source to a high temperature heat source using the process air as the low temperature heat source and the regeneration air as the high temperature heat source; and a process air cooler for cooling the process air from which moisture has been removed by adsorption with the desiccant; and is configured such that the refrigerant, before being drawn into the compressor, is heated with the refrigerant after being compressed with the compressor and after it has exchanged heat with the regeneration air before regenerating the desiccant. In that case, since the refrigerant before being drawn into the compressor is heated with the refrigerant after being compressed with the compressor and after exchanging heat with the regeneration air before it has regenerated the desiccant, that is, the refrigerant in an almost saturated state before being drawn into the compressor can be heated with the refrigerant which has exchanged heat, the discharge temperature of the refrigerant compressed with the compressor increases, which in its turn permits the increase of the regeneration air temperature.




Still another dehumidifier of the invention comprises a moisture adsorber having a desiccant for adsorbing moisture which in turn is desorbed with regeneration air; a first heat pump for pumping up heat from a first evaporation temperature to a first condensation temperature by circulating a refrigerant and configured to condense the refrigerant, after evaporating the refrigerant at a first intermediate temperature between the first condensation temperature and the first evaporation temperature, at a temperature which is almost equal to the first intermediate temperature; and a second heat pump for pumping up heat from a second evaporation temperature which is lower than the first evaporation temperature to a second condensation temperature which is lower than the first condensation temperature by circulating a refrigerant and configured to condense the refrigerant, after evaporating the refrigerant at a second intermediate temperature between the second condensation temperature and the second evaporation temperature, at a temperature which is almost equal to the second intermediate temperature; and is configured such that the process air from which moisture is desorbed with the desiccant is cooled with the refrigerant that evaporates at the higher temperature of the first and the second intermediate temperatures, subsequently is also cooled with the refrigerant which evaporates at the lower intermediate temperature, then is cooled with the refrigerant which evaporates at the first evaporation temperature, and then is cooled with the refrigerant which evaporates at the second evaporation temperature; and the regeneration air is heated with the refrigerant that condenses at either a temperature which is almost equal to the first intermediate temperature or a temperature which is almost equal to the second intermediate temperature whichever lower, then is heated with the refrigerant that condenses at the rest of the two temperatures whichever higher, then is heated with the refrigerant that condenses at the second condensation temperature, then is heated with the refrigerant that condenses at the first condensation temperature, and then the moisture in the desiccant is desorbed with the heated regeneration air.




With the configuration described above, since at least two heat pumps are provided, heat drop through each heat pump is smaller in comparison with a configuration comprising only a single heat pump. Also, since the process air cooler is provided, each heat pump works in the economizer cycle and makes it possible to provide a dehumidifier of a high COP.




Such a dehumidifier may also be configured such that the heat pump is provided with a process air cooler and a condenser, with the condenser disposed in a position vertically above the process air cooler. In that case, since the condensed refrigerant liquid flows downward, the gravitational force as well as refrigerant pressure can be utilized to feed the refrigerant liquid from the condenser to the process air cooler. Therefore, it is suitable for use with the so-called low pressure refrigerant.




A dehumidifier of the invention comprises a first air flow passage having a first intake port at its one end and a first discharge port at its other end so as to permit a first air flow from the first intake port to the first discharge port; and a desiccant wheel through which the first air flow passes, and the rotary shaft of which is disposed vertically; and is configured such that one of the desiccant and the first air flow removes moisture from the other; and the first air flow passage mainly includes a downward flow passage portion extending vertically downward and an upward flow passage portion extending vertically upward.




With such a configuration, since the dehumidifier is provided with the desiccant wheel with its rotary shaft disposed vertically and with the passage of the first air flow mainly including the downward flow passage portion extending vertically downward and the upward flow passage portion extending vertically upward, an orderly arrangement is possible in which the first air flow through the dehumidifier mainly reciprocates vertically, the first air flow need not change its direction immediately before and after the desiccant wheel, and the humidifier is made compact with a small installation compartment due to the vertically arranged major devices.




In still another dehumidifier of the invention, the first intake port is disposed on or in the vicinity of the top surface of the dehumidifier and the first discharge port is disposed on or in the vicinity of the top surface of the dehumidifier. In that case, it is configured that the first air flow runs from the downward flow passage portion to the upward flow passage portion.




Since the first intake port is disposed on or in the vicinity of the top surface of the dehumidifier and the first discharge port is disposed on or in the vicinity of the top surface of the dehumidifier, the space from the top surface or the vicinity of the top surface of the dehumidifier to a position of certain height in the dehumidifier can be utilized as the first air flow passage to simplify the first air flow passage, and to reduce the size and installation area of the dehumidifier.




In still another dehumidifier of the invention, the first intake port is disposed on or in the vicinity of the bottom surface of the dehumidifier and the first discharge port is disposed on or in the vicinity of the bottom surface of the dehumidifier. In that case, the first air flow runs from the upward flow passage portion to the downward flow passage portion.




Since the first intake port is disposed on or in the vicinity of the bottom surface of the dehumidifier and the first discharge port is disposed on or in the vicinity of the bottom surface of the dehumidifier, the space from the bottom surface or the vicinity of the bottom surface of the dehumidifier to a position of certain height in the dehumidifier can be utilized as the first air flow passage to simplify the first air flow passage, and to reduce the installation area.




Still another dehumidifier of the invention comprises a second air flow passage having a second intake port at its one end and a second discharge port at its other end to permit a second air flow from the second intake port to the second discharge port; and is configured such that, in case moisture is removed from the desiccant with the first air flow, the moisture is removed from the desiccant to the second air flow, and that, in case moisture is removed from the desiccant to the first air flow, moisture is removed from the desiccant with the second air flow; and that the second air flow mainly includes a flow passage portion vertically directed upward.




Since the second air flow passage is configured to mainly include the vertically directed upward flow passage portion, both the first and the second air flow passages are directed upward, and the first and the second air flow passages are arranged in good order, the first and the second air flow direction need not be changed immediately before and after the desiccant wheel, major devices may be disposed in a vertical tier with one device over another, and the dehumidifier is made compact to reduce the installation area.




In still another dehumidifier of the invention, the second intake port is disposed on or in the vicinity of the bottom surface of the dehumidifier and the second discharge port is disposed on or in the vicinity of the top surface of the dehumidifier.




Since the second intake port is disposed on or in the vicinity of the bottom surface of the dehumidifier and the second discharge port is disposed on or in the vicinity of the top surface of the dehumidifier, a length almost equal to the height from the bottom to the top surface of the dehumidifier can be utilized as a second air flow passage to make the dehumidifier compact.




Still another dehumidifier of the invention is characterized in that the first air is process air.




Still another dehumidifier of the invention is characterized in that the first air is regeneration air.




Still another dehumidifier of the invention is characterized in that the first air is process air and the second air is regeneration air.




Still another dehumidifier of the invention comprises a first heat exchanger configured to cool the process air and that the desiccant is configured to remove moisture from the process air before the process air is cooled with the first heat exchanger.




Since the desiccant processes the process air before it is cooled with the first heat exchanger, namely since the process air which has passed through the desiccant is cooled with the second heat exchanger, it is possible to maintain a high heat exchange efficiency while making the dehumidifier compact and reducing the installation area.




Still another dehumidifier of the invention comprises a first heat exchanger configured to cool the process air; a second heat exchanger configured to heat the regeneration air; and a heat pump having a low and a high temperature heat sources; and is configured such that the second heat exchanger constitutes the low temperature heat source while the first heat exchanger constitutes the high temperature heat source.




A dehumidifier of the invention comprises a process air blower (which may be a fan, depending on the air flow loss along the air path) for blowing process air; a regeneration air blower for blowing regeneration air; a compressor for compressing a refrigerant; a refrigerant condenser for heating the regeneration air by condensing the compressed refrigerant; a refrigerant evaporator for cooling the process air by evaporating the refrigerant condensed with the refrigerant condenser; and a desiccant wheel having a rotary shaft disposed vertically and a desiccant which is regenerated as the regeneration air heated with the refrigerant condenser passes through the desiccant and the process air is processed as it passes through the desiccant; and the process air blower, the regeneration air blower, and the compressor are located in a position vertically below the desiccant wheel, while the refrigerant condenser is located in a position vertically above the desiccant wheel.




With the configuration described above, in which the rotary shaft of the desiccant wheel is disposed vertically, the process air blower, the regeneration air blower, and the compressor are located in a position vertically below the desiccant wheel, and the refrigerant condenser is located in a position vertically above the desiccant wheel, since the major devices are arranged in the vertical direction, the devices are arranged in a compact size in the horizontal direction and the installation area is reduced. Here, the term “major devices” refers to the blowers, the compressor, the desiccant wheel, the refrigerant condenser, and the refrigerant evaporator and the like.




This application is based on the Japanese patent applications enumerated below and the contents of these applications are incorporated herein by reference to constitute part of this application: Patent application 10-199847 filed on Jun. 30, 1998, Patent application 10-207181 filed on Jul. 7, 1998, Patent application 10-218574 filed on Jul. 16, 1998, Patent application 10-332861 filed on Nov. 24, 1998, Patent application 10-333017 filed on Nov. 24, 1998, Patent application 10-345964 filed on Dec. 4, 1998, Patent application 10-250424 filed on Aug. 20, 1998, Patent application 10-250425 filed on Aug. 20, 1998, Patent application 10-274359 filed on Sep. 10, 1998, Patent application 10-286091 filed on Sep. 22, 1998, Patent application 10-280530 filed on Sep. 16, 1998, Patent application 10-283505 filed on Sep. 18, 1998, and Patent application 10-299167 filed on Oct. 6, 1998.




The invention will be more perfectly understood from the following description in details. Further scope of application of the invention will also become clear from the following description in details. However, the detailed description and specific examples are the preferred embodiments of the invention and described only for the purpose of illustration. Various changes and modifications may be made by those skilled in the art within the spirit and scope of the invention.




It is not intended to dedicate any disclosed embodiments to the public, and to the extent any disclosed modifications or alterations may not literally fall within the scope of the claims, they are considered to be part of the invention under the doctrine of equivalents.











BRIEF DESCRIPTION OF DRAWINGS





FIG. 1

is a schematic, cross sectional view of a heat exchanger as an embodiment of the invention.





FIG. 2

is a conceptual view of a heat exchanger as an embodiment of the invention.





FIG. 3

is a conceptual view of a heat exchanger as an embodiment of the invention.





FIG. 4

is a chart for explaining the heat exchange efficiency of heat exchange.





FIG. 5

is a flow chart of a heat pump and a dehumidifying air conditioner as embodiments of the invention.





FIG. 6

is a Mollier chart for the heat pump shown in FIG.


5


.





FIG. 7

is a flow chart of a desiccant air conditioner using the heat pump as another embodiment of the invention.





FIG. 8

is a flow chart of a heat pump and a dehumidifying air conditioner as different embodiments of the invention.





FIG. 9

is a diagramatical, cross sectional view of a heat exchanger suitable for use in the heat pump shown in FIG.


8


.





FIG. 10

is a Mollier chart for the heat pump shown in FIG.


8


.





FIG. 11

is a flow chart of a dehumidifying air conditioner as another embodiment of the invention.





FIG. 12

are a sectional front and a sectional plan views, showing a heat exchanger suitable for use in the dehumidifying air conditioner shown in FIG.


11


.





FIG. 13

is a Mollier chart for the heat pump shown in FIG.


11


.





FIG. 14

is a moist air chart for explaining the operation of the dehumidifying air conditioner shown in FIG.


5


.





FIG. 15

is a moist air chart for explaining the operation of the dehumidifying air conditioner shown in FIG.


8


.





FIG. 16

is a perspective view of one configurational example of a desiccant wheel.





FIG. 17

is a table of operation modes of the dehumidifying air conditioner and operations of various devices as an embodiment of the invention.





FIG. 18

is a flow chart of a heat pump and a dehumidifying air conditioner as an embodiment of the invention.





FIG. 19

is a flow chart when the dehumidifying air conditioner shown in

FIG. 18

is operated in a heating operation mode.





FIG. 20

is a flow chart when the dehumidifying air conditioner shown in

FIG. 18

is operated in a defrosting operation mode.





FIG. 21

is a table of operation modes of the dehumidifying air conditioner shown in FIG.


18


and operations of various devices.





FIG. 22

is a flow chart of a dehumidifying air conditioner as another embodiment of the invention.





FIG. 23

is a moist air chart for explaining the operation of the dehumidifying air conditioner shown in FIG.


22


.





FIG. 24

is a Mollier chart for the heat pump used in the dehumidifying air conditioner shown in FIG.


22


.





FIG. 25

is a diagram for explaining enthalpy change amount versus temperature change of the regeneration air and the refrigerant used in the dehumidifying air conditioner shown in FIG.


22


.





FIG. 26

is a flow chart of a dehumidifying air conditioner as another embodiment of the invention.





FIG. 27

is a flow chart of a dehumidifying air conditioner as still another embodiment of the invention.





FIG. 28

is a flow chart of a dehumidifying air conditioner as still another embodiment of the invention.





FIG. 29

is a flow chart of a dehumidifying air conditioner as an embodiment of the invention.





FIG. 30

is a schematic cross sectional view of a heat exchanger suitable for use as a process air cooler in the heat pump used in the dehumidifying air conditioner shown in FIG.


29


.





FIG. 31

is a moist air chart for explaining the operation of the dehumidifying air conditioner shown in FIG.


29


.





FIG. 32

is a Mollier chart for the heat pump used in the dehumidifying air conditioner shown in FIG.


29


.





FIG. 33

is an enlarged, schematic view of a process air cooler for use in the dehumidifying air conditioner as an embodiment of the invention.





FIG. 34

is a Mollier chart when the process air cooler of

FIG. 33

is used for the heat pump used in the dehumidifying air conditioner shown in FIG.


29


.





FIG. 35

is a schematic front cross sectional view, showing the configuration of a dehumidifying air conditioner as an embodiment of the invention.





FIG. 36

is a flow chart of a dehumidifying air conditioner as another embodiment shown in FIG.


35


.





FIG. 37

is a schematic, front cross sectional view showing the configuration of a dehumidifying air conditioner as another embodiment of the invention.





FIG. 38

is a schematic front cross sectional view showing the configuration of a dehumidifying air conditioner as another embodiment of the invention.





FIG. 39

is a schematic front cross sectional view showing the configuration of a dehumidifying air conditioner as another embodiment of the invention.





FIG. 40

shows the configuration of a dehumidifying air conditioner as another embodiment of the invention, FIG.


40


(


a


) shows a schematic front cross sectional view, FIG.


40


(


b


) shows the refrigerant flow through a 4-way valve


265


in a heating mode, and FIG.


40


(


c


) shows the refrigerant flow through a 4-way valve


280


in the heating mode.





FIG. 41

is a schematic front cross sectional view, showing the configuration of a dehumidifying air conditioner as another embodiment of the invention.





FIG. 42

is a schematic front cross sectional view, showing the configuration of a dehumidifying air conditioner as another embodiment of the invention.





FIG. 43

is a schematic front cross sectional view, showing the configuration of a dehumidifying air conditioner as another embodiment of the invention.





FIG. 44

is a schematic front cross sectional view, showing the configuration of a dehumidifying air conditioner as another embodiment of the invention.





FIG. 45

is a schematic front cross sectional view, showing the configuration of a dehumidifying air conditioner as another embodiment of the invention.





FIG. 46

is a schematic front cross sectional view, showing the configuration of a dehumidifying air conditioner as another embodiment of the invention, with the regeneration air blower omitted.





FIG. 47

is a schematic front cross sectional view, showing the configuration of a dehumidifying air conditioner as another embodiment of the invention.





FIG. 48

is a schematic side view, showing the configuration of the dehumidifying air conditioners shown in

FIGs.46 and 47

.





FIG. 49

is a perspective view of a conventional heat exchanger.











BEST MODE FOR CARRYING OUT THE INVENTION




While embodiments of the invention will be hereinafter described, the scope of the invention is not limited by the embodiments.




Now the embodiments of the invention will be described, referring to the appended drawings. Incidentally, counterparts in more than one of the drawings are provided with the same or similar symbols and the explanation of them may not be repeated.





FIG. 1

is a schematic cross sectional view of a heat exchanger as an embodiment of the invention. In the drawing, a heat exchanger


300


comprises a first compartment


310


for flowing a first fluid or process air A and a second compartment


320


for flowing a second fluid or external (ambient) air B, disposed side by side with a partition wall


301


interposed therebetween.




A plurality of heat exchanging tubes as fluid passages for flowing a refrigerant


250


are arranged generally horizontally to pass through the first compartment


310


, the second compartment


320


, and the partition wall


301


. Part of the heat exchanging tube passing through the first compartment is an evaporating section


251


as a first fluid passage (A plurality of evaporating sections are referred to as


251


A,


251


B and


251


C. In case the plurality of evaporating sections need not be discussed individually, hereinafter they will be simply referred to as


251


). Part of the heat exchanging tube passing through the second compartment is a condensing section second fluid passage (A plurality of evaporating sections are referred to as


252


A,


252


B and


252


C. In case the plurality of condensing sections need not be discussed individually, hereinafter they will be simply referred to as


252


).




In the embodiment shown in

FIG. 1

, the evaporating section


251


A and the condensing section


252


A are configured to an integral passage with a single tube. The same is true for the evaporating sections


251


B,


251


C and the condensing section


252


B,


252


C. Since the two sections


251


and


252


are made up of a single tube and since the two compartments


310


and


320


are disposed side by side with the partition wall


301


interposed between the two compartments, the heat exchanger


300


as a whole can be made in a small size.




Such a configuration can be manufactured by arranging a plurality of plate fins on the evaporating section side, one partition wall


301


, and a plurality of plate fins on the condensing section side, each having holes of a diameter nearly equal to (practically slightly greater than) the outside diameter of the heat exchanging tube, with the holes aligned, inserting a plurality of heat exchanging tubes into the holes, and expanding the diameter of the heat exchanging tubes by means of tube diameter expanding rods, hydraulic pressure, ball passage, etc. The form of the plate fin on the evaporating section side (first compartment side) may be different from that on the condensing section side (second compartment side). For example, the plate fin on the evaporating section side may be provided with louvers or wrinkles to disturb the flow of the first fluid, while the plate fin on the condensing section side may be formed flat.




In the embodiment shown in

FIG. 1

, the evaporating sections are arranged in the order of, from top downward in the drawing,


251


A,


251


B and


251


C, and the condensing sections in the order of


252


A,


252


B and


252


C from top downward.




It is configured that the process air A as the first fluid enters from above the first compartment through a duct


109


and flows out downward, and that the external air B as the second fluid enters from under the second compartment through a duct


171


and flows out upward. That is to say, the process air A and the external air B flow in counter directions each other.




A water spray pipe


325


is disposed in the upper part of the second compartment


320


, namely above the heat exchanging tubes which constitute the condensing section


252


. The water spray


325


is provided with nozzles


327


at appropriate intervals so that water flowing through the water spray pipe


325


is sprayed over the heat exchanging tubes which constitute the condensing section


252


.




An evaporating humidifier


165


is disposed at the inlet for the second fluid B the second compartment


320


. The evaporating humidifier


165


is made of a material having both moisture absorbing property and air-permeability such as ceramic paper or nonwoven fabric.




As shown in

FIG. 2

, the heat exchanger


300


may be provided with a refrigerant circulator


601


as a means for supplying and circulating a liquid state refrigerant. The refrigerant circulator


601


is, for example, a pump for circulating a refrigerant liquid. In FIG.


2


(


a


), the refrigerant liquid sent from the pump


601


is supplied to a header


235


disposed at the inlet of the first fluid passage


251


, then to the evaporating section


251


being the first flow passage connected to the header


235


, and evaporates there as it exchanges heat with the process air A flowing through the first compartment. The evaporated refrigerant flows to the condensing section


252


and there condenses by exchanging heat with the external air B flowing through the second compartment. The condensed and liquefied refrigerant reaches a header


245


connected to the condensing section


252


, flows down through a refrigerant pipe connected to the header


245


, flows down by gravity and stored in a liquid refrigerant tank


602


placed vertically below the header


245


, returns to the inlet of the pump


601


through the refrigerant pipe connected to the liquid refrigerant tank


602


, and is supplied through a discharge pipe connected to the outlet of the pump


601


to the header


235


. Thereafter, the cycle consisting of the above steps is repeated.




The evaporating pressure in the evaporating section


251


, in its turn the condensing pressure in the condensing section


252


, namely the specific pressure (the second pressure) of the invention is determined by the temperature of the process air A and the temperature of the external air B. Since the heat exchanger


300


in the embodiment shown in

FIGS. 1 and 2

utilizes heat transfer by evaporation and heat transfer by condensation, it is excellent in both heat transfer coefficient and heat exchange efficiency. Since the refrigerant as the third fluid flows through the evaporating section


251


to the condensing section


252


, namely since it is forced to flow generally in one direction as a whole, it has a high heat exchange efficiency. The heat exchange coefficient Φ will be described later, referring to FIG.


4


.




The inside surfaces of the heat exchange tubes constituting the evaporating section


251


and the condensing section


252


are preferably made to be high performance heat transfer surfaces by providing spiral grooves like the inside surface of a rifle gun barrel. The refrigerant liquid flowing along the inside ordinarily flows so as to wet the inside surface. If the spiral grooves are provided, heat transfer coefficient increases as the boundary layer of the flow is disturbed.




While the process air A flows through the first compartment


310


, the fins provided on the outer side of the heat exchange tubes are preferably made in a louver shape to disturb the flow of the fluid. However, in case water is sprayed, the fins are preferably flat and covered with an anti-corrosion coating. This is to prevent corrosive substances that may be present mixed in with the water from corroding the fins and the tubes as such substances become high in concentration as water evaporates. Also, the fins are preferably made of aluminium, copper, or alloys thereof.




In the case of FIG.


2


(


b


), a throttle such as an orifice is interposed between the header


235


and the evaporating section


251


. With such a configuration, it is possible to provide a heat exchanger of an extremely high heat exchange efficiency because heat can be exchanged between the first and the second fluids in counterflow manner. The plurality of evaporating sections


251


A,


251


B and


251


C are respectively provided with throttles


250


A,


250


B and


250


C. The corresponding condensing sections


252


A,


252


B and


252


C are respectively provided, between the header


245


and them, with throttles


240


A,


240


B and


240


C.




In such a configuration, the process air A flows at right angles to the heat exchange tubes so as to come into contact in succession with the evaporating sections


251


A,


251


B and


251


C in that order in the first compartment to exchange heat with the refrigerant. The external air B of a lower temperature at the inlet than the process air temperature is forced to flow at right angles to the heat exchange tubes so as to come into contact in succession with the condensing sections


252


C,


252


B and


252


A in that order. In such a case, while the evaporating pressures (temperatures) of the refrigerant are determined for each group of sections provided with the throttles, in the evaporating section, they are in the order of high to low for the sections


251


A,


251


B and


251


C. In the condensing section, they are in the order of low to high for the sections


252


C,


252


B and


252


A. Since the flows of the process air A and the external air B are in counter flow with each other, an extremely high heat exchange heat exchange efficiency Φ such as over 80% can be realized.




The specific pressures, or the evaporating pressures in the plurality of evaporating sections


251


A,


251


B and


251


C can be different from each other as a result of providing mutually independent throttles


250


A,


250


B and


250


C at the inlets of the respective evaporating sections. The process air is made to flow into the first compartment so that it comes into contact with evaporating sections


251


A,


251


B and


251


C in that order. Since the process air is deprived of its sensible heat, its temperature lowers along the length from the inlet to the outlet. As a result, the evaporating pressures in the evaporating sections


251


A,


251


B, and


251


C lower in that order, and the evaporation temperatures are arranged in high to low order.




In exactly the same manner, the condensing temperatures are in the order of


252


C,


252


B and


252


A from low to high. Like the evaporating sections, since the condensing sections are provided with mutually independent throttles


240


A,


240


B and


240


C, they can have mutually independent condensing pressures and temperatures. When the external air is made to flow from the inlet to the outlet of the second compartment so as to come into contact with the condensing sections


252


C,


252


B and


252


A in the order, the condensing pressures are arranged in that order. Therefore, when the flows of the process air A and the external air B are noted, since they are in the so-called counterflow, as described above, a high heat exchange efficiency can be achieved.




Since the refrigerant as a whole flows in one direction from the evaporating section


251


to the condensing section


252


, the evaporating pressure is slightly higher than the condensing pressure. However, since the evaporating section


251


and the condensing section


252


are configured with a continuous heat exchange tube, the evaporating pressure is deemed to be substantially the same as the condensing pressure.




Another embodiment of the invention will be described in reference to FIG.


3


.

FIG. 3

shows an arrangement, based on the heat exchanger shown in

FIG. 2

, in which the first compartment is separated from the second compartment, and furthermore, the first fluid passage is separated from the second fluid passage. That is to say, the evaporating sections


251


A,


251


B and


251


C are respectively connected to the condensing sections


252


A,


252


B and


252


C. Headers are provided between the first and the second flow passages for each of the sections A, B and C and connected through piping. Also in this arrangement, the performance of the heat exchanger remains basically the same, but ease of manufacture and layout flexibility are improved.




Referring to

FIG. 4

, heat exchange efficiency will be described. In

FIG. 4

, the symbol TP


1


stands for the temperature of the fluid on the higher temperature side at the inlet of the heat exchanger, TP


2


for the outlet temperature, TC


1


for the fluid on the lower temperature side at the inlet of the heat exchanger, and TC


2


for the outlet temperature. When the symbol φ is assumed to be the heat exchange efficiency, and the cooling of the fluid on the higher temperature side is noted, namely when the purpose of the heat exchange is cooling, φ=(TP


1


−TP


2


)/(TP


1


−TC


1


). When the heating of the fluid on the lower temperature side is noted, namely name when the purpose of the heat exchange is heating, φ=(TC


2


−TC


1


)/(TP


1


−TC


1


).




With the heat exchanger of the invention described above, since the third fluid flow through from the first fluid passage to the second fluid passage, heat can be transferred from the first compartment to the second compartment. Since the third fluid evaporates at the specific pressure on the heat transfer surface on the fluid path side of the first fluid passage, the third fluid takes heat from the first fluid. Since the third fluid condenses at nearly the same pressure as the specific pressure on the heat transfer surface on the fluid path side of the second fluid passage, the third fluid imparts heat to the second fluid. Since the above-mentioned heat transfer is effected by evaporating or condensing heat transfer, the heat transfer efficiency is much higher in comparison with heat transfer by conduction or convection. Therefore, when it is used, for example, in desiccant air conditioner, it can be favorably used in place of a cross flow type heat exchanger of a low heat exchange efficiency or a rotary type heat exchanger of a large volume, and it can remarkably improve the efficiency of the desiccant air conditioner.




As will be described later, referring to

FIG. 12

, when a vapor-liquid separator is provided, heat exchange in the heat exchanger of the invention is uniform since the refrigerant gas and the refrigerant liquid are separated.




Referring to

FIG. 5

, an embodiment of a heat pump HP


1


of a high COP will be described together with explanation of an embodiment of a desiccant air conditioner incorporating the heat pump HP


1


, having a high COP and arranged so as to be compact in size. The heat exchanger shown in

FIG. 1

is suitable for use in the heat pump HP


1


.

FIG. 6

is a Mollier chart for explaining the refrigerant cycle of the heat pump HP


1


or the first embodiment of the invention.




This air conditioning system is to lower the humidity of the process air by means of a desiccant (drying agent) and to maintain in a comfortable environment the air conditioning space to which the process air is supplied.




Referring to

FIG. 5

, the path of the process air as the first fluid will be described. As shown, air to be processed RA is taken from a space


101


to be processed using a blower


102


through an intake passage or a duct


107


. The discharge port of the blower


102


is connected through a duct


108


to the inlet on the process air side of a desiccant wheel


103


which serves as a moisture adsorber. The outlet on the process air side of the desiccant wheel


103


is connected through a duct


109


to the inlet of a first compartment


310


of a heat exchanger


300


serving as the second heat exchanger explained in reference to FIG.


1


.




The process air is dried as its moisture is removed by adsorption in the desiccant wheel


103


and reaches the heat exchanger


300


through the duct


109


. The temperature of the process air is raised by the heat of adsorption as the moisture is adsorbed with the desiccant.




In the first compartment


310


, the process air is cooled by the refrigerant that evaporates in the evaporating section


251


. The process air outlet of the first compartment


310


is introduced through a duct


110


to a cooler


210


which serves as a third heat exchanger. The process air which has been dried and cooled to an extent is further cooled here, made into the process air SA having an appropriate humidity and an appropriate temperature, and returned through a duct


111


to the air conditioning space


101


.




Next, the path of the outside (ambient) air as the second fluid on the second compartment


320


side of the heat exchanger


300


will be described. A duct


171


for drawing outside air from the outdoors OA is connected to the inlet of the second compartment


320


. The outside air drawn in through the duct


171


is humidified with an evaporating humidifier


165


, deprived of its sensible heat, and its temperature lowers. The outside air of the lowered temperature, when it passes through the second compartment


320


, takes heat from the refrigerant in the condensing section


252


, and causes the refrigerant to condense.




The heat exchanging tube


252


is arranged to receive spray water from a spray pipe


325


. The outside air is cooled also with the sprayed water. The sensible heat of the outside air and the evaporating heat of the sprayed water cause the refrigerant in the condensing section


252


to condense.




A duct


172


is connected to the outside air outlet of the second compartment


320


. A blower


160


is disposed in the middle of the duct


172


. The outside air that has been used for condensing the refrigerant is discharged as exhaust EX through the duct


172


to the outdoors.




Next will be described the path of the refrigerant which serves as the third fluid for the heat pump HP


1


. As shown, the refrigerant gas compressed by a refrigerant compressor


260


, which serves as a pressure raiser, is introduced to a regeneration air heater (as a cooler or condenser when seen from the refrigerant side)


220


through a refrigerant gas piping


201


connected to the discharge port of the compressor


260


. The temperature of the refrigerant gas compressed with the compressor


260


is raised by the heat of compression which, in turn, heats the regeneration air. The refrigerant gas itself condenses as it is deprived of its heat.




The refrigerant outlet of the heater


220


is connected to the inlet of the evaporating section


251


of the heat exchanger


300


through a refrigerant passage


202


. A throttle


230


(serving also as a header) is provided in a position which is in the middle of the refrigerant passage


202


and in the vicinity of the inlet of the evaporating section


251


. In this embodiment, the header


230


is constituted to include the throttle.




The refrigerant liquid coming out of the heater


220


is reduced in pressure, expanded, and part of it evaporates (flashes). The refrigerant in the state of liquid-gas mixture reaches the evaporating section


251


and here flows so as to wet the inside wall of the tubes of the evaporating section, evaporates, and cools the process air flowing in the first compartment


310


.




Since the evaporating section


251


and the condensing section


252


constitute a continuous tube, or an integral flow passage, the refrigerant that has evaporated (and that which has not evaporated) flows into the condensing section


252


and is deprived of its heat by the sprayed water and by the outside air flowing through the second compartment. However, although not shown, it may alternatively be configured such that the first section


310


and the second section


320


are separated, and accordingly the evaporating section


251


and the condensing section


252


are made separate, and respectively installed in different places. In that case, the evaporating section


251


and the condensing section


252


will be communicated with each other through, for example, piping.




The outlet side of the condensing section


252


is connected to the cooler (as an evaporator when seen from the refrigerant side)


210


through a refrigerant liquid piping


203


. A throttle


240


(serving also as a header) is provided in the middle of the refrigerant liquid piping


203


. While the attachment position of the throttle


240


may be anywhere between just after the condensing section


252


and the inlet of the cooler


210


, preferably it is just before the inlet of the cooler


210


. The reason is that the insulation of the piping becomes thicker, because the refrigerant after the throttle


240


becomes considerably colder than the atmosphere. In that case, the throttle


240


and the header are preferably separate. The refrigerant that has condensed in the condensing section


252


is reduced in pressure by the throttle


240


, expanded to lower the temperature, evaporates as it enters the cooler


210


, and cools the process air with its evaporation heat. The throttles


230


,


240


may be for example orifices, capillary tubes, expansion valves, or the like.




The refrigerant vaporized into the gaseous state in the cooler


210


is led to the intake side of the refrigerant compressor


260


and the above cycle is repeated thereafter.




Next the path of the regeneration air B for regenerating the desiccant will be described. The outside air drawn in from outdoors through an outside air duct


124


is fed into a sensible heat exchanger


121


. The sensible heat exchanger


121


is a heat exchanger of a rotor-shape and configured such that a large volume rotor filled with a heat storage material rotates in a housing divided into two compartments, with one compartment for flowing the outside air just drawn in while the other compartment is for flowing a fluid for exchanging heat with the outside air.




The outside air heated to a certain extent with the sensible heat exchanger


121


reaches the heater


220


through a duct


126


, here further heated with the refrigerant gas to a higher temperature, and introduced as the regeneration air through a duct


127


into a regeneration side of the desiccant wheel


103


.




The regeneration air after regenerating the desiccant with the desiccant wheel


103


is led to the sensible heat exchanger


121


through ducts


128


,


129


interconnecting the desiccant wheel


103


and the other compartment of the sensible heat exchanger


121


. A blower


140


is provided between the ducts


128


,


129


to draw in outside air, and to flow the regeneration air.




The regeneration air after exchanging heat with (giving heat to) the outside air is discharged as exhaust EX through a duct


130


. Incidentally, the positions of the blowers


102


,


140


and


160


are not limited to those described above but may be any positions along the respective fluid passages for blowing.




In the described process air cooler


300


for use in the heat pump and the dehumidifying air conditioner, it is assumed that the refrigerant flows through in one direction from the evaporating section


251


side to the condensing section


252


side. However, another configuration may be used in place of the above: for example, the evaporating section


251


and the condensing section


252


are made in an integral tube with both its ends closed, as a so-called heat pipe so that the refrigerant condensed in the condensing section


252


is returned to the evaporating section


251


by utilizing capillary phenomenon or the like, and vaporized again there, thus causing the refrigerant to circulate within the single tube. In that case too, the heat transfer likewise utilizes both evaporation and condensation and such advantages are obtained that a high heat transfer coefficient is achieved and that the constitution as the heat exchanger for exchanging heat between the process air and the cooling fluid can be simplified.




Referring to

FIG. 6

, the function of the heat pump HP


1


as an embodiment of the invention in the air conditioning system shown in

FIG. 5

will be described.

FIG. 6

is a Mollier chart when HFC


134




a


is used as the refrigerant. In this chart, the horizontal axis represents enthalpy and the vertical axis represents pressure.




As shown, the point a corresponds to the state at the refrigerant outlet of the cooler


210


shown in

FIG. 5

, in a saturated gas state. The pressure is 4.2 kg/cm


2


as the third pressure, the temperature is 10° C., and the enthalpy is 148.83 kcal/kg. This gas is drawn in and compressed with the compressor


260


and the state of the gas at the discharge port of the compressor


260


is shown at the point b. In this state, the pressure is 19.3 kg/cm


2


as the first pressure, and the temperature is 78° C., in the superheated state.




The refrigerant gas is cooled in the heater


220


and reaches the state represented by the point c on the Mollier chart. At this point, is the refrigerant in a saturated gas state with a pressure of 19.3 kg/cm


2


and a temperature of 65° C. Further cooling and condensation under this pressure leads to the state of point d. This point is in a saturated liquid state with the same pressure and the temperature as those at the point c, namely 19.3 kg/cm


2


and 65° C., and with an enthalpy of 122.97 kcal/kg.




The refrigerant liquid is reduced in pressure with the throttle


230


and flows into the evaporating section


251


of the heat exchanger


300


. This state is represented by the point e on the Mollier chart. The temperature is about 30° C. The pressure is the second pressure of the invention or a specific pressure. In this embodiment, an intermediate value (intermediate pressure) between 4.2 kg/cm


2


and 19.3 kg/cm


2


, namely a saturation pressure corresponding to 30° C. Here, the refrigerant is in the state of mixture of liquid. and gas as part of the liquid has evaporated. The refrigerant liquid evaporates in the evaporating section


251


under the second pressure and reaches under the same pressure as the state represented by the point f which is between the saturated liquid line and the saturated gas line. Here, almost all the liquid has evaporated. Incidentally at the point e, the ratio of refrigerant liquid to gas is the inverted ratio of the difference between the enthalpy at the points where the saturated pressure line of 30° C. crosses the saturated liquid line and the saturated gas line and the enthalpy at the point (d). Therefore, as is clear from the Mollier chart, liquid is greater in weight. However, since the gas is overwhelmingly greater in volumetric ratio, a large amount of gas mixes with the liquid in the evaporating section


251


, the liquid evaporates in the state of wetting the inside surfaces of the tubes of the evaporating section


251


.




The refrigerant in vapor phase or in vapor-liquid mixture phase represented by the point f flows into the condensing section


252


. In the condensing section


252


, the refrigerant is deprived of its heat by the outside air flowing through the second compartment and/or with the sprayed water, and reaches the state represented with the point g. This point is on the saturated liquid line on the Mollier chart, at a temperature of 30° C. and with an enthalpy of 109.99 kcal/kg.




The refrigerant in the state of point g is reduced in pressure with the throttle


240


, to 4.2 kg/cm


2


which is the saturation pressure at 10° C., and, as a refrigerant liquid-gas mixture, reaches the cooler


210


(as an evaporator when seen from the refrigerant), takes heat from the process air, evaporates into the state of saturated gas of the point a on the Mollier chart, drawn again into the compressor


260


, and thereafter the above-cycle is repeated.




As described above, in the heat exchanger


300


, the state of the refrigerant changes from the point e to f because of evaporation in the evaporating section


251


, and from the point f to g because of condensation in the condensing section


252


. Since the changes are evaporation heat transfer and condensation heat transfer, the heat transfer efficiency is very high.




Furthermore, when the compression heat pump HP


1


including the compressor


260


, the heater (refrigerant condenser)


220


, the throttles


230


,


240


, and the cooler (refrigerant evaporator)


210


is not provided with a heat exchanger


300


, since the refrigerant in the state of point d in the heater (refrigerant condenser)


220


is returned to the cooler (refrigerant evaporator)


210


, the differential enthalpy that can be used in the cooler (refrigerant evaporator)


210


is only 25.86 kcal/kg (=148.83−122.97). In case the heat exchanger


300


is provided as in the embodiment of the invention, the differential enthalpy is 38.84 kcal/kg (=148.83−109.99), which means a decrease in the amount of gas circulating in the compressor


260


for the same cooling load, and in its turn a decrease in the required power can be as much as 33%. That is to say, the same effect as an economizer for taking in flash gas in a medium state is obtained though the compressor


260


is of a single stage type or a multiple (for example two) stage type.




Referring to

FIG. 7

, another embodiment of a heat pump HP


2


will be described together with an explanation of another embodiment of a desiccant air conditioner incorporating the heat pump P


2


. The configuration and function of the embodiment of

FIG. 7

are the same as those of

FIG. 5

except water is used as the second fluid to flow through the second compartment of the heat exchanger


300




b


used in place of the heat exchanger


300


. As shown, cooling water cooled with a cooling tower


470


installed outdoors to about 32° C. in summer is led to the intake port of a cooling water pump


460


through a cooling water piping


471


connected to the bottom portion of the cooling tower


470


, and sent to the second compartment of the heat exchanger


300




b


through a cooling water piping


472


connected the discharge port.




In the second compartment of the heat exchanger


300




b,


the cooling water meanders around obstruction plates provided at right angles to the heat exchanging tubes outside the heat exchanging tubes. A cooling water piping


473


is connected to the cooling water outlet of the second compartment so that the cooling water heated to a temperature raised with the heat exchanger


300




b


is returned to the cooling tower. In this way, in contrast to the embodiment of

FIG. 5

in which the refrigerant is condensed in the condensing section with the outside air, in this embodiment the refrigerant is condensed in the condensing section with the cooling water. Since the refrigerant cycle for the heat pump HP


2


is the same as that shown in

FIG. 6

, the explanation is not repeated.




Next, referring to

FIG. 8

, another embodiment of a heat pump HP


3


will be described together with explanation of another embodiment of a desiccant air conditioner incorporating the heat pump HP


3


. With this embodiment, since counterflow heat exchanging can be carried out between the first and the second fluids, a heat pump or a dehumidifying air conditioner of a high COP can be provided. The heat pump HP


3


uses a heat exchanger


300




c


as shown schematically in FIG.


2


(


b


) or FIG.


9


. The heat exchanger


300




c


shown in

FIG. 9

has basically the same configuration as that of the heat exchanger


300


shown in

FIG. 1

, except the former is not provided with the water spray pipe


325


, the nozzles


327


, or the evaporating humidifier


165


.





FIG. 8

is a flow chart of an air conditioning system including a desiccant air conditioner, a dehumidifying air conditioner, as an embodiment of the invention.

FIG. 9

is a schematic cross sectional view of an example heat exchanger as a process air cooler of the invention for use in the air conditioning system shown FIG.


8


.

FIG. 10

is a refrigerant Mollier chart for the heat pump HP


3


included in the air conditioning system shown FIG.


8


.

FIG. 15

is a humid air chart for a dehumidifying air conditioner as an embodiment of the invention.




The air conditioning system shown in

FIG. 8

is to lower the humidity of the process air by means of a desiccant (drying agent) and to maintain an air conditioning space


101


to which the process air is supplied in a comfortable environment. In this embodiment, the path of the process air as the first fluid is the same as that shown in FIG.


5


. That is, as shown, the devices are arranged along the path of the process air A from the air conditioning space


101


, in the order of, the blower


102


, the desiccant wheel


103


filled with a desiccant and serving as a moisture adsorber, a process air cooler


300




c


of the invention, and the refrigerant evaporator (as a cooler when seen from the refrigerant)


210


, so that the process air returns to the air conditioning-space


101


.




The outside air, first as the cooling fluid for the process air cooler


300




c,


is led from the outdoors OA along the path of the regeneration air B to the process air cooler


300




c,


and secondly as the regeneration air through the refrigerant condenser (as a heater when seen from the regeneration air)


220


, the desiccant wheel


103


, and the blower


140


for circulating the regeneration air, in that order, and discharged as exhaust EX outdoors.




Furthermore, along the refrigerant path from the refrigerant evaporator


210


, the compressor


260


for compressing the refrigerant made into the gas state by evaporation with the refrigerant evaporator, the refrigerant condenser


220


, the header


235


, a plurality of throttles


230


A,


230


B,


230


C branched off the header


235


and disposed parallel to each other, the process air cooler


300




c,


a plurality of throttles


240


A,


240


B,


240


C corresponding to the plurality of throttles


230


A,


230


B,


230


C, and the header


245


for collecting flows from those throttles are arranged in that order, so that the flow returns to the refrigerant evaporator


210


. The heat pump HP


3


is constituted by including the refrigerant evaporator


210


, the compressor


260


, the refrigerant condenser


220


, a plurality of throttles


230


A,


230


B,


230


C, the process air cooler


300




c,


and the plurality of throttles


240


A,


240


B,


240


C.




As described above, the heat exchanger


300




c


for use in the heat pump HP


3


shown in

FIG. 8

is provided with the throttles such as orifices disposed between the header


235


and the evaporating section


251


. A plurality of evaporating sections


251


A,


251


B and


251


C are respectively provided with throttles


230


A,


230


B and


230


C. Also the condensing sections


252


A,


252


B and


252


C corresponding to the above-mentioned sections are provided with throttles


240


A,


240


B and


240


C disposed between those sections and the header


245


. Here, for example the evaporating section


251


A corresponding to the throttle


240


A is shown as a single tube in the drawing. However, a plurality of the tubes may be provided side by side to increase their number in the direction normal to the drawing surface. That is, the throttle


240


A may bundle a group of evaporating sections. The same applies to other throttles


240


B,


240


C and corresponding evaporating sections


251


B,


251


C.




With such a configuration, the process air A flows at right angles to the heat exchange tubes in the first compartment so as to come into contact with the evaporating sections


251


A,


251


B, and


251


C in that order, and exchanges heat with the refrigerant. The outside air B with its inlet temperature being lower than that of the process air flows at right angles to the heat exchanging tubes in the second compartment so as to come into contact with the condensing sections


252


C,


252


B and


252


A in that order. In such a case, while the evaporation pressures (temperatures) or condensation pressures (temperatures) are determined for each group of sections provided with throttles, they are arranged in the high to low order of


251


A,


251


B and


251


C in the evaporating section, and in the low to high order of


252


C,


252


B and


252


A in the condensing section. That is, the refrigerant of the process air cooler


300




c


cools the process air A at a plurality of evaporation pressures, and the refrigerant is cooled and condensed with the outside air B as a cooling fluid at a plurality of condensing pressures corresponding to the evaporating pressures. Those evaporation pressures and condensation pressures are arranged in the high to low or low to high order.




In this way, when the flows of the process air A and the outside air B are noted, both of the flows exchange heat by the so-called counterflows, which achieves an extremely high heat exchange efficiency Φ, for example 80% or higher.




Here, how the plurality of evaporation pressures are arranged in the high to low order will be further described. The evaporation pressures in the plurality of evaporating sections


251


A,


251


B and


251


C can be independent or different from each other as a result of providing respective sections with respectively independent throttles


230


A,


230


B and


230


C. When the process air is made to flow through the first compartment so as to come into contact successively with the evaporating sections


251


A,


251


B and


251




c


in that order, the process air is deprived of its sensible heat and its temperature decreases along its flow from the inlet to the outlet. As a result, the evaporation pressures in the evaporating sections


251


A,


251


B and


251


C decrease and are arranged in that order from high to low.




Quite likewise, the condensation temperatures are arranged in the low to high order of


252


C


252


B and


252


A. Like the evaporating sections, since the respective condensing sections are provided with mutually independent throttles


240


A,


240


B and


240


C, the respective condensing sections can have mutually independent condensation pressures and mutually independent condensation temperatures. When the outside air is made to flow through the second compartment from its inlet to outlet so as to come into contact successively with the condensing sections


252


C,


252


B and


252


A in that order, the condensation pressures are arranged in that order from low to high. Therefore, when the flows of the process air A and the outside air B are noted as described before, they form a so-called counterflow type of heat exchanger to achieve a high heat exchange efficiency. Here, the evaporating section


251


A and the condensing section


252


A may be constituted with mutually independent heat pipes, and the same constitution applies to the evaporating section


251


B and the condensing section


252


B, and to the evaporating section


251


C and the condensing section


252


C. Still, the same function is obtained that the heat can be exchanged in counterflow manner.




In the process air cooler


300




c


shown in

FIG. 9

, the first compartment


310


and the second compartment


320


are disposed side by side on both sides of the partition plate


301


, and the evaporating section and the condensing section are formed by an integral, continuous tube. However, the heat exchanger may also be configured as shown in

FIG. 3

in which the first compartment


310


and the second compartment


320


and also the first and the second flow passages are disposed separately. In other words, in such a configuration, the evaporating sections


251


A,


251


B and


251


C are respectively connected to corresponding condensing sections


252


A,


252


B and


252


C through an appropriate header and connection piping. In that case, the function of the heat exchanger also remains unchanged from that shown in FIG.


9


. However, versatility in positioning of devices increases as a result of separation of the first and the second compartments


310


and


320


.




The header


245


on the condensing section


252


side is connected to the refrigerant evaporator (as a cooler when seen from the process air)


210


through the refrigerant liquid piping


203


. While the attachment positions of the throttles


240


A,


240


B and


240


C may be anywhere between just after the condensing sections


252


A,


252


B and


252


C and the inlet of the refrigerant evaporator


210


, preferably they are just before the inlet of the refrigerant evaporator


210


. The reason is that the insulation for the piping for the refrigerant after the throttles


240


A,


240


B and


240


C where the refrigerant becomes considerably colder than the atmosphere may be made thinner. The refrigerant liquid condensed in the condensing sections


252


A,


252


B and


252


C is cooled to lower temperatures by pressure reduction and expansion, enters and evaporates in the refrigerant evaporator


210


to cool the process air by the evaporation heat. The throttles


230


A,


230


B and


230


C, and


240


A,


240


B and


240


C may be for example orifices, capillary tubes, expansion valves, or the like.




Here, the throttles


240


A,


240


B and


240


C are usually orifices or the like of a constant opening. Apart from those constant opening throttles, it may also be configured such that an expansion valve


270


is disposed between the header


245


and the refrigerant evaporator


210


, and also a temperature sensor (not shown) is disposed at the refrigerant outlet of the refrigerant evaporator


210


or in the heat exchanging portion of the refrigerant evaporator


210


to detect the superheat temperature and to regulate the opening of the expansion valve


270


. In this way, the refrigerant is prevented from being supplied in an excessive amount to the refrigerant evaporator


210


, and the refrigerant liquid that has been left out of evaporation is prevented from being drawn into the compressor


260


.




The refrigerant evaporated into the gaseous state in the refrigerant evaporator


210


is led to the intake side of the refrigerant compressor


260


, and the above-described cycle is repeated thereafter.




In the embodiment shown in

FIG. 8

, the outside air as the second fluid is used as the regeneration air for regenerating the desiccant. As shown, a duct


124


is connected to the inlet of the second compartment


320


to introduce outside air from outdoors OA. The outside air introduced through the duct


124


enters the second section


320


and, while flowing through the section, takes heat from the refrigerant in the condensing section


252


and causes the refrigerant to condense. Here, the condensing section


252


is constituted to include sections


252


C,


252


B and


252


A with their condensation temperatures arranged in that order from low to high. Therefore, the outside air exits the second compartment


320


after contacting the condensing section


252


A of the highest temperature. The outlet of the second compartment


320


is connected through a duct


126


to the heater


220


. The outside air heated to a certain extent in the second compartment


320


is led to the heater


220


, additionally heated there, and as the regeneration air reaches the desiccant wheel


103


through a duct


127


which interconnects the heater


220


and the desiccant wheel


103


.




As described above, the regeneration air introduced into the desiccant wheel


103


, after heating to regenerate the desiccant, is discharged through ducts


128


and


129


leading from the desiccant wheel


103


to the outside air. The blower


140


is disposed between the ducts


128


and


129


to draw in outside air, and to flow it through the regeneration air path.




Next, the path of the refrigerant will be described. As shown, the refrigerant gas compressed with the refrigerant compressor


260


is led through a refrigerant gas piping


201


connected to the outlet of the compressor to the regeneration air heater (as a condenser when seen from the refrigerant)


220


. The refrigerant gas compressed with the compressor


260


is at a higher temperature due to compression heating, and the heat is used to heat the regeneration air. The refrigerant gas itself loses heat and condenses.




A refrigerant piping


202


is connected to the refrigerant outlet of the heater


220


to further lead to the header


235


where it is divided into a plurality (three in

FIG. 8

) of refrigerant branches respectively provided with throttles


230


A,


230


B and


230


C. The throttles


230


A,


230


B and


230


C are respectively connected to the evaporating sections


251


A,


251


B, and


251


C. Therefore, it is configured such that evaporation occurs at different pressures or in turn at different temperatures respectively in the evaporating sections


251


A,


251


B and


251


C. The throttles


230


A,


230


B and


230


C are respectively disposed in the vicinities of the evaporating sections


251


A,


251


B and


251


C. The throttles may be in the form of orifices, capillary tubes, expansion valves, or the like. While

FIG. 8

shows only three throttles, they may be provided in any number, two or more, according to the number of the evaporating sections


251


and the condensing sections


252


.




The refrigerant liquid coming out of the heater (refrigerant condenser)


220


is reduced in pressure and expanded with the throttles


230


A,


230


B and


230


C, and part of it evaporates (flashes). The refrigerant in the state of liquid-gas mixture reaches the evaporating sections


251


A,


251


B and


251


C and flows there so as to wet the inside walls of the tubes of the evaporating section, evaporates, and cools the process air flowing through the first compartment


310


.




Each of the evaporating sections


251


A,


251


B and


251


C and each of the condensing sections


252


A,


252


B and


252


C are respectively constituted with a series of tubes, namely as individual flow passages, so that the refrigerant that has evaporated (and that has not evaporated) flows into the condensing sections


252


A,


252


B and


252


C and is deprived of its heat with the outside air flowing through the second compartment and condenses.




The outlet sides of the condensing sections


252


A,


252


B and


252


C are respectively provided with throttles


240


A,


240


B and


240


C. Beyond the throttles


240


A,


240


B and


240


C is disposed the header


245


to which is connected the refrigerant piping


203


so as to lead the refrigerant to the cooler


210


.




With such a constitution, the refrigerant liquid condensed in the condensing sections


252


A,


252


B and


252


C is cooled by reduction in pressure and expansion with the throttles


240


A,


240


B and


240


C and collected in the header


245


, enters and evaporates in the cooler


210


to cool the process air by its evaporation heat.




Next, referring to

FIG. 10

, the function of the heat pump HP


3


will be described.

FIG. 10

is a Mollier chart when a refrigerant HFC


134




a


is used. In this chart, the horizontal axis represents enthalpy, and the vertical axis represents pressure.




As shown, the point a corresponds to the state at the refrigerant outlet of the cooler


210


shown in

FIG. 8

, in a saturated gas state. In the example shown, the pressure is 4.2 kg/cm


2


as the third pressure or a low pressure, the temperature is 10° C., and the enthalpy is 148.83 kcal/kg. This gas is drawn in and compressed with the compressor


260


and the state of the gas at the outlet of the compressor


260


is shown at the point b. In this state, the pressure is 19.3 kg/cm


2


and the temperature is 78° C.




The refrigerant gas is cooled in the heater (refrigerant condenser)


220


and reaches the state represented by the point c on the Mollier chart. This point represents a saturated gas state with a pressure of 19.3 kg/cm


2


as a first pressure or a high pressure, and a temperature of 65° C. Further cooling and condensation under this pressure leads to the state of point d. This point represents a saturated liquid state with the same pressure and the temperature as those at the point c, namely 19.3 kg/cm


2


and 65° C., and with an enthalpy of 122.97 kcal/kg.




The state of part of the refrigerant reduced in pressure with the throttle


230


A and flowed into the evaporating section


251


A is represented with the point e


1


on the Mollier chart. Its temperature becomes 43° C. Its pressure is one of a plurality of different pressures (second pressure) of the invention and a saturation pressure corresponding to the temperature of 43° C. Similarly, the state of the refrigerant reduced in pressure with the throttle


230


B and has flowed into the evaporating section


251


B is represented with the point e


2


on the Mollier chart. Its temperature becomes 40° C. Its pressure is one of a plurality of different pressures (second pressure) of the invention and a saturation pressure corresponding to the temperature of 40° C. Likewise, the state of the refrigerant reduced in pressure with the throttle


230


C and flowed into evaporating section


251


C is shown by the point e


3


on the Mollier chart, with a temperature of 37° C. and a saturation pressure corresponding to the temperature of 37° C. as one of the plurality of different pressures of the invention.




At whichever of the points e


1


, e


2


or e


3


, the refrigerant is located, part of the refrigerant liquid evaporates (flashes) and is in the state of mixture of liquid and gas. In each of the evaporating sections, the refrigerant evaporates under one of the plurality of different pressures and respectively reach intermediate points f


1


, f


2


and f


3


between the saturated liquid line and the saturated vapor line for respective pressures.




The refrigerant in those states flows into the respective condensing sections


252


A,


252


B, and


252


C. In each condensing sections, the refrigerant is deprived of its heat with the outside air flowing through the second compartment and respectively reaches the points g


1


, g


2


, and g


3


. These points are on the saturated liquid line on the Mollier chart. Their temperatures are 43° C., 40° C., and 37° C., respectively. These refrigerant liquids reach the points j


1


, j


2


, and j


3


through respective throttles. The pressure at these points is 4.2 kg/cm


2


, the saturation pressure for 10° C.




Here, the refrigerant is in the state of a mixture of liquid and gas. These refrigerants flow into the single header


245


and the enthalpy of the joined flow is an average of the enthalpy values at the points g


1


, g


2


, and g


3


respectively weighted with the corresponding flow rates of the refrigerant. In this embodiment, the value is approximately 113.51 kcal/kg. Even though it is 3-layered, the reason for the higher enthalpy than in the case shown in

FIG. 6

is that water is not sprayed in the second compartment.




The refrigerant evaporates as it takes heat from the process air in the cooler (refrigerant evaporator)


210


to be in the state of point a on the Mollier chart and drawn into the compressor


260


again, and thereafter the above-described cycle is repeated.




As described above, the refrigerant evaporates in each evaporating section and condenses in each condensing section in the heat exchanger


300




c.


Since heat is transferred by evaporation and condensation, the heat transfer efficiency is extremely high. Moreover, since the process air flowing downward from the upper part of the first compartment


310


in the drawing is cooled from a higher to a lower temperature at temperatures arranged in the high to low order of 43° C., 40° C., and 37° C., heat exchange efficiency is higher in comparison with the case of cooling at a single temperature of, for example, 40° C. The same is true for the condensing section. That is, in the second compartment


320


, since the outside air (regeneration air) is heated from a lower to a higher temperature as the air flows up from the lower part in the drawing at temperatures arranged in the low to high order of 37° C., 40° C. and 43° C., heat exchange efficiency is higher in comparison with the case of heating at a single temperature of, for example, 40° C.




Furthermore, when the compression heat pump HP


3


including the compressor


260


, the heater (refrigerant condenser)


220


, the throttles


230


,


240


, and the cooler (refrigerant evaporator)


210


is not provided with a heat exchanger


300


C, since the refrigerant in the state of point d in the heater (refrigerant condenser)


220


is returned to the cooler (refrigerant evaporator)


210


, the differential enthalpy that can be used in the cooler (refrigerant evaporator)


210


is only 25.86 kcal/kg. In case that the heat exchanger


300


C is provided as in this embodiment of the invention, the differential enthalpy is 35.32 kcal/kg (=148.83−113.51), which means a decrease in the amount of gas circulating in the compressor


260


for the same cooling load, and in its turn a decrease in the required power by as much as 27%. On the other hand, the cooling effect that can be accomplished with the identical power can be improved by as much 37%. That is to say, the same effect as an economizer for taking in flash gas in a medium state is obtained whether the compressor


260


is of a single stage type or a multiple (for example two) stage type, in the same manner as the embodiment described, referring to

FIG. 5

or


7


. Therefore, high COP can be achieved. The function of the dehumidifier of this embodiment using a humid chart will be described later referring to FIG.


15


.




Next, referring to

FIG. 11

, another embodiment of a heat pump HP


4


will be described together with explanation of another embodiment of a desiccant air conditioner incorporating the heat pump HP


4


. With this embodiment, since the refrigerant supplied to the second heat exchanger (process air cooler) for exchanging heat between the first and the second fluids is separated into vapor phase and liquid phase before the refrigerant flows into the second heat exchanger, heat exchange becomes uniform, thus making it possible to provide a heat pump or a dehumidifying air conditioner of a high COP.

FIG. 12

shows the constitution of a heat exchanger


300




d


as the second heat exchanger suitable for use in the heat pump HP


4


.

FIG. 13

is a Mollier chart for explaining the refrigerant cycle of the heat pump HP


4


.




Since the path of the process air, the path of the regeneration air, and the path of the cooling fluid are the same as those of the air conditioner as shown in the embodiment

FIG. 5

, explanations will not repeated.




Here, the path of the refrigerant of the heat pump HP


4


will be described. As shown, the refrigerant gas compressed with a refrigerant compressor


260


is drawn to a regeneration air heater


220


through a refrigerant gas piping


201


connected to the outlet of the compressor


260


. The temperature of the refrigerant gas compressed with the compressor


260


is increased by the heat of compression which in turn heats the regeneration air. The refrigerant gas itself condenses as it is deprived of its heat.




The refrigerant outlet of the heater


220


is connected to the inlets of the evaporating sections


251


A,


251


B and


251


C of the heat exchanger


300




d


through a refrigerant passage


202


. The throttle


360


in the form of an expansion valve or the like is provided in the middle of the refrigerant passage


202


. A vapor-liquid separator


350


is provided between the throttle


360


and evaporating sections


251


A,


251


B and


251


C. The constitution of the heat exchanger


300




d


will be described later in detail referring to FIG.


12


.




Liquid refrigerant coming out of the heater


220


is reduced in pressure with the expansion valve


360


as the first throttle, expands, and part of the liquid refrigerant evaporates (flashes). The liquid-vapor mixture of refrigerant is separated into vapor and liquid with the vapor-liquid separator


350


, the refrigerant liquid reaches the evaporating sections


251


A,


251


B and


251


C, evaporates in the tubes of the evaporating sections


251


A,


251


B and


251


C, and cools the process air flowing through the first compartment


310


.




The evaporating section


251


and the condensing section


252


constitute a continuous tube. That is, since they constitute a single flow passage, the refrigerant that has evaporated (and that has not evaporated) flows into the condensing section


252


, and is deprived of its heat with the outside air flowing through the second compartment, then condenses. However, it is also possible to constitute the first and the second compartments separately, and to constitute the evaporating and condensing sections separately. In that case, the evaporating and condensing sections maybe communicated with each other, for example through piping.




The outlet side of the condensing section


252


is connected through the refrigerant liquid piping


203


, the expansion valve


270


as the second throttle, and another refrigerant liquid piping


204


to the cooler


210


. The refrigerant that has condensed in the condensing section


252


is reduced in pressure with the throttle


270


, cooled by expansion, evaporates as it enters the cooler


210


(as an evaporator when seen from the refrigerant side), and cools the process air with its evaporation heat. The throttles


360


and


270


may be for example orifices, capillary tubes, as well as expansion valves.




The refrigerant evaporated into the gaseous state in the cooler


210


is led to the intake side of the refrigerant compressor


260


, and thereafter the above-described cycle is repeated.




The vapor-liquid separator


350


is configured to include a container into which vapor-liquid mixture flows, and an obstruction plate


355


placed to face the inflow of the vapor-liquid mixture. When the vapor-liquid mixture strikes the obstruction plate


355


, the liquid is separated from the vapor, the vapor flows out of a vapor outlet provided side by side with the vapor-liquid mixture inlet, and flows to the heat exchanger


300




d


through a refrigerant piping


340


connected to the vapor outlet. The refrigerant liquid flow out of a liquid outlet disposed in a position vertically below the container of the vapor-liquid separator. To the liquid outlet are connected liquid piping


430


A,


430


B and


430


C respectively communicating with the evaporating sections


251


A,


251


B and


251


C.




Referring to

FIG. 12

, the constitution of the heat exchanger


300




d


as the second heat exchanger suitable for use in the heat pump HP


4


as an embodiment of the invention will be described. The heat exchanger


300




d


can be used in place of the heat exchanger


300


in the heat pump HP


1


described referring to FIG.


5


. As shown, the heat exchanger


300




d


is similar to the heat exchanger shown in

FIG. 1

in that the first compartment


310


for flowing the process air A as the first fluid and the second compartment


320


for flowing the outside air B as the second fluid are disposed adjacent to each other through a single partition wall


301


.




Also, the positioning of the evaporating sections


251


A,


251


B and


251


C, condensing sections


252


A,


252


B and


252


C, water spray pipe


325


, evaporation humidifier


165


, process air passages


109


,


110


, and outside air passage


171


are similar to those of the heat exchanger shown in FIG.


1


.




The evaporating sections


251


A,


251


B and


251


C are connected to headers


450


A,


450


B and


450


C respectively connected to refrigerant piping


430


A,


430


B and


430


C. Each of the evaporating sections


251


A,


251


B and


251


C is constituted with a plurality of (six in the example of

FIG. 12

) heat exchange tubes joined to each of the headers


450


A,


450


B and


450


C.




A refrigerant vapor piping


340


passes through the first compartment


310


of the heat exchanger


300




d


through a tube


341


. The tube


341


is disposed to pass through the partition wall


301


and further through the second compartment


320


. In the example shown in

FIG. 12

, two parallel tubes


341


are disposed, with each tube passing through the


35


second compartment


320


three times. Here, part of the tube


341


within the second compartment


320


is provided with fins attached to the outer side of the tube to accelerate heat exchange in the same manner as in the condensing sections


252


A,


252


B and


252


C. That part is referred to as the condensing section


252


D. The condensing section


252


D is disposed in a position on the upstream side of the outside air flow in the condensing section


252


C and between the condensing section


252


C and the evaporation humidifier


165


. In the condensing section


252


D, the refrigerant vapor is deprived of its heat with the second fluid or the outside air and condenses. Incidentally, the condensing section


252


D may be disposed on the downstream side of the outside air flow in the condensing section


252


A.




Since the tube


341


scarcely contributes to the heat exchange in the first compartment


310


, the tube


341


practically bypasses the first compartment


310


. Therefore, the tube


341


may be routed to bypass the first compartment


310


in actual constitution, in other words, the tube


341


is routed outside the first compartment


310


and connected to the condensing section


252


D in the second compartment.




The refrigerant liquid outlet sides of the condensing sections


252


A,


252


B and


252


C are respectively provided with headers


455


A,


455


B and


455


C to bring together the condensing sections


252


A,


252


B and


252


C that each is constituted with a plurality of tubes. Tubes from respective headers are further brought together with a header


370


(

FIG. 11

) which in turn is connected to the expansion valve


270


as described above through the refrigerant piping


203


. The refrigerant liquid from the condensing section


252


D is drawn out through a refrigerant piping


345


connected to the condensing section


252


D and joins the passage


203


on the downstream side of the header


370


. Incidentally, the piping


345


may be connected to the header


370


.




Referring to the Mollier chart of

FIG. 13

, the function of the heat pump HP


4


as an embodiment of the invention will be described. The Mollier chart of

FIG. 13

is for the use of the refrigerant HFC


134




a,


with the horizontal axis indicating enthalpy and the vertical axis indicating pressure.




In the drawing, the points a, b, c and d are the same as those in the Mollier chart of FIG.


6


and so their explanations are omitted. The refrigerant liquid in the state of the point d is reduced in pressure with the throttle


360


and flows into the vapor-liquid separator


350


. Then, the separated refrigerant vapor flows through the piping


340


into the tube


341


as a vapor in the state of the point h where the isobaric line of the saturation pressure corresponding to 40° C. intersects the saturated vapor line, and flows into the condensing section


252


D. There the vapor condenses as its heat is taken with the outside air (that is cooled with the water from the spray pipe and the evaporation humidifier), reaches the saturation liquid line or typically supercooled, and reaches the point i beyond the saturated liquid line.




The liquid separated with the vapor-liquid separator


350


is in the state of the intersection e between the saturated liquid line and the isobaric line of the saturation pressure corresponding to 40° C. This liquid evaporates in the evaporating section


251


as it reaches the point f, then condenses in the condensing section


252


to be in the liquid state of point g. The liquid in the state of the point i and the liquid in the state of the point g are mixed together in the header


370


, and reduced in pressure in the expansion valve


270


to be the refrigerant (vapor-liquid mixture) of a pressure of 42.2 kg/cm


2


and a temperature of 10° C.




As described above, in this embodiment, almost no vapor-phase content is contained in the refrigerant led to the heat exchange tubes (heat transfer pipe) constituting the evaporating sections


251


A,


251


B and


251


C of the second heat exchanger


300




d.


As a result, the amount of the refrigerant led to the evaporating sections


251


A,


251


B and


251


C becomes uniform, the process air as the first fluid is cooled uniformly by the evaporation in the evaporating sections


251


A,


251


B and


251


C, and the amount of refrigerant that condenses on the heat transfer pipe of the condensing sections


252


A,


252


B and


252


C is made up of the refrigerant that has evaporated in the evaporating sections


251


A,


251


B and


251


C. If the vapor phase is contained, the heat transfer lacks uniformity since the condensation amount in the condensing section that contains vapor phase is especially large. However, if the liquid phase only is present, such a problem does not occur.




In this way, the amount of heat transferred by the heat pipe function (change in refrigerant phase, especially the heat transfer function by evaporation and condensation) of the heat transfer pipe is made uniform from one heat transfer pipe to another, heat transfer is made uniform in the entire heat exchanger


300




d.


As a result, an undesirable situation is prevented, namely the air as the first and the second fluid is prevented from passing through without contributing to the heat transfer. Therefore, the dehumidifying air conditioner as an embodiment provided with the heat pump HP


4


makes it possible to improve the heat exchange efficiency between the first fluid, the process air, and the second fluid, the cooling medium (outside air) or the regeneration air, and to improve functional reliability.




An embodiment of the invention will be hereinafter described with specific numerical values. Calculating conditions are assumed that; the heat transfer amount is 2 USRt, the evaporation temperature is 10° C., the economizer temperature (saturation temperature corresponding to the second pressure) is 40° C., the condensation temperature is 65° C., the refrigerant is HFC


134




a,


and the pipe diameter is 12 mm. Also assumed that; the inside diameter of the heat transfer pipe is 8.3 mm, and the number of the heat transfer pipe is 40 (in case of three tiers as shown in

FIG. 12

, for example 13, 14, and 13 pipes are disposed in respective tiers in a staggered pattern). Here, the refrigerant circulation amount is calculated by reading the enthalpy values of the points on the Mollier chart of

FIG. 13

as:






2×3024/(138.83−113.51)=171.23 kg/h=0.0476 kg/s.






Comparative Example




The refrigerant in vapor-liquid phase after being expanded in the expansion valve is branched into a large number of heat transfer pipes constituting a single pass of the heat exchanger. Since the heat transfer pipes have to be disposed in a single pass in the second heat exchanger, the number of branches increases.




Dryness immediately after expansion valve: (122.97−113.51)/39.42=0.242 (The value 39.42 is the enthalpy difference between points h and e or g in

FIG. 13.

)




Specific volume of two-phase mixture refrigerant immediately after expansion valve: 0.00087261×(1−0.242)+0.020032×0.242=0.00551 m


3


/kg




Flow velocity


1


(in three piping of 12 mm diameter): 0.0051×0.0476×4/(0.012×0.012×3.14×3)=0.773 m/s




Flow velocity


2


(in 40 heat transfer pipe of 8.3 mm diameter): 0.0051×0.0476×4/(0.0083×0.0083×3.14×40)=0.121 m/s




At the flow velocity


1


, the refrigerant flows through the pipe in the state of almost uniform vapor-liquid mixture. At the flow velocity


2


in the branched heat transfer pipes, since the velocity is too slow, the refrigerant is separated by gravity into two, vapor and liquid phases, with the vapor phase flowing on the upper side while the liquid phase flowing on the lower side. In this way, since the flow velocity becomes extremely slow after branching, it is difficult to distribute the vapor phase refrigerant in the state of being uniformly mixed with the liquid phase refrigerant. This in turn results in that, since the situations of the flow are different before and after the branching, the refrigerant cannot be distributed uniformly.




Embodiment




Dryness immediately after expansion valve: 0




Specific volume of liquid refrigerant immediately after expansion valve: 0.00087261 m


3


/kg




Flow velocity


3


(in three pipes of 12 mm diameter): 0.00087261×0.0476×(1−0.242)×4/(0.012×0.012×3.14×3)=0.0928 m/s




Flow velocity


4


(in 40 heat transfer pipes of 8.3 mm diameter): 0.00087261×0.0476×(1−0.242)×4/(0.0083×0.0083×3.14×40)=0.0146 m/s




In this way, since both of the flow velocities


3


and


4


are slow and that the refrigerant in liquid phase only flows, the refrigerant is uniformly distributed to the heat transfer tubes.




The above embodiment is described for the case in which the outside air is cooled by the evaporation heat of water using the evaporation humidifier and the water spray pipe and the air is used as the second fluid. However, it is also possible to have a constitution in which, like the third embodiment shown in

FIG. 8

, the regeneration air is heated in the second compartment.




With the invention described above, since the second heat exchanger that causes the refrigerant to evaporate and also to condense under the second pressure which is lower than the first pressure is provided, the enthalpy difference per unit amount of refrigerant can be increased. Therefore, it is possible to provide a heat pump capable of increasing the enthalpy difference per unit amount of refrigerant and accordingly capable of highly improving the COP.




Therefore, if the heat pump of the invention is used as the heat source of a desiccant air conditioner for example, it is possible to greatly increase the efficiency of the desiccant air conditioner.




When the second heat exchanger is provided with a vapor-liquid separator, since the refrigerant vapor is separated from the refrigerant liquid, heat exchange in the second heat exchanger is uniform.




A dehumidifying air conditioner of the invention will be hereinafter described referring to

FIG. 14

for its function, and referring to

FIG. 5

as appropriate for its constitution. In

FIG. 14

, conditions of air in various portions are indicated with letters D, E, K to N, and Q to X. These letters correspond to those in circles shown in the flow chart of FIG.


5


.




First, the flow of the process air A will be described. In

FIG. 14

, the process air (state K) is drawn in from the space to be air-conditioned, or the conditioning space


101


through the process air passage


108


by means of the blower


102


, and sent into the desiccant wheel


103


. Here, the air is deprived of its moisture with the desiccant disposed in the drying element


103




a


(

FIG. 16

, to be explained later) or made to be of a lower absolute humidity and reaches the state L of a higher dry bulb temperature due to the adsorption heat of the desiccant. This air is sent through the process air passage


109


to the first compartment of the process air cooler


300


. There the air, while remaining at a constant absolute humidity, is cooled with the refrigerant evaporating in the evaporating section


251


(Fig.) to be in the state M, and enters the cooler


210


through the passage


110


. Here, the air, also remaining at a constant absolute humidity, is further cooled to the state N. This air, as the process air SA that has been dried and cooled to appropriate humidity and temperature, is returned through the duct


111


to the air conditioning space


101


.




Next, the flow of the regeneration air B will be described. In

FIG. 14

, the regeneration air (state Q) is drawn in from outdoors OA through the regeneration air passage


124


to the heat exchanger


121


. Here, the introduced air exchanges heat with the higher temperature regeneration air to be discharged (air in the state U to be described later) to raise the dry bulb temperature, and reaches the state R. This air is sent through the passage


126


to the refrigerant condenser (as a heater when seen from the regeneration air)


220


where the air is heated to a higher dry bulb temperature, and reaches the state T. This air is sent through the passage


127


to the desiccant wheel


103


where the air removes moisture from the desiccant in the drying element


103




a


(

FIG. 16

) to regenerate the desiccant. As the air adsorbs the moisture, the absolute humidity of the air increases, the dry bulb temperature decreases due to the water adsorption heat of the desiccant, and the air reaches the state U. This air is drawn through the passage


128


into the blower


140


for circulating the regeneration air and sent through the passage


129


into the heat exchanger


121


, and as described before, exchanges heat with the regeneration air (air in the state Q) that is not yet sent into the desiccant wheel, and the air itself becomes cooler in the state V, and discharged EX through the passage


130


.




Next, the flow of the outside air C as a cooling fluid will be described. The outside air C (in the state Q) from outdoors OA is sent through the passage


171


into the second compartment


320


of the process air cooler


300


. There, first the air absorbs moisture in the humidifier


165


and brings about a higher absolute humidity through iso-enthalpy change while bringing about a lower dry bulb temperature, and reaches the state D. The state D is approximately on the saturation line in the humid vapor chart. This air cools the refrigerant in the condensing section


252


while further absorbing moisture supplied through the water spray piping


325


in the second compartment


320


. This air changes approximately along the saturation line to a higher absolute humidity and a higher dry bulb temperature, reaches the state E, and is discharged EX through the passage


172


with the blower


160


disposed in the middle of the passage


172


.




In further reference to

FIG. 14

here, functions of the humidifier


165


and the, water spray piping


325


will be described. With the air conditioner described above, as will be understood from the cycle on the air side shown on the humid air chart of

FIG. 14

, when it is assumed that; the amount of heat imparted to the regeneration air for regenerating the desiccant in the humidifier is ΔH, the amount of heat pumped up from the process air is Δq, and the driving energy of the compressor is Δh, then ΔH=Δq+Δh. A cooling effect ΔQ obtained as a result of regeneration with the heat amount ΔH is greater as the temperature of the outside air (state Q) for exchanging heat with the process air after moisture adsorption (state L) is lower. That is, the greater the ΔQ−Δq, the greater ΔQ. Therefore, spraying water, etc. to the outside air as the cooling fluid is effective to improve cooling effect. In

FIG. 14

, the points denoted by the states M′ and N′ indicate how the states M and N would change if the evaporation humidifier


165


and the water spray piping


325


were not used.




An embodiment of the invention will be described referring to

FIG. 15

for its function, and Referring to

FIG. 8

as appropriate for its configuration. In

FIG. 15

, conditions of air at various points are indicated with letter symbols K to N, Q, R, X, T and V. These letter symbols correspond to those in circles shown in the flow chart of FIG.


8


.




Since the flow of the process air A is the same as in the case of

FIG. 14

, the explanation therefor is not repeated. However, the process air cooler through which the process air passes is shown as


300




c,


and therefore, its details are different in some points as shown in FIG.


9


.




Next, the flow of the regeneration air will be described. In

FIG. 15

, the regeneration air (state Q) is introduced from outdoors OA through the regeneration air passage


124


to the second compartment


320


of the process air cooler


300




c.


Here, the introduced air exchanges heat with the condensing refrigerant to raise the dry bulb temperature, and reaches the state R. This air is sent through the passage


126


to the refrigerant condenser (as a heater when seen from the regeneration air)


220


where the air is heated to a higher dry bulb temperature, and reaches the state T. This air is sent through the passage


127


to the desiccant wheel


103


where the air removes moisture from the desiccant in the drying element


103




a


(

FIG. 16

) to regenerate the desiccant. As the air adsorbs the moisture, the absolute humidity of the air increases, the dry bulb temperature decreases due to the moisture adsorption heat of the desiccant, and the air reaches the state U. This air is drawn through the passage


128


into blower


140


for circulating regeneration air and discharged EX through the passage


129


.




With the air conditioner described above, the relation among the amount of heat ΔH, the amount of heat Aq pumped from the process air, and the driving energy Δh of the compressor shown in the cycle on the air side on the humid air chart of

FIG. 15

is the same as that explained Referring to

FIG. 14

, and thus, ΔH=Δq+Δh. With this embodiment, since the heat exchange efficiency of the process air cooler


300




c


is very high, cooling effect can be enhanced remarkably.




As described above, since the heat pump or the dehumidifying device of this invention is configured such that it includes the process air cooler, that the process air cooler cools the process air by the evaporation of the refrigerant, and that the evaporated refrigerant is cooled and condensed with the cooling fluid, it is possible to utilize evaporating heat transfer and condensing heat transfer both having high heat transfer coefficients and to carry out heat transfer between the process air and the cooling fluid with a high rate of heat transfer. Since the heat transfer between the process air and the cooling fluid is effected through the refrigerant, component layout of the dehumidifying air conditioner is facilitated. Moreover, a plurality of refrigerant evaporating pressures are used, and also a plurality of condensing pressures are used corresponding to the evaporation pressures for the refrigerant that is cooled and condensed with the cooling fluid, and the evaporating pressures are typically arranged in the high to low order. That is to say, in the case of the evaporation temperatures being arranged in the high to low order, the heat exchange between the process air and the cooling fluid can be effected in the so-called counterflow manner. This in turn makes it possible to provide a dehumidifying air conditioner having a high COP and a compact configuration.




When the heat pump is configured to include the refrigerant evaporator, the compressor, and the condenser, and is further constituted to supply the refrigerant condensed with the condenser to the process air cooler, the same refrigerant used in the process air cooler can also be used in the heat pump, and the COP of the heat pump increases. As a result, it is possible to enhance the efficiency of the dehumidifying air conditioner remarkably.




Referring to

FIG. 16

, a desiccant wheel as a moisture adsorber suitable for use in the dehumidifying air conditioner as an embodiment of the invention will be herein after described. As shown,the desiccant wheel


103


is formed as a thick disk-shaped wheel for rotation about a rotation axis AX, filled with a desiccant having gaps for permitting passage of gas. It is constituted for example with a bundle of a plurality of tubular drying elements


103




a


with their axes parallel to the rotation axis AX. This wheel is configured such that it rotates in one direction about the rotation axis AX and that the process air A and the regeneration air B flow in and out parallel to the rotation axis AX. The drying elements


103




a


are disposed to come into contact with the process air A and the regeneration air B by turns as the wheel


103


rotates. Incidentally in

FIG. 16

, the outer circumferential portion of the desiccant wheel


103


is shown as partially broken away. While

FIG. 16

seems to show gaps between the outer circumferential portion of the wheel


103


and part of the drying elements


103




a,


actually the drying elements


103




a


are tightly packed as a bundle in the wheel


103


. Generally the process air (A, indicated with white arrows in the drawing) and the regeneration air (B, indicated with black arrows in the drawing) are arranged to flow parallel to the rotation axis AX in counterflow manner to each other, each flowing through about each half of the circular compartment of the desiccant wheel


103


. The flow passages of the process air and the regeneration air are divided with an appropriate partition plate (not shown) so that both of the flows do not mix with each other.




It is possible that a desiccant material is packed into the tubular drying elements


103




a,


that the tubular elements


103




a


themselves are made of the desiccant material, that the drying elements


103




a


are painted with the desiccant material, or that the drying elements


103




a


are made of a porous material and impregnated with the desiccant material. Each of the drying elements


103




a


may be formed in the tube shape of a circular cross section as shown, or in the tube shape of a hexagonal cross section to be bundled together into a honeycomb structure. In any case, it is configured such that the air flows in the thickness direction of the disk-shaped wheel


103


.




Since the heat exchanger


121


(Refer to

FIGS. 5

,


7


and


11


) has to pass a large amount of regeneration air, the heat exchanger is a conventionally used cross-flow type of heat exchanger for example as shown in

FIG. 49

for flowing the regeneration air B


1


of a low temperature and the regeneration air B


2


of a high temperature at right angles to each other, or a rotary type heat exchanger which is similar in constitution to the desiccant wheel shown in FIG.


16


and is filled with a heat storing material of a large thermal capacity in place of the drying elements. In that case, the low temperature regeneration air B


1


corresponds to the process air A of

FIG. 16

, and the high temperature regeneration air B


2


corresponds to the regeneration air B.




Next, referring to the table of

FIG. 17

, the operation modes of the dehumidifying air conditioner as an embodiment of the invention, which is explained above, referring to

FIG. 5

, and functions of its various devices will be described. As shown in the table, the dehumidifying air conditioner of this embodiment can be operated in the cooling operation mode and the dehumidifying operation mode. In the cooling operation mode, all of the desiccant wheel


103


, the blower


102


, the blower


140


, the blower


160


, the water spray


325


, and the compressor


260


are in operation or functioning. The flows of the cooling fluid and the refrigerant are the same as those already described.




In the dehumidifying operation mode, while the desiccant wheel


103


, the blower


102


, the blower


140


, and the compressor


260


are in operation, the blower


160


is stopped and the water spray


325


is inoperative. In that case, in

FIG. 5

, the outside air C as the cooling fluid is not flowing and water is not sprayed in the second compartment


320


. Therefore, the refrigerant is not deprived of its heat between the throttles


230


and


240


. Although the refrigerant might be heated (or cooled) transiently with the process air flowing through the first compartment


310


, in the end the evaporation temperature of the refrigerant becomes the same level as the process air temperature between the throttles


230


and


240


, and they balance each other at the same level, and there is no in- or outflow of heat. Therefore, when the humid air chart of

FIG. 14

is considered, cooling is nonexistent between the states L and M. Since the process air, after being dehumidified with the desiccant wheel


103


, is only cooled with the refrigerant evaporator


210


, the state of the process air when it is returned to the conditioning space is low in absolute humidity and the dry bulb temperature is almost the same as the state K. That is, this operation mode is basically the dehumidifying mode. Incidentally, in the embodiment of

FIG. 7

, the same dehumidifying operation mode as that described above is possible if the cooling water pump


460


is stopped.




As described above, since the heat pump or the dehumidifier of this invention is configured such that it includes the process air cooler, that the process air cooler cools the process air by the evaporation of the refrigerant, and that the evaporated refrigerant is cooled and condensed with the cooling fluid, it is possible to utilize evaporating heat transfer and condensing heat transfer both having high heat transfer coefficients and to carry out heat transfer between the process air and the cooling fluid with a high rate of heat transfer. Since the heat transfer between the process air and the cooling fluid is effected through the refrigerant, component layout of the dehumidifying air conditioner is facilitated.




When the heat pump is configured to include the refrigerant evaporator, the compressor, and the condenser, and is further configured to supply the refrigerant condensed with the condenser to the process air cooler, the same refrigerant used in the process air cooler can also be used in the heat pump, and as a result, it is possible to enhance the efficiency of the dehumidifying air conditioner remarkably.





FIG. 18

is a flow chart of an air conditioning system including a dehumidifying air conditioner or desiccant air conditioner as an embodiment of the invention. The dehumidifying air conditioner of this embodiment has a high COP, constituted as a compact package, and its operation mode can be switched to either the cooling operation or heating operation. The heat exchanger shown in

FIG. 1

is suitable for use as the third refrigerant heat exchanger


300


of this invention used in the air conditioning system of FIG.


18


. Also, the refrigerant Mollier chart of the heat pump HP


5


included in the air conditioning system of

FIG. 18

is the same as that shown in

FIG. 6

, and the humid air chart when the air conditioning system of

FIG. 18

is operated in the cooling mode operation is the same as that explained Referring to FIG.


14


.




Referring to

FIG. 18

, the configuration of the dehumidifying air conditioner as an embodiment of the invention will be described. This air conditioning system is to maintain an air conditioning space


101


to which the process air is supplied as a comfortable environment mainly by reducing the humidity of the process air with a desiccant (drying agent). As shown, it is configured by arranging devices along the path of the process air A from the air conditioning space


101


in the order of; the blower


102


for circulating the process air, the desiccant wheel


103


filled with the desiccant, the third refrigerant heat exchanger


300


of this invention (when seen from the process air, a cooler in the cooling operation mode, not used as a heat exchanger in the heating operation mode), and the first refrigerant heat exchanger


210


(when seen from the process air, a cooler in the cooling operation mode, and a heater in the heating operation mode), and that the process air is returned to the air conditioning space


101


.




Also, it is configured by arranging devices along the path of the regeneration air B from outdoors OA in the order of; the passage


124


, the sensible heat exchanger


121


which is the heat exchanger for exchanging heat between the air before entering the desiccant wheel


103


and the air after exiting the desiccant wheel


103


, the passage


126


, the second refrigerant-air heat exchanger


220


(when seen from the regeneration air B side, a heater in both cooling operation mode and defrosting operation mode, and a cooler in heating operation mode), the passage


127


, the desiccant wheel


103


, the passage


128


, the blower


140


for circulating the regeneration air, a switching mechanism


145


, and the heat exchanger


121


, and that the regeneration air B is discharged EX outdoors. The three-way valve


145


serving as a switching mechanism or a bypass value is disposed in the regeneration air passage


129


between the heat exchanger


121


and the discharge port of the blower


140


so that the regeneration air is made to bypass the heat exchanger


121


and discharged directly.




Along the path of the outside air taken from outdoors OA as the cooling fluid C, the third refrigerant-air heat exchanger


300


, and the blower


160


for circulating the cooling fluid are disposed in that order to discharge EX the outside air outdoors.




Next, the path of the refrigerant will be described. In

FIG. 18

, the refrigerant flow is set to the cooling operation mode. First, along the path of the refrigerant, a first refrigerant passage


207


connected to the second refrigerant intake/discharge port


210




b


(serving as a refrigerant outlet in cooling operation mode) of the first refrigerant-air heat exchanger


210


(serving as a refrigerant evaporator in cooling operation mode) is connected to the compressor


260


for compressing the refrigerant that has evaporated in the first refrigerant-air heat exchanger. The refrigerant compressor


260


is connected through the refrigerant passage


201


to the third refrigerant intake/outlet port


220




a


(serving as a refrigerant inlet in cooling operation mode) provided on the second refrigerant-air heat exchanger


220


(serving as a refrigerant condenser in cooling operation mode). The fourth refrigerant intake/outlet port


220




b


(serving as a refrigerant outlet in cooling operation mode) provided on the second refrigerant-air heat exchanger is connected to the fifth refrigerant intake/outlet port


230




a


(serving as a refrigerant inlet in cooling operation mode) provided on the third refrigerant-air heat exchanger


300


(serving as a process air cooler in cooling operation mode) through the refrigerant passage


202


. A throttle


230


is disposed adjacent to the fifth refrigerant port


230




a


or in the refrigerant passage


202


. A sixth refrigerant intake/outlet port


241




b


(serving as a refrigerant outlet in cooling operation mode) provided on the third refrigerant-air heat exchanger


300


is connected to the first refrigerant intake/outlet port


210




a


(serving as a refrigerant inlet in cooling mode) of the first refrigerant-air heat exchanger through refrigerant passages


204


,


203


, and


206


. An expansion valve


270


is disposed between the refrigerant passages


203


and


204


.




The refrigerant compressor


260


has a refrigerant intake port


260




a


and a refrigerant discharge port


260




b.


A four-way valve


265


as a first switching mechanism is provided so that the refrigerant passage


207


connected to the second refrigerant intake/outlet port


210




b


can be selectively connected to either the refrigerant intake port


260




a


or the refrigerant discharge port


260




b,


and that the refrigerant passage


201


can be connected to either the refrigerant intake port


260




a


or the refrigerant discharge port


260




b


whichever is not connected to the refrigerant passage


207


. To describe it further, it is constituted that two settings can be selected: In one setting, a refrigerant passage


262


is connected to the refrigerant intake port


260




a,


a refrigerant passage


261


is connected to the refrigerant discharge port


260




b,


the four-way valve


265


effects intercommunication between the refrigerant passages


207


and


262


, and the refrigerant passages


261


and


201


are intercommunicated (cooling operation mode, dehumidifying operation mode, and defrosting operation mode). In the other setting, the refrigerant passages


207


and


261


are intercommunicated and the refrigerant passages


262


and


201


are intercommunicated (heating operation mode) (Refer to the table of FIG.


21


).




The embodiment of

FIG. 18

is configured such that; a four-way valve


280


as the second switching mechanism is disposed adjacent to the third refrigerant-air heat exchanger


300


, the refrigerant passage


202


can be selectively connected to one of the fifth refrigerant intake/discharge port


230




a


and the sixth refrigerant intake/discharge port


241




b


of the third refrigerant-air heat exchanger


300


, and the refrigerant passage


206


can be connected to either the fifth refrigerant intake/discharge port


230




a


or the sixth refrigerant intake/discharge port


241




b


whichever is not connected to the refrigerant passage


202


. To describe it further, it is constituted that two settings can be selected: In one setting, the refrigerant passage


205


is connected to the fifth refrigerant port


230




a,


the refrigerant passage


204


is connected to the sixth refrigerant intake/discharge port


241




b,


the refrigerant passage


203


is connected through the expansion valve


270


to the sixth refrigerant port


241




b,


the four-way valve


280


effects intercommunication between the refrigerant passages


202


,


205


and between the refrigerant passages


204


,


203


and


206


(cooling operation mode and dehumidifying operation mode). In the other setting, the refrigerant passages


202


,


203


are intercommunicated and the refrigerant passages


205


,


206


are intercommunicated (heating operation mode and defrosting operation mode) (Refer to the table of FIG.


21


).




Here, the connecting relation of the three-way valve


145


as a bypass valve will be described. The air inlet side of the three-way valve


145


is connected to an air passage


129


, and one of two branching outlets is connected to an air passage


130


A, so as to lead air to the heat exchanger


121


. The other of the two outlets is connected to an air passage


130


B, so that the air bypasses the heat exchanger


121


and is discharged. The air passage


129


is configured to be selectively switched between a setting in which it communicates with the air passage


130


A (cooling operation mode and dehumidifying mode) and a setting in which it communicates with the air passage


130


B (heating operation mode and defrosting mode) (Refer to the table of FIG.


21


).




Now, referring to

FIG. 18

, refrigerant flow between devices will be described.




First, a cooling operation mode in which a first switching mechanism or four-way valve


265


, a second switching mechanism or four-way valve


280


, and a third switching mechanism or three-way valve are set will be described. In

FIG. 18

, refrigerant gas compressed by the refrigerant compressor


260


is introduced into the second refrigerant-air heat exchanger (regeneration air heater and refrigerant condenser)


220


through a refrigerant gas pipe


261


, four-way valve


265


, and refrigerant gas pipe


201


connected to the discharge port of the compressor. The temperature of refrigerant gas compressed by the compressor


260


has been raised by compression heat, and the gas heats the refrigerant air in the second refrigerant-air heat exchanger


220


. Heat is taken from the refrigerant gas itself which then condenses.




Refrigerant liquid exiting a refrigerant outlet


220




b


of the second refrigerant-air heat exchanger


220


is introduced to an inlet of an evaporating section


251


of a third refrigerant-air heat exchanger


300


through a refrigerant path


202


, the second switching mechanism


280


, and a refrigerant path


205


. In the middle of the refrigerant path


205


, in the vicinity of the inlet of the evaporating section


251


is disposed a header, in which is provided a throttle


230


. The throttle


230


may be disposed in the middle of the refrigerant path


205


in addition to the header.




Refrigerant liquid exiting the second refrigerant-air heat exchanger


220


is reduced in pressure at the throttle


230


to expand, and part of the liquid refrigerant is evaporated (flushed). The refrigerant, that is, the mixture of the liquid and the gas, reaches the evaporating section


251


, where the liquid refrigerant flows while wetting the inner walls of the tubes in the evaporating section, and evaporates to cool the process air flowing in the first compartment.




The evaporating section


251


and a condensing section


252


are of an integral tube. That is, they constitute an integrated fluid passage, and therefore, the evaporated refrigerant gas (and unevaporated refrigerant liquid as well) flows into the condensing section


252


, then loses their own heat by the sprayed water and the outside air (ambient air) in the second compartment to condense.




At the outlet side of the condensing section


252


is provided a header


241


. A refrigerant outlet


241




b


is connected to a first refrigerant-air heat exchanger


210


through a refrigerant liquid pipe


204


, an expansion valve


270


, a refrigerant path


203


, the four-way valve


280


, and a refrigerant path


206


. A fixed throttle may be provided in place of the expansion valve


270


.




In that case, the throttle may be provided in, for example, the header


241


, or either of the refrigerant paths


204


,


203


. That is, the throttle or the expansion valve


270


may be, when considering cooling mode only, located at any position immediately behind the condensing section


252


to the inlet of the second refrigerant-air heat exchanger


210


, but in this embodiment considering also other operation modes and, it is located immediately behind the condensing section


252


and the four-way valve


280


. However, if it is disposed at a place as close to the inlet


210




a


of the first refrigerant-air heat exchanger


210


as possible, thermal insulation on the piping after the throttle or the expansion valve


270


can be minimized for refrigerants significantly colder than the atmospheric temperature. Refrigerant liquid condensed in the condensing section


252


is lowered in pressure and expanded with the throttle or the expansion valve


270


to decrease in temperature, flows into the first refrigerant-air heat exchanger


210


to be evaporated, and cools the process air by the evaporating heat. Throttles


230


,


270


disposed before and after the third refrigerant-air heat exchanger


300


may be, for example, orifices, capillary tubes or expansion valves.




In the embodiment of

FIG. 18

, a throttle provided after the third refrigerant-air heat exchanger


300


is the expansion valve


270


with two heat sensors. In the cooling operation mode shown in

FIG. 18

, a heat sensor


275


A is activated as a sensor, which is disposed in the refrigerant path between the first refrigerant-air heat exchanger


210


and the refrigerant compressor


260


. The activated sensor is shown in the figure in the white block and the deactivated sensor in the shaded one. Then sensor


275


A detects the degree of superheating of the refrigerant gas flowing out from the first refrigerant-air heat exchanger


210


used as a refrigerant evaporator in the cooling operation mode, and the opening of the expansion valve


270


is adjusted so that the refrigerant gas turns into dry gas.




Refrigerant, which is evaporated to be gasified in the first refrigerant-air heat exchanger


210


, is then introduced into a suction port


260




a


of the refrigerant compressor


260


through a refrigerant path


207


, the first switching mechanism


265


and a refrigerant path


262


, and the foregoing cycle is repeated.




As the functions of the heat pump HP


5


in the cooling operation mode is the same as described with reference to

FIG. 6

, explanation is not repeated.




Referring to

FIG. 18

again, a case of dehumidifying operation mode will be described. In the dehumidifying operation mode, connecting relations among the first, second, and third switching mechanisms


265


,


280


,


145


are the same as that in the cooling operation mode. While a desiccant wheel


103


, blower


102


, blower


140


, and compressor


260


are operated, a blower


160


is stopped and a water spray


325


is not activated. At this time, in

FIG. 18

, no outside air C as a cooling fluid flows and no water is sprayed to the second compartment


320


, so that no heat is lost from refrigerant between the throttle


230


and the expansion valve


270


. Though the refrigerant may be transitionally heated (or cooled) by the process air flowing in the first compartment


310


, and the evaporation temperature of refrigerant between the throttle


230


and the expansion valve


270


will eventually become levelled with that of the process air temperature, be in balance without any bi-directional heat transfer. Therefore, when considering from the moist air chart in

FIG. 14

, no cooling occurs between the state L and the state M, and the process air is simply cooled by the first refrigerant-air heat exchanger


210


after being dehumidified by the desiccant wheel


103


, and the process air returned to the air conditioning space is therefore lower in absolute humidity compared with the state K, and the dry-bulb temperature is in a state not significantly different from the state K. That is, this operation mode is basically a dehumidifying operation mode.




Now, referring to

FIG. 19

, a heating operation mode will be described. In the heating operation mode, the first switching mechanism


265


, the second switching mechanism


280


and the third switching mechanism


145


are in a connecting relation shown in

FIG. 19

, as described above. While the blower


102


, blower


140


and compressor


260


are operated, the desiccant wheel


103


and blower


160


are stopped, and the water spray


325


is not activated. Regarding the sensor of the expansion valve


270


, a sensor


275


B disposed in the refrigerant path between the second refrigerant-air heat exchanger


220


and the refrigerant compressor


260


is active.




In

FIG. 19

, refrigerant discharged from a discharge port


260




b


of the refrigerant compressor


260


is sent to the second refrigerant port


210




b


through the refrigerant path


261


, four-way valve


265


, and refrigerant path


207


, and releases heat into the first refrigerant-air heat exchanger


210


(acting as a refrigerant condenser in the heating operation mode), to be condensed. This obtained heat, heats the process air in a heat exchanging relation with refrigerant in the first refrigerant-air heat exchanger


210


.




Refrigerant condensed in the first refrigerant-air heat exchanger


210


is sent to the third refrigerant-air heat exchanger


300


through the refrigerant path


206


, four-way valve


280


, and refrigerant path


205


. Since the blower


160


is not operated in the heating operation mode, refrigerant passes through the third refrigerant-air heat exchanger


300


without exchanging heat with other fluid, and is sent to the second refrigerant-air heat exchanger


220


(acting as a refrigerant evaporator in the heating operation mode) through the refrigerant path


204


, expansion valve


270


, refrigerant path


203


, four-way valve


280


, and refrigerant path


202


. In the second refrigerant-air heat exchanger


220


, it absorbs heat and is then evaporated. This heat is obtained from the outside air used for regeneration air during the cooling mode. To the contrary, the outside air in a heat exchanging relation with the refrigerant is cooled by the evaporating refrigerant.




The refrigerant evaporated in the second air heat exchanger


220


reaches a suction port


260




a


though the refrigerant path


201


, four-way valve


265


, and refrigerant path


262


, and then compressed in the refrigerant compressor


260


. The refrigerant cycle is repeated in this way. The degree of superheating of the refrigerant at the outlet of the second refrigerant-air heat exchanger


220


is detected by the sensor


275


B of the expansion valve


270


, and the opening of the expansion valve


270


is adjusted so that this refrigerant gas is in a dry state.




The flow of process air A in the heating operation mode is the same as in the cooling operation, but the desiccant wheel


103


is stopped and no dehumidifying operation is performed. Process air passing through the desiccant wheel is heated by refrigerant in the first refrigerant-air heat exchanger


210


, resulting in the increase of dry-bulb temperature, and then supplied, as the air having with adequate dry-bulb temperature, to the air conditioning space


101


. A humidifier (not shown) may be disposed between the heat exchanger


210


and the air conditioning space


101


.




The flow of outside air B during the heating operation is the same as in the cooling operation, except that it bypasses the heat exchanger


121


. Since no heat exchanging is performed in the heat exchanger


121


, the outside air passes through the heat exchanger to reach the second refrigerant-air heat exchanger


220


where it is cooled by evaporating refrigerant, and reaches the desiccant wheel


103


. Since the desiccant wheel


103


is stopped, it passes through there without exchanging water and is discharged through the blower


130


. The third switching mechanism


145


may not be disposed in part


129


, but may be disposed between the path


124


and the path


126


so as to bypass the heat exchanger


121


.




Next, referring to

FIG. 20

, a defrosting operation mode will be described. In the defrosting operation mode, the first switching mechanism


265


, the second switching mechanism


280


and the third switching mechanism


145


are in a connecting relation shown in

FIG. 20

, as described above. While the blower


160


and the compressor


260


are operated, the desiccant wheel


103


, blower


160


and blower


140


are usually stopped, and the water sprays


325


are not activated. The sensor


275


A is active as a sensor of the expansion valve


290


. The blowers


102


and


140


may be operated.




In

FIG. 20

, refrigerant discharged from the discharge port


260




b


of the refrigerant compressor


260


is sent to the third refrigerant port


220




a


through the refrigerant path


261


, four-way valve


265


, and refrigerant path


201


, and releases heat into the second refrigerant-air heat exchanger


220


to be condensed. This obtained heat, melts or sublimates and defrosts the frost deposited on the heat transfer surface on the air side of the second refrigerant-air heat exchanger


220


. The refrigerant condensed in the second refrigerant-air heat exchanger


220


is sent to the third refrigerant-air heat exchanger


300


through the refrigerant path


202


, four-way valve


280


, refrigerant path


203


, expansion valve


270


, and refrigerant path


204


. In the defrosting operation mode, since the blower


160


is operated and no water is sprayed, the refrigerant obtains heat by exchanging heat with outside air C, and then evaporates. The evaporated refrigerant is sent to the first refrigerant-air heat exchanger


210


through the refrigerant path


205


, four-way valve


280


, and refrigerant path


206


. In the defrosting operation mode, since the blower


102


is stopped, it passes through the first refrigerant-air heat exchanger


210


without exchanging heat, returns to the refrigerant compressor


260


through the refrigerant path


207


, four-way valve


265


, and refrigerant path


262


, and the foregoing refrigerant cycle is repeated. The degree of superheating of the refrigerant at the outlet of the third refrigerant-air heat exchanger


300


is detected by the sensor


275


A of the expansion valve


270


, and the opening of the expansion valve


270


is adjusted so that this refrigerant gas is in a dry state. In the defrosting operation as described above, the heat pump HP


5


can draw heat from outside air C to remove the frost from the second refrigerant-air heat exchanger


220


. Thus, a large amount of heat can be drawn for a short time for defrosting, and defrosting time can be reduced.




Further, in the defrosting operation mode, since the blower


102


is not operated, no process air A is circulating, and since the blower


140


is not operated, no regeneration air B is circulating. Therefore, in this embodiment, no process air is cooled in the defrosting operation mode, so that a high heating effect can be maintained without an uncomfortable feeling, being created in the air conditioning space


101


.




Operation of the different devices has been described in different operation modes, and now the operating modes of the dehumidifying air conditioner of an embodiment of this invention and operation of the devices are summarized in a table of FIG.


21


. As shown in the table, the dehumidifying air conditioner of this embodiment is adapted to operate in a cooling operation mode, dehumidifying operation mode, heating operation mode and defrosting operation mode. The state of operation and stoppage of the main devices, connection of the switching mechanisms, and sensors used in the expansion valves are as described hereinbefore.




According to this invention as described above, the humidifying air conditioner comprises a third refrigerant-air heat exchanger, and is capable of switching the selective, connecting relation of the suction port and discharge port of the refrigerant compressor to the second and third refrigerant ports, as well as the selective, connecting relation of the fifth and sixth refrigerant ports to the fourth and first refrigerant ports, therefore it is possible to provide a dehumidifying air conditioner capable of cooling operation, heating operation, as well as defrosting operation, and having an increased COP and compact size.





FIG. 22

shows a flow chart of the dehumidifying air conditioner of an embodiment of this invention, that is, an air conditioning system with a desiccant air conditioner. The dehumidifying air conditioner in this embodiment is capable of raising the regeneration temperature, in addition to its increased COP and compact size. For the process air cooler of this invention used with this air conditioning system, the heat exchanger as described with reference to

FIG. 9

is suited.

FIG. 23

is a humid air chart of the dehumidifying air conditioner shown in FIG.


22


.

FIG. 24

is a refrigerant Mollier chart of the heat pump HP


6


incorporated in the air conditioning system of

FIG. 22

, and

FIG. 25

is a chart showing the enthalpy and temperature change of refrigerant and regeneration air in the heat exchangers


220


B,


220


A incorporated in this embodiment.




Referring to

FIG. 22

, the constitution will be described of the dehumidifying air conditioner of an embodiment of this invention. The air conditioning system is characterized in that the process air temperature is lowered by desiccant (drying agent), and the air conditioning space


101


supplied with process air is maintained in a comfortable environment. In the figure, the structure of the devices along the path of process air from the air conditioning space


101


through the desiccant wheel


103


back to the air conditioning space


101


is the same as that of the system described in FIG.


8


.




It is arranged such that outside air is first introduced, as cooling fluid, from outside OA into the process air cooler


300




c


along the path of regeneration air B, passes through, as regeneration air, the refrigerant condenser (as a heater viewed from regeneration air)


220


B, refrigerant sensible heat heat-exchanger


220


A, desiccant wheel


103


, and blower


140


for providing regeneration air circulation, in this order, and discharged to the outside EX. The refrigerant sensible heat heat-exchanger


220


A is also referred to as a first high heat source heat-exchanger, and the refrigerant condenser


220


B as a second high heat source exchanger.




Further, it is configured such that the devices along the path of refrigerant beginning at refrigerant evaporator


210


are arranged in the following order: a refrigerant heat exchanger


270


for exchanging heat between cold refrigerant gas evaporated in the refrigerant evaporator


210


to be gasified and hot refrigerant introduced from the refrigerant sensible heat heat-exchanger


220


A; a compressor


260


for compressing refrigerant gas passing through the refrigerant heat exchanger


270


to be heated by exchanging heat with hot refrigerant from the refrigerant sensible heat heat-exchanger


220


A; a refrigerant sensible heat heat-exchanger


220


A for absorbing mainly the sensible heat of refrigerant delivered after being compressed by the compressor


260


to turn the refrigerant into saturated refrigerant vapor; a refrigerant heat exchanger


270


for exchanging heat between the refrigerant gas from the refrigerant sensible heat heat-exchanger


220


A and the refrigerant gas from the refrigerant evaporator


210


as described above; a refrigerant condenser


220


B for absorbing mainly latent heat of refrigerant to condense the refrigerant; a header


235


; a plurality of throttles


230


A,


230


B,


230


C branched off from the header and disposed in parallel; a process air cooler


300




c;


a plurality of throttles


240


A,


240


B,


240


C corresponding to the throttles


230


A,


230


B,


230


C; and a header


245


for collecting flows from these throttles, and thus the refrigerant gas returns to the refrigerant evaporator


210


again. An expansion valve


250


may be provided between the header


245


and the refrigerant evaporator


210


, as shown in the figure. In this way, the heat pump HP


6


is configured, including the refrigerant evaporator


210


; compressor


260


; refrigerant sensible heat heat-exchanger


220


A; refrigerant condenser


220


B; plurality of throttles


230


A,


230


B,


230


C; process air cooler


300


; plurality of throttles


240


A,


240


B,


240


C.




The heat exchanger


300




c


as a process air cooler incorporated in this embodiment is described with reference to FIG.


9


.




Functions of the embodiment of this invention will be described with reference to the humid air chart in

FIG. 23

, and for the structure, to

FIG. 22

as appropriate. In

FIG. 23

, alphabetical symbols K-N, Q, R, X, T, and U denote the states of air in respective sections. Those symbols correspond to the encircled letters in the flow chart of FIG.


22


.




First, the flow of process air A will be described. In

FIG. 23

, process air (in the state K) from the air conditioned space


101


is drawn by the blower


102


through the process air path


107


, and sent through the process air path


108


into the desiccant wheel


103


, where it is adsorbed of its moisture by desiccant in the drying elements


103




a


(

FIG. 16

) to, lower absolute humidity, and raise the dry-bulb temperature using the adsorption heat of the desiccant, and then reaches the state L. This air is sent through the process air path


109


to the first compartment


310


of the process air cooler


300


, where it is cooled by evaporated refrigerant with absolute humidity kept constant in the evaporating section


251


(FIG.


9


), to be turned into air in the state M, and enters the cooler


210


through the path


110


. There, it is further cooled, with absolute humidity kept constant, to be turned into air in the state N. This air is returned to the air conditioning space


101


via the duct


111


, as process air SA with an adequate humidity and at an adequate temperature.




Next, the flow of regeneration air B will be described. In

FIG. 23

, regeneration air (the state Q) from the outside OA is drawn through the regeneration air path


124


and sent to the second compartment


320


of the process air cooler


300


, where it exchanges heat with condensing refrigerant (exchanges heat indirectly with process air), raises the dry-bulb temperature, and turns into air in the state R. This air is sent through the path


126


into the refrigerant condenser (as a heater viewed from regeneration air)


220


B, where it is heated to raise the dry-bulb temperature, then turns into air in the state S, further enters the sensible heat heat-exchanger


220


A, and is heated further to turn into air in the state T. This air is sent through the path


127


into the desiccant wheel


103


, by which moisture is removed from the desiccant in the drying elements


103




a


(

FIG. 16

) for regeneration, then raises its own absolute humidity and lowers dry-bulb temperature by moisture removal heat, and enters the state U. This air is drawn through the path


128


into the blower


140


for providing regeneration air circulation, and discharged EX through the path


129


.




In the air conditioner as described above, the relation of heat quantity ΔH applied to regeneration air, heat quantity Δq drawn from process air, and drive energy Δh of the compressor is the same as described in FIG.


14


. In this embodiment, heat exchange efficiency of the process air cooler


300




c


is very high, thereby remarkably improving cooling effect.




Next, referring to the flow chart in FIG.


22


and the Mollier chart in

FIG. 24

, the flow of refrigerant between devices, and functions of the heat pump HP


6


will be described.




In

FIG. 22

, refrigerant compressed by the refrigerant compressor


260


is introduced into the sensible heat heat-exchanger


220


A through the refrigerant gas pipe


201


connected to the discharge port of the compressor. The refrigerant gas compressed by the compressor


260


is raised in temperature by compression heat, and the regeneration air is heated by this heat. In this state, refrigerant is deprived mainly of its sensible heat. As a result, the refrigerant is approximately in the state of saturation, but actually, in the state of superheat which may turn into the state of saturation if the refrigerant is deprived of only a small amount of heat, or in the wetting state, that is, in the perfect saturated gas (or the perfect saturated gas mixed with liquid condensed from part of refrigerant. The state in the vicinity of the saturated gas is referred to as a state of approximate saturation. The refrigerant in the state of approximate saturation is introduced through the refrigerant pipe


225


into the refrigerant heat exchanger


270


, where it exchanges heat with cold refrigerant gas before taken into the compressor


260


, then evaporates in the refrigerant evaporator


210


, turns in part into the wetting state, and is introduced through the refrigerant path


206


A into the refrigerant condenser as a (heater viewed from regeneration air)


220


B, where it is deprived of its heat to be condensed.




The refrigerant outlet of the refrigerant condenser


220


B is connected via the refrigerant path


202


to the header


235


provided at the inlet of the evaporating section


251


of the heat exchanger or the process air cooler


300




c.


Between the header


235


and the evaporating section


251


, throttles


230


A,


230


B,


230


C are provided corresponding to the evaporating sections


250


A,


250


B,


251


C, respectively. While only three throttles are shown in

FIG. 22

, any number of throttles more than one may be arranged depending on the number of the evaporating sections


251


or the condensing sections


252


.




Liquid refrigerant exiting the refrigerant condenser (as a heater viewed from regeneration air)


220


B is lowered in pressure at the throttles


230


A,


230


B,


230


C and then expanded, and part of the liquid refrigerant is evaporated (flushed). Refrigerant which is the mixture of the liquid and gas, reaches the evaporating sections


251


A,


251


B,


251


C, where the liquid refrigerant flows in the tubes of the evaporating sections while wetting the inner wall of the tubes is evaporated, and cools the process air flowing in the first compartment.




As described above, the evaporating sections


251


A,


251


B,


251


C and the condensing section


252


A,


252


B,


252


C are formed with a series of tubes, respectively, constituting an integral path, respectively.




The heat exchanger


300




c


for heat pump shown in

FIG. 22

is the same as described with reference to

FIG. 8

, in that throttles are interposed between the header


235


and the evaporating section, that the throttles are allocated separately to a plurality of evaporating sections, and that throttles are allocated separately to the corresponding condensing sections between them and the header, respectively.




In the constitution, as described with reference to

FIG. 8

, the process air cooler


300




c


is configured such that there exists a plurality of evaporating pressures of refrigerant which cools process air A, and a plurality of condensing pressures of refrigerant which is cooled by outside air B and condensed, corresponding to the foregoing evaporating pressures, and the plurality of the evaporating pressures or the condensing pressures are arranged from high to low or from low to high in order of their pressure level. In this way, noting the flow of process air A and that of outside air B, they exchange heat, so to speak, in counter flow relation, so that a remarkably high heat exchange efficiency φ, for example over 80%, can be realized.




Here, throttles


230


A,


230


B,


230


C and throttles


240


A,


240


B,


240


C are provided before and after the process air cooler


300




c,


respectively. Alternatively, throttles may be provided immediately before the header


235


or in the header


235


, or after the header


245


or in the header


245


, one for each place, thereby simplifying the plurality of pressures of evaporating sections or condensing sections into one value. In this case, the process air and the regeneration air are not necessarily in counter flow relation, but evaporating heat transfer and condensing heat transfer can be utilized, so that high heat transfer coefficient can be likewise applied to the heat transfer between process air and regeneration air.




As described above with reference to

FIG. 9

, the evaporating section and condensing section are constituted integrally by a series of heat-exchange tubes, but they may be replaced with a heat exchanger having a first and a second compartment separated as shown in FIG.


3


.




This header


245


on the condensing section


252


side is connected by the refrigerant liquid pipe


203


to the refrigerant evaporator


210


(as a cooler viewed from process air). Throttles


240


A,


240


B,


240


C may be disposed anywhere from a place immediately after the condensing sections


252


A,


252


B,


252


C to the inlet of the refrigerant evaporator.


210


, but if they are disposed immediately before the inlet of the refrigerant evaporator


210


, thermal insulation of pipes can be thinner for the refrigerant after the throttles


240


A, B, C at a temperature significantly lower than the atmospheric temperature. The refrigerant condensed in the condensing sections


252


A, B, C is lowered in pressure and expanded to decrease in temperature, then enters the refrigerant evaporator


210


to be evaporated, and cools the process air by the evaporating heat. Throttles


230


A, B, C or


240


A, B, C may be orifices, capillary tubes or expansion valves, etc.




Next, referring to

FIG. 24

, functions of the heat pump HP


6


will be described.

FIG. 24

is a Mollier chart of the system using HFC


134




a


as refrigerant. In this chart, the horizontal axis represents the enthalpy and the vertical axis the pressure.




In the figure, the point q represents the state at refrigerant outlet of the refrigerant evaporator


210


shown in

FIG. 22

, and it is in the state of q saturated gas. The pressure is 4.2 kg/cm


2


, the temperature 10° C., and the enthalpy 148.83 kcal/kg. A state in which this gas is heated in the refrigerant heat exchanger


270


is shown by the point a. The pressure of this state is 4.2 kg/cm


2


(actually lowered by the amount of pressure loss in the refrigerant pipes and the heat exchanger, which is neglected here. The same is applied to the following description), and the temperature 55° C. The refrigerant gas in this state is drawn into the compressor


260


to be compressed and reaches the state b at the discharge port of the compressor


260


. In the state of the point b, the pressure is 19.3 kg/cm


2


and the temperature 115° C. If no heat exchanger is provided in the inlet path of the compressor, this temperature should be 80° C. or so, but in this embodiment, it shows 115° C. This is because refrigerant has been heated in the refrigerant heat exchanger


270


.




This refrigerant gas is deprived mainly of sensible heat in the sensible heat heat-exchanger


220


A and reaches the point c. This point represents the state of approximately saturated gas; the pressure is 19.3 kg/cm


2


and the temperature 65° C. The gas exchanges heat with cold refrigerant before intake to the compressor


260


, deprived of its heat, and reaches the point p. This point represents the wetting state in which refrigerant gas and refrigerant liquid coexist. This refrigerant is further deprived of its heat in the refrigerant condenser


220


B and reaches the point d. This point represents the state of saturated liquid; the pressure and temperature are the same as those of the point c or q, and the pressure is 19.3 kg/cm


2


, the temperature 65° C., and the enthalpy 122.97 kcal/kg.




The state of part of the refrigerant liquid which is lowered in pressure at the throttle


230


A and flows in the evaporating section


251


A, is represented at the point e


1


on the Mollier chart. The temperature is approximately 43° C. The pressure is one of a plurality of different pressures, a saturated pressure corresponding to the temperature of 43° C. Likewise, the state of refrigerant lowered in pressure at the throttle


230


B and flowing in the evaporating section


251


B, is represented at the point e


2


on the Mollier chart; the temperature is 40° C. and the pressure is also one of a plurality of different pressures, a saturated pressure corresponding to the temperature of 40° C. Likewise, the state of refrigerant lowered in pressure at the throttle


230


C and flowing in the evaporating section


251


C, is represented at the point e


3


on the Mollier chart; the temperature is 37° C. and the pressure is also one of a plurality of different pressures, a saturated pressure corresponding to the temperature of 37° C.




At any point of e


1


, e


2


, e


3


, the refrigerant is in a state in which part of the liquid is evaporated (flushed) and the liquid and the gas are mixed together. The refrigerant liquids are each evaporated in the respective evaporating sections


251


A, B, C under the pressure of one of the foregoing respective plurality of different pressures, and reach the points f


1


, f


2


, f


3


, for respective pressures, intermediate between the saturated liquid line and saturated gas line.




The refrigerants in these states flow in the condensing sections,


252


A,


252


B,


252


C. In the condensing sections,the refrigerants are each deprived of their heat by outside air flowing the second compartment, and reach the respective points g


1


, g


2


, g


3


. These points are on the saturated liquid line in the Mollier chart. The temperatures are 43° C., 40° C. and 37° C., respectively. These refrigerant liquids each pass through the throttles and reach the respective points j


1


, j


2


, j


3


. The pressures at these points are a saturated pressure of 4.2 kg/cm


2


at 10° C.




Here, the refrigerants are in a state of mixture of liquid and gas. These refrigerants join at one header


245


, therefore the enthalpy at this point is an average of enthalpies at the points g


1


, g


2


, g


3


weighted by the corresponding refrigerant flow rates, and amounts to approximately 113.51 kcal/kg in this example.




This refrigerant deprives process air of its heat in the refrigerant evaporator


210


, evaporates into q saturated gas in the state of the point q on the Mollier chart, and flows again in the refrigerant heat exchanger


270


. In this way, the above described cycle is repeated.




Functions of the heat exchanger


300




c


is the same as described with reference to FIG.


9


. That is, process air is cooled from a higher temperature to a lower temperature as it flows from the upper side to the lower side on the figure in the first compartment


310


, at temperatures 43° C., 40° C. and 37° C. in order of temperature level, so that heat exchange efficiency can be improved compared with that obtained when process air is cooled at one temperature of, for example, 40° C. Also, outside air (regeneration air) is heated from a lower temperature to a higher temperature as it flows from the lower side to the upper side on the figure in the second compartment


320


, at temperatures 37° C., 40° C. and 43° C. in order of temperature level, so that heat exchange efficiency can be improved compared with that obtained when process air is heated at one temperature of, for example, 40° C.




Further, if the heat exchanger


300




c


is provided, the compression heat pump HP


6


including the compressor


260


, refrigerant condenser


220


B, throttles and refrigerant evaporator


210


, is able to reduce the required power of the compressor by 27%, as described with reference to FIG.


10


. Oppositely saying, the cooling effect achievable with the same power can be improved by 37%.




Further, as a result that refrigerant is heated in the refrigerant heat exchanger


220


A before it is drawn into the compressor


260


, the ratio of the heat quantity of regeneration air heated at temperatures above the condensing temperature of the refrigerant in the sensible heat heat-exchanger


270


to that of regeneration air heated at a constant condensing temperature in the condenser


220


B is 35%:65%. Compared with the example of

FIG. 10

in which the ratio is approximately 12%:88%, the difference is great.




Referring to

FIG. 25

, the temperature rise of the regeneration air in the foregoing dehumidifying air conditioner will be described.

FIG. 25

is a chart showing the relation of regeneration air vs. changes (variation) in enthalpy of high pressure refrigerant in the heat pump HP


6


used for the heat source of the regeneration air. When refrigerant in the heat pump exchanges heat with regeneration air, changes in enthalpy of refrigerant and regeneration air are the same because of heat balance. Since air undergoes a sensible heat change with the approximately constant specific heat, it is shown in the figure by a continuous straight line, while since refrigerant undergoes latent heat change and sensible heat change, it is shown by a horizontal line for the region with latent heat change. Therefore, the temperature of regeneration air at the outlet of the condenser


220


B is determined, the regeneration air temperature at the outlet of the sensible heat heat-exchanger


220


A can be calculated based on heat balance, not based on the temperature of superheated vapor of the refrigerant with which heat is to be exchanged.




Therefore, in

FIG. 25

, if the refrigerant cycle is the same as in

FIG. 24

, the regeneration temperature at the inlet of the condenser


220


B is 40° C., and the refrigerant condensing temperature is 65° C., the temperature Ts of the state S is Ts=40+(65−40)×80/100=60° C., assuming the heat exchange efficiency of the condenser


220


B of the heat pump to be 80% in this embodiment. Then, if the regeneration air is heated by the superheated refrigerant vapor by 35% of the total heat quantity by heating, the temperature Tt of the air in the state T is Tt=60+20×35/65=70.8° C., from heat balance as described above. Therefore, regeneration air can be obtained, the temperature of which is higher than the condensing temperature of 65° C. by 5.8° C.




Therefore, since in this embodiment, desiccant can be regenerated at a higher temperature than the condensing temperature, the dehumidifying ability of the desiccant can be improved remarkably, thereby providing an air conditioning system with excellent dehumidifying ability as well as energy saving properties. Regarding regeneration air, discharged air from the room in association with room ventilation may be utilized with the same effects as in foregoing embodiment.




Referring to

FIG. 26

, the structure of the dehumidifying air conditioner of an embodiment of this invention will be described. The difference from the embodiment of

FIG. 22

is that while in the example of

FIG. 22

, refrigerant flowing out from the sensible heat heat-exchanger


220


A, is deprived of sensible heat and in the state of approximate saturation, and all of the refrigerant is introduced into the refrigerant heat exchanger


270


, in the embodiment of

FIG. 26

the refrigerant path


206


connected to the refrigerant heat exchanger


270


is branched off from the refrigerant path


225


from the sensible heat exchanger


220


A, and part of the refrigerant from the sensible heat heat-exchanger


220


A is adapted to pass through the refrigerant heat exchanger


270


. The refrigerant deprived of its heat is introduced from the refrigerant heat exchanger


270


to the header


235


, through the refrigerant path


207


, and joins the refrigerant from the condenser


220


B. Therefore, while in the embodiment in

FIG. 22

the refrigerant from the sensible heat heat-exchanger


220


A is deprived of its heat to the extent that it turns into the wetting state in the refrigerant heat exchanger


270


, in the embodiment of

FIG. 26

, the refrigerant condenses almost completely as a result of the heat deprivation in the refrigerant heat exchanger


270


. In this embodiment, if the appropriate selection is made with respect to the ratio of the amount of refrigerant flowing in the refrigerant heat exchanger


270


to that of refrigerant flowing in the condenser


220


B, the temperature of the point b on the Mollier chart in

FIG. 24

can be set appropriately. Other general effects and functions are approximately the same as those in the embodiment of FIG.


22


.




Referring new to

FIG. 27

, the structure will be described of the dehumidifying air conditioner of still another embodiment of the invention. In this embodiment, like the embodiment of

FIG. 26

, refrigerant flows out from the sensible heat heat-exchanger


220


A and is almost deprived of sensible heat, and part of the refrigerant is introduced through the refrigerant path


206


into the refrigerant heat exchanger


270


, to be deprived of its heat and condensed, but unlike the embodiment of

FIG. 26

, the refrigerant from the refrigerant heat exchanger


270


passes through the path


207


, throttle


275


, and path


208


and joins the path


203


between the header


245


and expansion valve


250


or the evaporator


210


.




Therefore, on the Mollier chart in

FIG. 24

, refrigerant from the refrigerant heat exchanger


270


is throttled at the throttle


275


(and the expansion valve


250


) from the state of the point d and evaporates in the evaporator


210


, so that cooling effect is somewhat lower than that in the foregoing embodiment, though problems in arrangement of the heat exchanger can be eliminated.




Referring to

FIG. 28

, the structure will be described of the dehumidifying air conditioner of yet another embodiment of the invention. In this embodiment, the process air cooler can suitably utilize the heat exchanger


300


described above with reference to FIG.


1


. This heat exchanger


300


, as described above, utilizes evaporating heat transfer and condensing heat transfer, so that heat transfer coefficient is excellent and thus heat exchange efficiency is very high. The refrigerant is passed through from the evaporating section


251


toward the condensing section


252


, that is, forced to flow approximately in one direction, so that heat exchange efficiency is high between process air, and outside air as a cooling fluid.




In this embodiment, the flow of process air is the same as that in other embodiments, and its description is not repeated. Now, the flow of regeneration air B will be described. In

FIG. 28

, regeneration air (state Q) from outside OA is drawn through the regeneration air path


124


and sent into the heat exchanger


121


, where it exchanges heat with regeneration air (air of the state U described later) which has a raised temperature and needs be discharged, raises the dry-bulb temperature, and then turns into air of the state R. This air is sent through the path


126


into the refrigerant condenser


220


B, where it is heated to raise the dry-bulb temperature and then turns into air of state S, and flows into the sensible heat heat-exchanger


220


A to be heated and then turns into air of the state T. This air is sent through the path


127


into the desiccant wheel


103


, where it deprives, of moisture, the desiccant in the drying element


103




a


(

FIG. 16

) for regeneration, raises its own absolute humidity, lowers dry-bulb temperature by moisture removal heat, and reaches the state U. This air is drawn through the path


128


into the blower


140


for providing regeneration air circulation, sent through the path


129


into heat exchanger


121


, exchanges heat with regeneration air (air of the state Q) before feed-in to the desiccant wheel


103


, as described above, lowers its own temperature to turn into the air of the state V, and is discharged EX through the path


130


..




The flow of outside air C as a cooling fluid is the same as described in FIG.


5


. That is, in this embodiment, as a result of functions of the humidifier


165


and spray pipes


325


, the temperature of outside air as a cooling fluid is lowered, which is useful for improving cooling effect. Also, on the second compartment side of the condensing section


252


, cooling effect due to latent heat produced by water evaporation can be expected.




In the cooling cycle, regarding refrigerant from the sensible heat heat-exchanger


220


A, like the embodiment shown in

FIG. 27

, part of the refrigerant is sent to the refrigerant heat exchanger


270


, and the refrigerant condensed in the refrigerant heat exchanger


270


joins, through the throttle


275


, to the path


203


between the throttle


240


acting also as a header of the condensing section and the expansion valve


250


or the evaporator


210


. On the Mollier chart in

FIG. 24

, refrigerant passing the throttle


230


is reduced in pressure from the state of the point d to, for example, the state of the point e


2


, at this point takes heat from process air, and proceeds to the point f


2


, where it is deprived of heat further by cooling fluid, and reaches the point g


2


. Then, it is reduced in pressure at the throttle


240


and reaches the point j


2


. That is, the evaporating pressure, or the condensing pressure in the process air cooler


300


takes one value, therefore it cannot be said that heat-exchange between process air and cooling fluid constitutes a counterflow. However, in the process air cooler


300


, like the foregoing embodiment, it also utilizes evaporating heat transfer and condensing heat transfer, and further, water is sprayed so as to lower the temperature of the refrigerant and removes heat by evaporating heat transfer, thereby producing a high cooling effect as well.




In addition, as a variation of the embodiment of

FIG. 28

, like the embodiment of

FIG. 22

, all the refrigerant from the sensible heat heat-exchanger


220


A may be inducted into the refrigerant heat exchanger


270


and then the condenser


220


B. Also, like the embodiment of

FIG. 26

, part of refrigerant may be passed through the refrigerant heat exchanger


270


, in which the refrigerant condensed may be then inducted to the throttle


230


so as to join the refrigerant condensed in the condenser


220


B.




According to this invention as described above, refrigerant, after having been compressed by the compressor, exchanges heat with regeneration air before regeneration of desiccant, to be turned into approximately saturated vapor, and this refrigerant is therefore able to heat refrigerant before intake to the compressor, so that the discharge temperature of the refrigerant compressed by the compressor is raised, resulting in raising of regeneration air before regeneration of desiccant. Further, since the process air cooler is provided, heat exchange between process air and cooling fluid is performed by evaporating and condensing heat transfer with high heat transfer coefficient, thereby providing a dehumidifying air conditioner with high COP and compact size.





FIG. 29

is a flow chart of an air conditioning system incorporating the dehumidifying air conditioner of an embodiment of this invention, that is, the desiccant air conditioner;

FIG. 30

is a schematic sectional view of an example of the heat exchanger as a process air cooler of this invention suitable to the air conditioning system of

FIG. 29

;

FIG. 31

is a moist air chart of the dehumidifying air conditioner of an embodiment of this invention;

FIG. 32

shows refrigerant Mollier charts of the heat pumps HPA, HPB incorporated in the air conditioning system of FIG.


29


. The dehumidifying air conditioner of this embodiment has a high COP and compact size. Among others, temperature lift of the heat pump is low, thereby reducing the amount of power required.




Referring to

FIG. 29

, the structure will be described of a dehumidifying air conditioner of an embodiment of this invention. The air conditioning system is characterized in that the process air temperature is lowered by desiccant (drying agent), and the air conditioning space


101


supplied with the process air is maintained in a comfortable environment. As shown in the figure, the dehumidifying air conditioner is arranged such that from the air conditioning space


101


, disposed along the path of process air A are the blower


102


for providing process air circulation; desiccant wheel


103


as a moisture adsorber filled with desiccant; process air cooler


300




e


of this invention; first evaporator (as a cooler viewed from process air)


210


A of this invention; and second evaporator (as a cooler viewed from process air)


210


B of this invention, in this order, and process air A returns to the air conditioning space


101


again.




Also, it is arranged such that from outside (OA), disposed along the path of regeneration air B are, first, the process air cooler


300




e


for receiving outside air as a cooling fluid; then, the second condenser (as a heater viewed from regeneration air)


220


B of this invention; the first condenser (as a heater viewed from regeneration air)


220


A of this invention; desiccant wheel


103


; and blower


140


for providing regeneration air circulation, in this order, and the outside air which is the cooling fluid and used for regeneration air, is discharged (EX) to the outside.




Further, it is arranged such that from the refrigerant evaporator


210


A, disposed along the path of refrigerant are compressor


260


A, as a first compressor, for compressing the gasified refrigerant evaporated in the refrigerant evaporator


210


A ; refrigerant condenser


220


A; throttle


230


A; process air cooler


300


; throttle


240


A corresponding to the throttle


230


A; and expansion valve


270


A, in this order, and the refrigerant returns to the refrigerant evaporator


210


A again. The first heat pump HPA includes the refrigerant evaporator


210


A; compressor


260


A; refrigerant condenser


220


A; throttle


230


A; process air cooler


300




e


(evaporating section


251


A and condensing section


252


A); and throttle


240


A.




Quite similarly, the second heat pump HPB is provided in parallel with the first heat pump HPA. That is, it is arranged such that from the refrigerant evaporator


210


B, disposed along the path of refrigerant are compressor


260


B, as a second compressor, for compressing the gasified refrigerant evaporated in the refrigerant evaporator


210


B; refrigerant condenser


220


B; throttle


230


B; process air cooler


300


(evaporating section


251


B and condensing section


252


B); throttle


240


B corresponding to the throttle


230


B; and expansion valve


270


B, in this order, and the refrigerant returns to the refrigerant evaporator


210


B again. The heat pump HPB includes the refrigerant evaporator


210


B; compressor


260


B; refrigerant condenser


220


B; throttle


230


B; process air cooler


300


; and throttle


240


B.




The desiccant wheel


103


used here is as described with reference to

FIG. 16

, and the air paths of process air and regeneration air on the upstream and downstream sides of the desiccant wheel


103


are separated by an appropriate partition plate (not shown) such that the air in these two systems do not mix to each other.




Next, referring to

FIG. 30

, the structure will be described of the heat exchanger as a process air cooler preferred for use in the dehumidifying air conditioner of an embodiment of this invention. In the figure, the heat exchanger


300




e


is provided with the first compartment


310


in which process air A flows, and the second compartment


320


in which outside air (utilized as regeneration air) as a cooling fluid flows, adjacent to each other with a partition wall there between.




A plurality of heat-exchanging tubes (two tubes in this figure) are provided approximately horizontally, which go through the first and second compartment


310


,


320


and the partition wall


301


, and through which refrigerant


250


flows. One portion of this heat-exchanging tubing passing through the first compartment, constitutes the evaporating section


251


(a plurality of evaporating sections are designated by


251


A and


251


B) as a first fluid path, and the another portion passing through the second compartment constitutes the condensing section


252


(a plurality of condensing sections are designated by


252


A and


252


B) as a second fluid path.




In the embodiment shown in

FIG. 30

, each of the evaporating sections


251


A,


251


B and the condensing sections


252


A,


252


B is formed of a single tube and constitutes an integral path. Therefore, the heat exchanger


300


can be formed in compact size as a whole, in combination with the first and second compartments


310


,


320


being provided adjacent to each other, with a partition plate


301


disposed therebetween. The evaporating section


251


A may comprise a plurality (not single section, as shown) of sections


251


A


1


,


251


A


2


,


251


A


3


. . . , for one throttle


230


A, depending on the length of the section, cross sectional compartment, or refrigerant flow rate. The condensing section may comprise a plurality of sections


252


A


1


,


252


A


2


,


252


A


3


. . . , accordingly. The plurality of sections may be disposed in multiple rows in the direction of the flow of process air and regeneration air or in the direction perpendicular to the flow, or both of the directions as a matter of course.




In the embodiment of

FIG. 30

, the evaporating sections are arranged in rows of


251


A and


251


B in this order from the upper side of the figure, and condensing sections, also in rows of


252


A and


252


B in this order from the upper side of the figure. When the evaporating sections


251


A and the condensing sections


252


A are disposed in multiple rows, respectively, in the direction of the flow of process air and regeneration air, the evaporating sections are arranged in rows of


251


A


1


,


251


A


2


,


251


A


3


. . . , in this order from the upper side of the figure, and the condensing sections, in rows of


252


A


1


,


252


A


2


,


252


A


3


. . .




On the other hand, in the figure, process air A flows into the first compartment at the upper side through the duct


109


and out from the lower side, while outside air B which is a cooling fluid and used for regeneration air, flows into the second compartment at the lower side through the duct


124


and out from the upper side. That is, the process air A and outside air B flow in counterflow manner.




In such a process air cooler or heat exchanger, the evaporating pressure at the evaporating section


251


and thus the condensing pressure at the condensing section


252


A depend on the temperatures of the process air A and the outside air B as a cooling fluid. The heat exchanger


300




e


shown in

FIG. 30

utilizes evaporating heat transfer and condensing heat transfer, so that heat transfer coefficient is excellent and thus heat exchange efficiency is very high. Also, the refrigerant is passed through from the evaporating section


251


A toward the condensing section


252


A, that is, forced to flow approximately in one direction, so that heat exchange efficiency is high between process air, and outside air as a cooling fluid. The heat exchange efficiency φ has been described with reference to FIG.


4


.




Taking account of the direction of the refrigerant flow, though the evaporating pressure is a little higher than the condensing pressure, they are considered to be substantially the same because the evaporating section


251


A and the condensing section


252


A are configured with an integral, continuous heat-exchanging tube.




While the evaporating section


251


A and the condensing section


252


A has been described above, functions are quite the same for the evaporating section


251


B and the condensing section


252


B. However, since the process air flow is directed from the evaporating section


251


A toward


251


B, and the cooling fluid flow is directed from the condensing section


252


B toward


252


A, evaporating or condensing pressure of the evaporating section


251


A or the condensing section


252


A is higher than that of the evaporating section


251


B or the condensing section


252


B.




The inner surfaces of the heat-exchanging tubes constituting the evaporating section


251


and the condensing section


252


, are preferably high quality heat transfer surfaces already described.




The plate fins on the outer side of the heat-exchanging tube in the first compartment or the ones in the second compartment are the same as described with reference to FIG.


1


.




Functions of the embodiment of this invention will be described with reference to

FIG. 31

, and for the structure, to

FIG. 29

as appropriate. In

FIG. 31

, alphabetical symbols K-N, P, Y, Q-U and X designate the states of air in respective sections. These symbols correspond to the letters encircled in the flow chart of FIG.


29


.




First, the flow of process air A will be described. In

FIG. 31

, process air (in the state K) from the air conditioning space


101


is drawn by the blower


102


through the process air path


107


, and sent through the process air path


108


into the desiccant wheel


103


, where it is adsorbed of its moisture by desiccant in the drying element


103




a


(

FIG. 16

) to lower absolute humidity, raises dry-bulb temperature with adsorption heat of the desiccant, and reaches the state L. This air is sent through the process air path


109


to the first compartment


310


of the process air cooler


300


where it is cooled by refrigerant which evaporates, with absolute humidity kept constant, in the evaporating section


251


A (

FIG. 30

) at the first intermediate temperature or the third pressure of this invention, to be turned into air in the state P; further cooled by refrigerant which evaporates in the evaporating section


251


B (

FIG. 30

) at the second intermediate temperature or the fourth pressure of this invention, to be turned into air of the state M; and enters the cooler


210


A through the path


110


. There, it is cooled further, also with constant absolute humidity, at the first evaporation temperature or the first evaporating pressure of this invention, to be turned into air in the state Y, and subsequently enters the cooler


210


B, to be cooled further at the second evaporation temperature or the second evaporating pressure of this invention, to be turned into air of state N. This air, after having been dried and cooled, is returned to the air conditioning space


101


via the duct


111


, as process air SA with an adequate humidity and at an adequate temperature (absolute humidity of 6 kg/kg and 19° C. in FIG.


31


).




Next, the flow of regeneration air B will be described. In

FIG. 31

, regeneration air (the state Q) from the outside (OA) is drawn through the regeneration air path


124


and sent to the second compartment


320


of the process air cooler


300


, where it exchanges heat with refrigerant which condenses at a temperature approximately equal to the second intermediate temperature or a pressure approximately equal to the fourth pressure of this invention in the condensing section


252


B, raises dry-bulb temperature, and then turns into air of the state S, and subsequently it exchanges heat with refrigerant which condenses at a temperature approximately equal to the first intermediate temperature or a pressure approximately equal to the third pressure of this invention in the condensing section


252


A, raises dry-bulb temperature, and then turns into air of the state R. This air is sent through the path


126


into the refrigerant condenser (heater viewed from regeneration air)


220


B, where it is heated at the second condensing temperature or the second condensing pressure, raises dry-bulb temperature, and then turns into air of the state X, and enters the refrigerant condenser


220


A, where it is heated at the first condensing temperature or the first condensing pressure, raises dry-bulb temperature, and then turns into air of the state T. This air is sent through the path


127


into the desiccant wheel


103


, where it removes moisture from the desiccant in the drying element


103




a


(

FIG. 16

) for regeneration, raises its own absolute humidity, lowers dry-bulb temperature with moisture removal heat, and reaches the state U. This air is drawn through the path


128


into the blower


140


for providing regeneration air circulation, and discharged EX through the path


129


. In the air conditioner described above, as seen from the air cycle shown on the humid air chart in

FIG. 31

, assuming that heat quantity applied to the regeneration air for regeneration of the desiccant of the conditioner be ΔH, heat quantity pumped up from process air be Δq, and drive energy of the compressor be Δh, then ΔH=Δq+Δh. The cooling effect ΔQ obtained as a result of regeneration by the heat quantity ΔH, is larger for a lower temperature of outside air (state Q) with which process air (state L) is to exchange heat after moisture adsorption. Also, it is larger for a smaller temperature difference between the state Q and state M, and between the state R and state L. In this embodiment, since heat exchange efficiency of the process air cooler


300


is very high, cooling effect can be improved remarkably. The temperature lift to be pumped up by the heat pump is 37° C., the temperature difference between the state T and state Y, for the first heat pump HPA, and 35° C., the temperature difference between the state X and state N, for the second heat pump HPB.




Now, referring to FIG.


29


and

FIG. 32

, the refrigerant flow between devices and functions of heat pumps HPA, HPB will be described.




In

FIG. 29

, refrigerant gas compressed by the first refrigerant compressor


260


A is introduced through the refrigerant gas pipe


201


A connected to the discharge port of the compressor into the first condenser or the regeneration air heater (refrigerant condenser)


220


A. The refrigerant gas compressed in the compressor


260


A is raised in temperature by compression heat and regeneration air is heated by this heat. The refrigerant gas is deprived of its own heat to be cooled, and is condensed further.




The refrigerant outlet of the refrigerant condenser


220


A is connected by the refrigerant path


202


A to the inlet of the evaporating section


251


A of the process air cooler


300


, and in the middle of the refrigerant path


202


A and in the vicinity of the inlet of the evaporating section


251


A is provided the throttle


230


A.

FIG. 29

shows only one throttle for the heat pump HPA system, but any number of throttles more than one may be provided depending on the number of evaporating sections


251


A or condensing sections


252


A.




Liquid refrigerant exiting the refrigerant condenser (heater viewed from regeneration air)


220


A in the state of the first condensing pressure, is decreased in pressure by the throttle


230


A to the third pressure, to be expanded, and part of the refrigerant evaporates (flushes). The refrigerant, mixture of liquid and gas, reaches the evaporating section


251


A, where liquid refrigerant flows while wetting the inner walls of the tubes of the evaporating section, is evaporated, and cools the process air flowing in the first compartment.




The evaporating section


251


A and condensing section


252


A are formed of an integral tube. That is, they constitute an integral path, and therefore evaporated refrigerant gas (and unevaporated refrigerant liquid) flows into the condensing section


252


A, and is deprived of own heat by outside air flowing in the second compartment, to be condensed.




In the first compartment, process air A flows in the first compartment, in the direction perpendicular to the heat-exchanging tubes of the evaporating section


251


A, to exchange heat with refrigerant, and outside air B having the inlet temperature lower than the temperature of process air, flows, in the second compartment, in the direction perpendicular to the heat-exchanging tubes of the condensing section


252


A.




In

FIG. 30

, the first and second compartments are provided adjacent to each other with a partition plate


301


disposed there between, and the evaporating section and condensing section are formed of an integral continuous heat-exchanging tube, but as shown in

FIG. 3

, the heat exchanger may be arranged such that the first and second compartments are separated and further the first and second paths are also separated. In this case, there is no difference in functions as a heat exchanger from that of FIG.


30


.




The condensing section


252


A is connected, by the refrigerant liquid pipe


203


A, through the throttle


240


A to the refrigerant evaporator (cooler viewed from process air)


210


A. The pressure is reduced by the throttle


240


A from the third pressure to the first evaporating pressure. The throttle


240


A may be disposed anywhere from a place immediately after the condensing section


252


A to the inlet of the refrigerant evaporator


210


A, but if it is disposed immediately before the inlet of the refrigerant evaporator


210


A, thermal insulation of piping can be thinner. The refrigerant liquid condensed in the condensing section


252


A is reduced in pressure at the throttle


240


A and expanded to lower the temperature, enters the refrigerant evaporator


210


A to be evaporated, and cools process air by the evaporating heat.




Here, an orifice of constant opening is usually employed for the throttle


240


A. In addition to this fixed throttle, between the throttle


240


A and the evaporator


210


A may be provided an expansion valve


270


A, and a temperature sensor (not shown) may be attached to the heat-exchanging section of the refrigerant evaporator


210


A or the refrigerant outlet of the refrigerant evaporator


210


A so as to detect the superheating temperature, for adjustment of the opening of the expansion valve


270


A. In this way, excessive refrigerant liquid supply to the refrigerant evaporator


210


A will be avoided, resulting in avoiding intake of unevaporated refrigerant to the compressor


260


A.




The refrigerant evaporated to be gasified in the refrigerant evaporator


210


A is introduced to the suction side of the refrigerant compressor


260


A, and the foregoing cycle is repeated.




The heat pump HPB has quite the same functions as those of the heat pump HPA, except that its operating pressures (evaporating pressure and condensing pressure) are lower than those of the heat pump HPA. Also, the second evaporator


210


B is disposed downstream of the process air flow from the first evaporator


210


A, and the second condenser


220


B is disposed upstream of the regeneration air flow from the first condenser


220


A. To the evaporating section


251


A is connected the refrigerant path


202


A for the refrigerant flow from the first condenser


220


A, and to the evaporating section


251


B is connected the refrigerant path


202


B for the refrigerant flow from the second condenser


220


B.




In the structure described above, process air A flows, in the first compartment, in the direction perpendicular to the heat-exchanging tubes, in contact with the evaporating sections


251


A,


251


B in this order, to exchange heat with refrigerant, and outside air B having the inlet temperature lower than that of process air, flows, in the second compartment, in the direction perpendicular to the heat-exchanging tubes, in contact with the condensing sections


252


B,


252


A in this order. In this case, the evaporating pressure or the evaporating temperature is reduced from high to low in order from


251


A to


251


B in the evaporating section, and raised from low to high in order from


252


B to


252


A in the condensing section. That is, the process air cooler


300


has two evaporating pressures of the third and the fourth pressures of refrigerant used for cooling process air A, and has two condensing pressures of refrigerant cooled and then condensed by outside air B as a cooling fluid, corresponding to the foregoing evaporating pressures.




Thus, noting the flow of process air A and outside air B, they exchange their heat, so to speak, in counterflow manner, thereby effecting a remarkably high heat exchange efficiency of, for example, 80% or higher.




Next, referring to

FIG. 32

, functions of the heat pumps HPA and HPB will be described.

FIG. 32

shows Mollier charts of the systems using HFC


134




a


as refrigerant. In these charts, the horizontal axis represents the enthalpy and the vertical axis the pressure. FIG.


32


(


a


) is a Mollier chart for the first heat pump HPA, and FIG.


32


(


b


) a Mollier chart for the second heat pump HPB.




In the FIG.


32


(


a


), the point a represents the state at the refrigerant outlet of the cooler


210


A shown in

FIG. 29

, in the state of saturated gas. The pressure as a first evaporating pressure is 6.4 kg/cm


2


, the temperature as a fist evaporating temperature 23° C., and the enthalpy 150.56 kcal/kg. A state in which this gas is compressed by the compressor


260


A, that is, the state of the discharge port of the compressor


260


A, is shown by point b. In this state, the pressure as a first condensing pressure is 19.3 kg/cm


2


, and the temperature is superheated to 78° C.




This refrigerant gas is cooled in the heater (refrigerant condenser)


220


A and reaches the point c on the Mollier chart. This point represents the state of saturated gas; the pressure is


19


.


3


kg/cm


2


and the temperature as the first condensing temperature is 65° C. The gas is further cooled at this pressure, condenses, and reaches the point d. This point represents the state of saturated liquid; the pressure and the temperature are the same as those of the point c, and the pressure is 19.3 kg/cm


2


, the temperature 65° C., and the enthalpy 122.97 kcal/kg.




The state of one part of refrigerant liquid, which is reduced in pressure at the throttle


230


A and flows in the evaporating section


251


A, is represented by the point e on the Mollier chart. The temperature as a first intermediate temperature is 40° C., and the pressure as a first intermediate pressure is a saturation pressure corresponding to the temperature of 40° C.




At the point e, the refrigerant is in the state of a mixture of liquid and gas in which part of the liquid is evaporated (flushed). The refrigerant liquid is evaporated in the evaporating section at a saturation pressure as the first intermediate pressure, and reaches the point f intermediate between the saturated liquid line and saturated gas line for the pressure.




The refrigerant in this state flows into the condensing section


252


A. In the condensing section, the refrigerant is deprived of heat by outside air flowing in the second compartment, and reaches the point g. This point is on the saturated liquid line in the Mollier chart. The temperature is approximately 40° C. This refrigerant liquid passes through the throttle


240


A and reaches the point j. The pressure at point j is the first evaporating pressure of this invention and is a saturation pressure of 6.4 kg/cm


2


at 23° C.




Here, the refrigerant is in the state of a mixture of liquid and gas. The refrigerant deprives process air of its heat in the cooler (refrigerant evaporator)


210


A, evaporates to be a saturated gas in the state of the point a on the Mollier chart, and is taken into the compressor


260


A again, repeating the foregoing cycle.




Functions of the second heat pump HPB is quite the same, except that the heat pump HPB operates as a whole, generally at lower pressures (lower temperatures) than those of the heat pump HPA. That is, the evaporating pressure as a second evaporating pressure in the second evaporator


210


B is 5.0 kg/cm


2


, the evaporating temperature as a second evaporating temperature is 15° C., the condensing pressure as a second condensing pressure in the second condenser


220


B is 14.8 kg/cm


2


, the condensing temperature as a second condensing temperature is 54° C., and the evaporating or condensing temperature as a second intermediate temperature in the condensing section


251


B or the condensing section


252


B is 36°


0


C.




As described above, since within the heat exchanger


300




e,


refrigerant evaporates in each evaporating section and condenses in each condensing section while heat-exchange is performed by evaporating heat transfer and condensing heat transfer, heat transfer coefficient is very high. Further, process air is cooled in the first compartment


310


from a higher temperature to a lower temperature by temperatures of 40° C. and 36° C. arranged in rows as it flows from the upper side to the lower side in the Figure, so that heat exchange efficiency can be improved compared with cooling at a temperature of, for example, 40° C. The same is true for the condensing section. That is, outside air (regeneration air) is heated in the second compartment


320


from a lower temperature to a higher temperature by temperatures of 36° C. and 40° C. arranged in rows as it flows from the lower side to the upper side in the Figure, so that heat exchange efficiency can be improved, compared with heating at a temperature of, for example, 40° C.




In addition, in the case where the compression heat pump HPA including the compressor


260


A, heater (refrigerant condenser)


220


A, throttle, and cooler (refrigerant evaporator)


210


A, is provided without heat exchangers


300




e,


the enthalpy difference available in the cooler (evaporator) in returning refrigerant in the state of the point d in the heater (condenser)


220


A through the throttle, is only 27.59 kcal/kg, while in the case of this embodiment where the heat exchanger


300


is provided, the enthalpy difference is 150.56−113.51=37.05 kcal/kg, therefore gas volume circulated to the compressor for the same cooling load and thus required power (even if the temperature lift is the same) can be decreased by as much as 26%. Oppositely saying, cooling effect achievable for the same power can be enhanced by as much as 34%. That is, even though the compressor


260


A is of a single stage type, it is able to act as a device similar to that of a multi-stage type and having an economizer for removing flush gas in the intermediate stage. Indeed, the compressor in this embodiment does not need to remove flush gas in the higher stage, thereby effecting a higher COP than a two-stage type.




The same is true for the second heat pump HPB. As shown in FIG.


32


(


b


), gas volume circulated to the compressor for the same cooling load and thus required power (even if the temperature lift is the same), can be decreased by as much as 18%. Oppositely saying, cooling effect achievable for the same power can be enhanced by as much as 21%. Also, temperature lift pumped up in the cooling cycle is 65−23=42° C. for the first heat pump HPA, and 54−15=39° C. for the second heat pump HPB. Temperature lift in case of one heat pump amounts to 65−15=50° C., therefore the temperature lift in this embodiment is much smaller. Thus, the process air cooler


300




e


is capable of improving the COP of the heat pump, in combination with reduced refrigerant flow rate per required cooling load or heating load.




Though in the foregoing description, as a preferable embodiment, the condenser


220


A is connected to the evaporating section


251


A and the condenser


220


B to the evaporating section


251


B, the condenser


220


A may however, be connected to the evaporating section


251


B, and the condenser


220


B to the evaporating section


251


A.




Next, referring to

FIG. 33

, the dehumidifying air conditioner of another embodiment of this invention will be described.

FIG. 33

is an enlarged flow chart showing only the process air cooler


300




e




1


and its vicinity in the dehumidifying air conditioner, the other structures are the same as in FIG.


29


.




This heat exchanger or the process air cooler


300




e




1


, like the heat exchanger in

FIG. 29

, is provided with a plurality of heat-exchanging tubes approximately horizontally which go through the first and second compartments


310




b,




320




b


and the partition wall


301


and through which refrigerant


250


flows, except that in the first heat pump HPA system, the number of evaporating sections


251


A passing through the first compartment is not one, but they are plurality, arranged in the direction of the process air flow (three sections of


251


A


1


,


251


A


2


,


251


A


3


shown in FIG.


33


), and the section passing through the second compartment is composed of a plurality of condensing sections


252


A


1


,


252


A


2


and


252


A


3


arranged in the direction of the regeneration air flow, corresponding to the evaporating sections. The evaporating sections


251


A


1


,


251


A


2


and


251


A


3


are provided with the respective throttles


230


A


1


,


230


A


2


and


230


A


3


in the paths branched off from the one header


235


A provided in the refrigerant path


202


A. The condensing sections


252


A


1


,


252


A


2


and


252


A


3


are provided with the respective throttles


240


A


1


,


240


A


2


and


240


A


3


, and they are joined to one header


245


A, which is connected to the refrigerant path


203


A. These evaporating sections


251


A


1


,


251


A


2


,


251


A


3


are arranged in rows in this order along the process air flow, and the condensing sections


252


A


3


,


252


A


2


and


252


A


1


in rows in this order along the regeneration air flow. They may be arranged such that a plurality of evaporating sections


240


A


11


,


240


A


12


,


240


A


13


. . . , are disposed in the direction perpendicular to the process air flow for one throttle, for example,


240


A


1


, depending on the length of the section, cross sectional compartment of the passage, and refrigerant flow rate as appropriate.




The same is true for the second heat pump HPB. The evaporating sections


251


B


1


,


251


B


2


and


251


B


3


are arranged in rows in this order along the process air flow, downstream of the evaporating section


251


A


3


, and the condensing sections


252


B


3


,


252


B


2


and


252


B


1


in rows in this order along the regeneration air flow, at the upstream side from the condensing section


252


A


3


.




In the structure described above, process air A flows, in the first compartment, in the direction perpendicular to the heat-exchanging tubes, in contact with the evaporating sections


251


A


1


,


251


A


2


,


251


A


3


,


251


B


1


,


251


B


2


and


251


B


3


in this order, to exchange heat with refrigerant, and outside air B having the inlet temperature lower than that of process air, flows, in the second compartment, in the direction perpendicular to the heat-exchanging tubes, in contact with the condensing sections


252


B


3


,


252132


,


252


B


1


,


252


A


3


,


252


A


2


and


252


A


1


in this order. In this case, the evaporating pressure (temperature) or the condensing pressure (temperature) of refrigerant, which is determined for each section grouped by a throttle, is lowered from high to low in the evaporating sections of


251


A


1


,


251


A


2


,


251


A


3


,


251


B


1


,


251


B


2


and


251


B


3


in this order, and raised from low to high in the condensing sections of


252


B


3


,


252


B


2


,


252


B


1


,


252


A


3


,


252


A


2


and


252


A


1


in this order. That is, the process air cooler


300




e




1


has a plurality of evaporating pressures of refrigerant used for cooling process air A, for each of the first and second heat pumps, and has a plurality of condensing pressures of refrigerant cooled and then condensed by outside air B as a cooling fluid, corresponding to the foregoing evaporating pressures. Accordingly, this plurality of the evaporating pressures or the condensing pressures is arranged in order of intensity.




Thus, noting the flow of process air A and outside air B, because of the temperature difference in the heat pumps and temperature gradient between the plurality of the evaporating sections or the condensing sections within each heat pump, they exchange their heat, so to speak, in counterflow manner, thereby effecting remarkably high heat exchange efficiency of, for example, 80% or more.




Now, further detailed description will be made on the plurality of evaporating pressures arranged in order of intensity. The evaporating pressures in the plurality of evaporating sections


251


A


1


,


251


A


2


and


251


A


3


are able to take different values, respectively, as a result of separate throttles


230


A


1


,


230


A


2


and


230


A


3


at the inlets of the evaporating sections, and process air, which flows in the first compartment


310


in contact with the evaporating sections


251


A


1


,


251


A


2


and


251


A


3


in this order, is deprived of its sensible heat, so that temperature from the inlet toward the outlet is lowered. As a result, the evaporating pressures within the evaporating sections


251


A


1


,


251


A


2


and


251


A


3


are reduced in this order, therefore the evaporating temperatures will be arranged in order.




Quite similarly, the condensing temperatures are arranged from a lower temperature to a higher temperature in order of the sections


252


A


3


,


252


A


2


and


252


A


1


, and like the evaporating sections, the condensing sections, each of which are provided with separate throttles


240


A


3


,


240


A


2


,


240


A


1


, respectively, are able to have separate condensing pressures or condensing temperatures, therefore as a result of outside air flowing from inlet of the second compartment toward the outlet in contact with the condensing sections


252


A


3


,


252


A


2


and


252


A


1


in this order, the condensing pressures will be arranged in order. The same is true for the second heat pump HPB system. Therefore, noting the process air A and outside air B, the so-called counterflow type heat exchanger can be formed as described above, thereby achieving high heat exchange efficiency.




Next, referring to

FIG. 34

, functions of the heat pumps HPA, HPB will be described.

FIG. 34

shows Mollier charts of the systems using HFC


134




a


as refrigerant. In these charts, the horizontal axis represents the enthalpy and the vertical axis the pressure. FIG.


34


(


a


) is a Mollier chart for the heat pump HPA, and FIG.


34


(


b


) a Mollier chart for the heat pump HPB.




Referring to FIG.


34


(


a


), the point a represents the state at refrigerant outlet of the cooler


210


A shown in

FIG. 29

, that is, in the state of saturated gas. The pressure is 6.4 kg/cm


2


and the temperature is 23° C. A state in which this gas is compressed by the compressor


260


A, that is, the state of the discharge port of the compressor


260


A, is shown by point b. In this state, the pressure is 19.3 kg/cm


2


and the temperature is 78° C.




This refrigerant gas is cooled in the heater (refrigerant condenser)


220


A and reaches the point c on the Mollier chart. The pressure of this point is 19.3 kg/cm


2


and the temperature is 65° C. The refrigerant is further cooled and then condensed, and reaches the point d. This point represents the state of saturated liquid; the pressure and the temperature are the same as those of the point c, and the pressure is 19.3 kg/cm


2


, the temperature 65° C.




The state of one refrigerant, part of refrigerant liquid, which is reduced in pressure at the throttle


230


A


1


and flows in the evaporating section


251


A


1


, is represented at the point e


1


on the Mollier chart. The temperature is approximately 43° C. The pressure is one of the plurality of different pressures of this invention, a saturation pressure corresponding to the temperature of 43° C. Likewise, the state of another refrigerant which is reduced in pressure at the throttle


230


A


2


and flows in the evaporating section


251


A


2


, is represented at the point e


2


on the Mollier chart; the temperature is 41° C. and the pressure is one of the plurality of different pressures of this invention, a saturation pressure corresponding to the temperature of 41° C. Likewise, the state of another refrigerant which is reduced in pressure at the throttle


230


A


3


and flows in the evaporating section


251


A


3


, is represented at the point e


3


on the Mollier chart; the temperature is 39° C. and the pressure is one of the plurality of different pressures of this invention, a saturation pressure corresponding to the temperature of 39° C.




At any one of points e


1


, e


2


or e


3


, the refrigerant is in the state of a mixture of liquid and gas in which part of the liquid is evaporated (flushed). The refrigerant liquids each evaporate within the respective evaporating section at one of the foregoing respective plurality of different pressures, and reach the points f


1


, f


2


and f


3


intermediate between the saturated liquid lines and saturated gas lines for the respective pressures, respectively.




The refrigerants in these states flow in the condensing sections


252


A


1


,


252


A


2


and


252


A


3


. In the condensing sections, the refrigerants are deprived of heat by outside air flowing in the second compartment, and reach the points g


1


, g


2


and g


3


, respectively. These points are on the saturated liquid lines in the Mollier chart. The temperatures are 43° C., 41° C. and 39° C., respectively. These refrigerant liquids pass through the throttles and reach the points j


1


, j


2


and j


3


, respectively. The pressures at these points are a saturation pressure of 6.4 kg/cm


2


at 23° C.




Here, the refrigerants are in the state of mixtures of liquid and gas. These refrigerants are joined to one header


245


A, and the enthalpy there is an average of enthalpies of points j


1


, j


2


and j


3


which are weighted by the corresponding refrigerant flow rates, respectively.




This refrigerant deprives process air of its heat in the cooler (refrigerant condenser)


210


A, evaporates to be turned into saturated gas in the state of the point a on the Mollier chart, and is taken into the compressor


260


A again, resulting in a repetition of the foregoing cycle.




For the heat pump HPB, like the heat pump HPA, the condensing temperature is 54° C. in the condenser


220


B, and the temperatures of the points g


1


′, g


2


′ and g


3


′ corresponding to the points g


1


, g


2


and g


3


of the heat pump HPA are, for example, 37° C., 35° C. and 33° C., respectively, as shown in FIG.


34


(


b


). The evaporating temperature of the evaporator


210


B is 15° C.




As described above, since within the heat exchanger


300




e




1


, refrigerant evaporates in each evaporating section and condenses in each condensing section while heat-exchange is performed by evaporating heat transfer and condensing heat transfer, heat transfer coefficient is very high. Further, process air is cooled in the first compartment


310


from a higher temperature to a lower temperature by temperatures of 43° C., 41° C., 39° C., 37° C., 35° C. and 33° C. arranged in rows as it flows from the upper side to the lower side in the figure, so that heat exchange efficiency can be improved in comparison with cooling by one temperature for each heat pump of, for example, 40° C. and 36° C. The same is true for the condensing section. That is, outside air (regeneration air) is heated in the second compartment


320


from a lower temperature to a higher temperature by temperatures of 33° C., 35° C., 37° C., 39° C., 41° C. and 43° C. arranged in rows as it flows from the lower side to the upper side in the Figure, so that heat exchange efficiency can be improved, in comparison with heating by one temperature for each heat pump of, for example, 36° C. and 40° C.




As described above, the dehumidifying air conditioner of this embodiment is characterized in that it is provided with a process air cooler, process air is cooled by evaporation of refrigerant in the process air cooler, and the evaporated refrigerant is cooled by cooling fluid, to condense. Therefore, evaporating heat transfer and condensing heat transfer of a high heat transfer coefficient can be utilized, thus achieving heat transfer between process air and cooling fluid, with a high heat transfer coefficient. Further, heat transfer between process air and cooling fluid is performed through refrigerant, thereby providing a simple arrangement of components of the dehumidifying air conditioner. Furthermore, heat-exchange between process air and cooling fluid is formed into the so-called counterflow and a first and second heat pumps are provided, so that it is possible to provide a dehumidifying air conditioner having reduced temperature (thermal) lifts and a high COP as well as compact size.




Referring to

FIGS. 35 and 36

, the structure and arrangement will be described of a dehumidifying air conditioner as a dehumidifier of an embodiment of this invention.

FIG. 35

is a schematic front sectional view of the dehumidifying air conditioner, and

FIG. 36

is a flow chart of the dehumidifying air conditioner. The flow chart of

FIG. 36

is different from that of

FIG. 29

in that the blower


102


is disposed, in

FIG. 36

, in the vicinity of the discharge port rather than the vicinity of the intake port, but otherwise is approximately the same. That is, the blower


102


among the devices constituting the dehumidifying air conditioner, is enclosed in the vicinity of the discharge port


106


in the cabinet


700


. The cabinet


700


is formed in the shape of a rectangular housing made of, for example, sheet steel, and on one side of the cabinet at the lower portion is opened an intake port


104


for drawing (RA) process air a from the air conditioning space


101


. In the opening of the intake port


104


is provided a filter


501


for preventing ingress of dust from the air conditioning space into the apparatus.




Vertically downwardly of the filter


501


is disposed, through a downwardly vertically running passage


107


, a desiccant wheel


103


as the moisture adsorption device filled with desiccant (drying agent) as shown in FIG.


16


. The desiccant wheel


103


is connected, through a belt or chain, etc, to an electric motor


105


as a driver disposed in the vicinity thereof with rotational shaft AX in the vertical direction for rotation at a speed as low as approximately one revolution per several minutes.




When the desiccant wheel


103


is disposed for rotation about the vertical rotational shaft approximately in a horizontal plane, process air A flowing along the downwardly running passage


107


is able to pass through the semi-circular region of the circular desiccant wheel


103


, or a process air zone, without changing the direction, simplifying the process air passage and thus providing compact size. Further, filling of desiccant into the desiccant wheel


103


is easier and a more uniform distribution of desiccant is achieved in the desiccant wheel


103


.




Downwardly of the desiccant wheel


103


and vertically downwardly of the process air zone into which process air flows, is disposed a first compartment


310


of the process air cooler


300


, which compartment


310


comprises an evaporating section


251


A on the vertical upper side and an evaporating section


251


B on the vertical lower side. Process air passes through the evaporating section


251


A and evaporating section


251


B in this order. A passage


109


connecting the desiccant wheel


103


and the first compartment


310


is formed as a passage running vertically downwardly and connecting the desiccant wheel


103


disposed horizontally in this embodiment and tubes (and fins attached to these tubes) of the condensing section


251


A also disposed horizontally.




Vertically downwardly of the first compartment


310


are disposed a refrigerant evaporator


210


A as the first heat exchanger on the upper side and a refrigerant evaporator


210


B as the second heat exchanger on the lower side, with cooling pipes for refrigerant in the horizontal direction. Process air A passes through the refrigerant evaporator


210


A and refrigerant evaporator


210


B in this order. In this embodiment, the passage


110


is a space between the first compartment


310


and the refrigerant evaporator


210


A, but the two components are disposed closely, so that there exists little space between them. Vertically downwardly of the refrigerant evaporator


210


runs a passage


111


A, which introduces process air A laterally horizontally and is connected, through a humidifier


115


at the bottom of the passage


111


A, to the passage


111


B disposed just adjacent to the passage


107


, passage


109


, and passage


110


. The passage


111


B is running vertically upwardly.




At the top of the passage


111


B is attached a blower


102


as the first blower, which draws process air A introduced to the passage


111


B and supplies it (SA) to the air conditioning space


101


from the opening in the top surface of the cabinet


700


, or the discharge port


106


. The discharge port


106


is formed on the top surface of the cabinet


700


on the vertical extended line of the passage


111


B.




On the other hand, at the lower one side of the cabinet


700


is opened an intake port


141


for drawing OA outside air, or regeneration air B, in which is provided a filter


502


for preventing ingress of dust from in the outside air, or regeneration air B.




Regeneration air B, after passing through the filer


502


, enters the passage


124


, and is fed laterally horizontally along the passage


124


and then vertically upwardly. Above the passage


124


is disposed a process air cooler


300


as the third heat exchanger, and regeneration air passes through the condensing section


252


A and condensing section


252


B in this order vertically upwardly. Vertically above the process air cooler


300


are disposed a refrigerant condenser


220


B as the second heat exchanger and refrigerant condenser


220


A as the second heat exchanger. In the refrigerant condenser


220


A and the refrigerant condenser


220


B are respectively disposed heat exchanger tubes approximately horizontally.




A space vertically below the refrigerant condenser


220


and between the refrigerant condenser


220


and the desiccant wheel


103


, constitutes a passage


127


, via which regeneration air B is introduced to the other half region of the desiccant wheel


103


as a regeneration air zone with respect to the foregoing half region on the process air A side. The space vertically above the half region of the desiccant wheel


103


for the regeneration air B to pass through, constitutes a passage


128


, in which a blower


140


as the second blower is disposed with the intake port facing this space.




The discharge port of the blower


140


, facing sideward, is connected to another discharge port


142


opened on one side of the cabinet


700


at the upper portion, and regeneration air B is discharged EX from the discharge port


142


.




On the other hand, the refrigerant gas pipe


201


A for feeding refrigerant gas delivered from the compressor


260


A to the condenser


220


A, runs laterally to approach the side of the cabinet, then upwardly, and laterally again in the direction away from the side of the cabinet, to be connected to the refrigerant condenser


220


A. The refrigerant pipe


202


A exiting the outlet of the refrigerant condenser


220


A runs laterally through the path


109


, and downwardly at the path


119


. In the middle of this downwardly running pipe is provided a header incorporating a throttle


230


A, which decreased the pressure of refrigerant and is connected to the evaporating section


251


A. Refrigerant decreased in pressure through the throttle


240


A in the header, is fed to the evaporating section


251


A composed of a plurality of tubes, and evaporates. Then, another header for inducting refrigerant condensed in the condensing section


252


A and having a throttle


240


A therein, is provided in the middle of a refrigerant pipe


203


A running downwardly from the outlet of the condensing section


252


A.




The refrigerant liquid pipe


203


A runs further laterally, then vertically downwardly again, and laterally through the passage


111


A, below the refrigerant evaporator


210


B, and lastly rises to be connected to the refrigerant evaporator


210


A. Refrigerant is decreased in pressure at an expansion valve


270


A in the refrigerant pipe running laterally below the refrigerant evaporator


210


B, and proceeds to the refrigerant evaporator


210


A through the refrigerant liquid pipe


204


A downstream from the expansion valve


270


A. Further, the refrigerant pipe


205


A connecting the refrigerant evaporator


210


A and the compressor


260


, runs laterally from the refrigerant evaporator


210


A, and then downwardly.




As described above, the passages


107


,


109


,


110


of process air A run vertically downwardly and the passage


111


B vertically upwardly; the passages


124


,


126


,


127


of regeneration air run vertically upwardly; the intake port


104


and discharge port


106


of process air are disposed on the top surface of the apparatus; and the intake port


141


of regeneration air is disposed in the vicinity of the bottom of the apparatus, and the discharge port


142


in the vicinity of the top surface of the apparatus, so that the process air passage is in the shape of a letter U and the regeneration air passage is formed straight, both of which are of simplified shape.




Further, the blower


102


, blower


140


, desiccant wheel


103


, refrigerant condenser


220


A/


220


B, process air cooler


300


, refrigerant evaporator


210


A/


210


B are arranged vertically in the upper and lower positions in a orderly manner, providing compact size and a smaller installation area. Further, process air A and regeneration air B passing through the desiccant wheel


103


, need not change their direction immediately before and after the desiccant wheel


103


, proving a smooth flow.




Functions of the dehumidifying air conditioner of an embodiment of this invention as shown in

FIG. 35

are substantially the same as those described on the humid air diagram in FIG.


31


. Also, the refrigerant flow between devices and functions of the heat pumps HPA, HPB are substantially the same as those described in FIG.


29


.




Referring to

FIG. 37

, the structure of the dehumidifying air conditioner of another embodiment of this invention will be described. In the Figure, process air drawn from the air conditioning space through the intake port


104


at the top of the cabinet


700


and through the filter


501


into the cabinet, passes through the downwardly running passage


107


along the process air A path, to be drawn into the blower


102


for providing process air A circulation and discharged from the discharge port of the blower


102


; then passes through the downwardly running passage


108


, downwardly through the process air zone of the desiccant wheel


103


filled with desiccant, then passes through the downwardly running passage


109


, and continuos downwardly through the heat exchanger


225


for collecting heat from process air A; then passes through the downwardly running passage


110


, and downwardly through the heat exchanger


116


for cooling process air; flows horizontally along the passage


111


A through the humidifier


115


; and then passes through the upwardly running passage, and through the discharge port


106


at the top of the cabinet


700


to be returned to the air conditioning space.




Also, regeneration air B drawn through the intake port


141


on one side of the lower portion of the cabinet


700


, via the filter


502


, into the cabinet


700


, flows along the regeneration air B path and along the passage


124


to be inducted upwardly; then passes through the heat exchanger


131


for heating regeneration air B before ingress of the desiccant wheel


103


, upwardly; then passes through the upwardly running passage


127


, and through the regeneration air zone of the desiccant wheel


103


, upwardly; then passes through the upwardly running passage


128


to be drawn into the blower


140


for providing the regeneration air B circulation and discharged from the discharge port of the flower


140


; and then is discharged to the outside from the discharge port


142


at the top of the cabinet


700


.




Regarding arrangement inside the actual dehumidifying air conditioner, the blowers


102


,


140


are disposed at the very top of the apparatus. The blower


140


is mounted on the underside (on the inside of the apparatus) of the upper wall of the apparatus, while the blower


102


is mounted to the mounting plate provided in the process air passage horizontally and having an opening of the same size as the discharge port of the blower


102


. The rotational axes of the blowers


102


,


140


are disposed at approximately the same height. Vertically downwardly of the blowers


102


,


140


is disposed the desiccant wheel


103


with the rotational shaft in the vertical direction. Also, downwardly of the desiccant wheel


103


are disposed the heat exchanger


225


and the heat exchanger


131


horizontally at the same height in a row. Further, downwardly of the heat exchanger


225


is disposed the heat exchanger


116


horizontally.




A hot water medium pipe


151


for inducting the hot medium, or hot water, is connected to the hot medium supply port


42


of the refrigerant condenser (not shown in

FIG. 37

) of the outside heat pump (not shown in FIG.


37


), and the hot water inlet of the heat exchanger


131


. The heat exchanger


131


is counterflow type heat exchanger configured such that hot water and regeneration air B are adapted to exchange heat in counterflow relation. The hot water outlet of the heat exchanger


131


is connected, by a hot water pipe, to the hot water inlet of the heat exchanger


225


. The heat exchanger


225


is also configured such that hot water and process air A are adapted to exchange heat in counterflow relation. The hot water outlet of the heat exchanger


225


is connected, by a hot water pipe


152


, to a hot medium return port


43


of the refrigerant condenser of the outside heat pump. Hot water is returned to the refrigerant condenser, to be heated by condensation of refrigerant in the refrigerant condenser, and then inducted to the heat exchangers


131


and


225


, to be circulated.




A cold water pipe


161


for inducting the cold medium, or cold water, is connected to the cold medium supply port


40


of the refrigerant condenser (not shown in

FIG. 37

) of the outside heat pump, and the cold water inlet of the heat exchanger


116


. The heat exchanger


116


is configured such that cold water and process air A as a heat-exchanging object are adapted to exchange heat in counterflow relation. The cold water outlet of the heat exchanger


116


is connected, by a cold water pipe


162


, to a cold medium return port


41


of the cold evaporator of the outside heat pump. Cold water is returned to the refrigerant evaporator, to be cooled by evaporating the refrigerant in the evaporator, and then inducted to the heat exchanger


116


, to be circulated.




Next, referring to

FIG. 37

again, functions of this embodiment will be described. In the following description, temperature conditions are shown as an example.




First, regarding the process air A flow, process air of approximately 27° C. is drawn from the air conditioning space, then adsorped of its moisture by desiccant in the desiccant wheel


103


which decreases its absolute humidity, and the heat of adsorption of the desiccant raises the dry bulb temperature, to approximately 50° C. This air is cooled by the hot medium (decreased in temperature in the heat exchanger


130


as described later) in the heat exchanger


225


, with the absolute humidity kept constant, turned into air at approximately 38° C., and enters the heat exchanger


116


.




There, it is cooled further by the cold medium and turned into air at 15° C. This air makes an isoenthalpic change in the humidifier


115


, absolute humidity is raised and the dry-bulb temperature is decreased and is returned to the air conditioning space as a process air A of appropriate humidity and appropriate temperature.




Next, regarding the regeneration air B flow, regeneration air B of approximately 32° C. drawn from the outside (outdoor) OA, exchanges heat in the heat exchanger


131


with the hot medium of a raised temperature from the heat pump HP, and increases dry-bulb temperature, to be turned into air at approximately 70° C.




The hot medium decreased in temperature in the heat exchanger


131


, raises its own temperature while cooling process air A, as described above. This effects heat collection for the hot medium. The hot medium is returned with collected heat to the heat pump HP, to be heated there, and supplied to the heat exchanger


131


to heat regeneration air B. As described above, regeneration air B is heated from about 32° C. to about 70° C., and of this temperature rise, the portion collected by the heat exchanger


225


from process air A amounts to the temperature rise from about 32° C. to about 46° C.




Regeneration air B heated up to 70° C. in the heat exchanger


131


as described, passes through the passage


126


to the desiccant wheel


103


, where it deprives the desiccant of moisture to regenerate it, raises its own absolute humidity, and is decreased in dry-bulb temperature by moisture removal heat of the desiccant. This air is drawn into the blower


140


for providing regeneration air B circulation, and then discharged EX.




Now, with respect to the embodiment shown in

FIG. 37

, functions of the heat exchanger


131


and heat exchanger


225


will be described. First, in the heat exchanger


131


, the hot water medium heated up to about 75° C. by the heat pump, exchanges heat with outside air of about 32° C. used for regeneration air B in counterflow relation. The hot medium decreases in temperature from about 75° C. to about 36° C. Meanwhile, the regeneration air B exchanging heat with the hot medium, raises temperature from about 32° C. to about 70° C.




As described above, the hot medium cooled to about 36° C. exchanges heat in counterflow low relation with process air A. The hot medium is heated from about 36° C. to about 47° C. Meanwhile, the process air A exchanging heat with the hot medium, decreases in temperature from about 50° C. to about 38° C.




In the embodiment shown in

FIG. 37

, the heat equivalent to the portion of total heat utilized in heating regeneration air B in the heat exchanger


131


, can be collected from process air A in the heat exchanger


225


, thereby effecting increased heating capacity, improved efficiency, smaller-size of the apparatus, and thus cost reduction.




Further, as described above, the passages


107


,


108


,


109


, and


110


of process air A run vertically downwardly, the passage


111


B vertically upwardly, and the passages


124


,


127


, and


128


of regeneration air run vertically upwardly; the intake port


104


, and discharge port


106


of process air are disposed at the top of the apparatus, the intake port


141


of regeneration air in the vicinity of the bottom of the apparatus, and the discharge port


142


at the top of the apparatus, so that the passage of process air is in the shape of a letter U, and the passage of regeneration air is straight, both of which are of simplified shape.




Furthermore, the blowers


102


,


104


, desiccant wheel


103


, heat exchanger


225


, process air cooler


300


, and heat exchanger


116


are arranged in orderly manner vertically in the upper and lower positions, thereby providing a compact apparatus as well as smaller installation area. Moreover, process air A and regeneration air B passing through the desiccant wheel


103


, need not change their flow directions immediately before and after the desiccant wheel


103


, effecting a smooth flow.




Next, referring to

FIG. 38

, the structure of the dehumidifying air conditioner of another embodiment of this invention will be described. The same features as the embodiment shown in

FIG. 37

are not repeated and only the differences will be referred to.




In the embodiment shown in

FIG. 38

, the cold medium, in the state of liquid, supplied from the cold medium supply port


40


of the heat pump (not shown), changes its phase within the heat exchanger


116


, that is, evaporates to be gasified, cools process air, and the cold medium returns to the port


41


of the heat pump. On the other hand, the hot medium, in the state of gas, supplied from the hot medium supply port


42


of the heat pump, changes it phase within the heat exchanger


131


, that is, condenses to be liquefied, turns into the state of supercooling (or subcooling/cooling lower than saturation temperature), and sent to the heat exchanger


225


, and cools process air A in the heat exchanger


225


.




The structure, functions, and effects of the dehumidifying air conditioner of an embodiment shown in

FIG. 38

, are the same as those of the dehumidifying air conditioner of this embodiment shown in

FIG. 37

, other than the foregoing description.




As described above, the dehumidifying air conditioner of an embodiment according to this invention is characterized by a dehumidifying air conditioner comprising a desiccant wheel


103


with the rotational axis AX disposed in the vertical direction, wherein the process air passage includes mainly a first passage portion running vertically downwardly and a second passage portion running vertically upwardly, so that the process air flow passing through the apparatus, can be arranged mainly in the vertical direction in orderly manner and main devices can be disposed vertically in the upper and lower positions without need for process air to change its flowing directions before and after the desiccant wheel, thus providing a compact apparatus as well as a smaller installation area, compared with a dehumidifying air conditioner incorporating a desiccant wheel with the rotational axis disposed horizontally. The term, “mainly including”, means that the process air passage or regeneration air passage in which main components such as the desiccant wheel, heat exchanger, and condenser are provided, run, for example, vertically downwardly, but they may transitionally run laterally so as to take upward routes.




In the following, another embodiment of this invention will be described with reference to the drawings.




Referring to

FIG. 39

, an example of the mechanical structure and arrangement of the dehumidifying air conditioner will be described. This is appropriate for the structure of the apparatus described with reference to

FIG. 5

, except that in

FIG. 5

, a throttle


270


is added at the upstream side of the refrigerant line from the refrigerant evaporator


210


. In the Figure, devices constituting the apparatus are enclosed within the cabinet


700


. The cabinet


700


is formed in the shape of a rectangular box made of, for example, sheet steel, and on one side of the cabinet at the lower portion is opened an intake port


104


for drawing (RA) process air A from the air conditioning space


101


. In the opening of the intake port


104


is provided a filter


501


for preventing ingress of dust from the air conditioning space into the apparatus. Inside the filter


501


in the cabinet


700


is disposed a blower


102


as the second blower, and the intake port of the blower


102


is in communication, through the filter


501


, with an intake port


104


for process air A of the cabinet. Passage


107


is formed between intake port


104


and intake port of blower


102


.




The compressor


260


and a blower


140


as the first blower are arranged in a space in the lower section of the cabinet


700


in a row in places approximately horizontally sideward of the blower


102


. High speed rotary machines are disposed concentrated in one section, providing easy soundproofing. Also, immediately upwardly of the compressor


260


and the blower


140


is disposed the desiccant wheel


103


with the rotational axis in the vertical direction. Weighty compressor


260


, blowers


102


,


140


, driving motor, and desiccant wheel


103


are disposed relatively lower positions, thus lowering the center of gravity of the apparatus. The desiccant wheel


103


is connected, for rotation at a speed as low as one revolution per several minutes by a belt, chain, etc, to the driver disposed in the vicinity thereof with the rotational axis in the vertical direction.




In this way, the desiccant wheel


103


is disposed for rotation about the rotational axis in the vertical direction in an approximately horizontal plane, therefore the total height of the apparatus can be kept low, effecting compact size. Further, filling of desiccant in the desiccant wheel


103


is easier and uniform distribution of desiccant in the desiccant wheel


103


can be achieved. Moreover, almost all the moving elements or the rotary machines, such as the blowers


102


,


140


, and the desiccant wheel


103


, including the weighty compressor


260


, are arranged in the lower section of the apparatus or the bottom of the cabinet, that is, near the base, preventing adverse effects of vibration and increasing stability of installation.




The discharge port of the blower


102


is connected to the desiccant wheel


103


by a passage


108


. The passage


108


, and the above described passage


107


is configured such that they are separated from other portions with partitions made of, for example, sheet steel the same as that of the cabinet


700


. It is into the approximately half (semi-circular) region of the circular desiccant wheel


103


as a process air zone that process air A flows.




Vertically upwardly of the desiccant wheel


103


, especially, upwardly of the half (semi-circular) region into which process air A flows, is disposed a first compartment


310


of the process air cooler


300


, or an evaporating section


251


. A passage


109


connecting the desiccant wheel


103


and the first compartment


310


is formed as a narrow space between the desiccant wheel


103


disposed horizontally in FIG.


39


and tubes (and fins on the tubes) of the evaporating section


251


also disposed horizontally. Upwardly of the first compartment


310


is disposed a refrigerant evaporator


210


as the second heat exchanger with cooling pipes for refrigerant in the horizontal direction. In the example shown in

FIG. 39

, a passage


110


is the space between the first compartment


310


and the refrigerant evaporator


210


, but these two elements are disposed close to each other, so that there exists little space. Upwardly of the refrigerant evaporator


210


lies a passage


111


, and the opening for supplying SA process air A to the air conditioning space


101


, or a discharge port


106


, is formed on the top of the cabinet


700


.




As described above, it can be seen that the intake port


104


for process air A is disposed in the vicinity of the bottom of the cabinet


700


(actually on one side thereof at the lower portion); the passages


109


,


110


,


111


of process air passing through the process air side half of the desiccant wheel


103


, evaporating section


251


of the process air cooler


300


, and the refrigerant evaporator


210


, are formed upwardly; and the discharge port


106


of process air A is disposed on the top of the cabinet


700


.




On the other hand, on one side of the cabinet


700


at the upper portion is opened an intake port


141


for drawing OA regeneration air B, in which is provided a filter


502


for preventing ingress of dust from the outside air, or regeneration air B. The space inside the filter


502


constitutes a passage


124


, and a cross flow heat exchanger


121


is disposed, defining part of the space. At the side of one outlet of the heat exchanger


121


is disposed a refrigerant condenser


220


. The refrigerant condenser


220


as a first heat exchanger with heat-exchanging tubes as a fluid passage disposed approximately horizontally, is arranged in a row at the same height as the refrigerant evaporator


210


. The outlet of the heat exchanger


121


is connected, by the passage


126


, to the refrigerant condenser


220


.




The space below the refrigerant condenser


220


and between the refrigerant condenser


220


and the desiccant wheel


103


, constitutes a passage


127


, through which regeneration air B is inducted to the rest half region as a regeneration air zone of the desiccant wheel


103


with respect to the above described half region on the process air A side. The space below the half region, of the desiccant wheel


103


, for the regeneration air B to pass through, constitutes a passage


128


, and in this space is disposed a blower


140


with the intake port facing this space.




The discharge port of the blower


140


, facing sideward, is connected to the heat exchanger


121


by a passage


129


defined vertically in the cabinet


700


. Regeneration air B flowing in the passage


129


upwardly through the heat exchanger


121


, passes through a passage


130


crossing the above described passage


124


at the heat exchanger


121


to the space defined by the heat exchanger


121


and the cabinet


700


, or a passage (part of the passage


130


), and is discharged (EX) through a discharge port


142


opened on the top of the cabinet


700


.




As described above, it can be seen that the intake port


141


for regeneration air B is disposed in the vicinity of the top of the cabinet


700


(actually on one side thereof at upper portion); the passages


127


,


128


for regeneration air B passing through the refrigerant condenser, and the regeneration air side half of the desiccant wheel


103


, are formed downwardly; the passage


129


for regeneration air B exiting the blower


140


is formed mainly upwardly; and the discharge port


142


of regeneration air B is disposed on the top of the cabinet


700


.




Further, on one side of the cabinet


700


and approximately directly above the intake port


104


for process air, is opened an intake port


166


for drawing OA outside air C as a cooling fluid. In this opening is provided a filter


503


for preventing ingress of dust in the outside air C into the apparatus. A passage


171


is defined including the space inside the filter


503


, and upwardly of the space is disposed a humidifier


165


approximately horizontally. The space above the humidifier


165


constitutes a second compartment


320


, in which is disposed heat-exchanging tubes of the condensing section


252


approximately horizontally. The condensing section


252


and the foregoing evaporating section


251


is constituted by integral tubes. In the space above the condensing section


252


is disposed a spray pipe


325


, which is adapted to spray water over the tubes (and fins) of the condensing section


252


. The spray pipe


325


is provided with a regulating valve


326


so as to regulate the amount of sprayed water properly, for example, to provide proper wetness of the humidifier


165


or to inhibit excessive wetting.




The lower portion of the space defining the passage


171


forms a drain pan


173


, to which is attached a discharge pipe


174


for discharging excessive water sprayed by the spray pipe


325


to the outside of the cabinet


700


. The space above the second compartment


320


also serves as a passage


172


, and upwardly of this space at the top of the cabinet


700


, is opened an air discharge port


168


. In the air discharge port


168


is provided a blower


160


for discharging EX air.




On the other hand, a refrigerant gas pipe


201


for feeding refrigerant gas delivered from the compressor


260


to the refrigerant condenser


220


, is provided, running laterally at the bottom of the cabinet and then rising upwardly. At the outlet of the refrigerant condenser


220


is provided a header


230


incorporating a throttle, through which condensed refrigerant is decreased in pressure, to be inducted to the evaporating section


251


. The refrigerant decreased in pressure by the throttle (not shown) incorporated in the header


230


, is fed to the evaporating section


251


composed of a plurality of tubes, to be evaporated. Next, a header


240


for collecting refrigerants condensed in the condensing section


252


, is provided at the outlet of the condensing section


252


.




The refrigerant liquid pipe


203


rises from the header


240


, and refrigerant, decreased in pressure at the throttle provided near the highest portion of the pipe, flows through the refrigerant liquid pipe


204


to the refrigerant evaporator


210


. Also, a refrigerant pipe


205


connecting the refrigerant evaporator


210


and the compressor


260


, is disposed, running downwardly from the refrigerant evaporator


210


.




As a result of the passage of process air A being disposed as described above, the location of the main devices associated with process air A is such that with the desiccant wheel


103


as a base position, the blower


102


is below the desiccant wheel


103


, the process air cooler


300


is above the desiccant wheel


103


, and the refrigerant evaporator


201


is above the process air cooler


300


.




As a result of the passage of regeneration air B being disposed as described above, the location of the main devices associated with regeneration air B is such that with the desiccant wheel


103


as a base position, the blower


140


is below the desiccant wheel


103


, the refrigerant condenser


220


is above the desiccant wheel


103


. In addition, process air and regeneration air passing through the desiccant wheel need not change their flow direction before and after the desiccant wheel, providing a smooth flow.




Therefore, main devices are disposed vertically in the upper and lower positions in orderly manner, effecting compact size as well as a smaller installation area.




Next, referring to

FIG. 40

, the arrangement of the devices of a dehumidifying air conditioner which is another embodiment of this invention will be described. This embodiment is appropriate for the structure of the apparatus described with reference to FIG.


18


. The same features as the foregoing embodiment shown in

FIG. 39

are omitted and only the differences will be referred to.




In the embodiment shown in

FIG. 39

, the dehumidifying air conditioner is operated mainly in the cooling operation mode, but in this embodiment, the air conditioner is configured so as to be operated mainly in the heating operation mode in addition to the cooling operation mode.




FIG.


40


(


a


) is a schematic front view of the dehumidifying air conditioner of an embodiment of this invention. In the Figure, the dehumidifying air conditioner is characterized in that the refrigerant pipe around the compressor for refrigerant is provided with a four-way valve


265


, the refrigerant pipe around the process air cooler


300


as a third heat exchanger is provided with four-way valve


280


, and the refrigerant passage is provided with a discharge port


143


and a three-way valve


145


, so that the dehumidifying air conditioner is capable of heating operation in addition to cooling operation as described above. Other components, passage, and their arrangement are the same as described with respect to the embodiment of the dehumidifying air conditioner shown in FIG.


39


.




In FIG.


40


(


a


), the fluid flow in the four-way valves


265


,


280


, and three-way valve


145


shows an instance in cooling operation. That is, refrigerant flows through the refrigerant evaporator


210


, compressor


260


, refrigerant condenser


220


, and the evaporating section


251


and condensing section


252


of the process air cooler


300


in this order, and returned to the refrigerant evaporator


210


for circulation. Also, regeneration air B exiting the blower


140


flows through the heat exchanger


121


to the discharge port


142


. The three-way valve


145


is in the position of opening the regeneration air side inlet of the heat exchanger


121


. During cooling operation, the three-way valve


145


closes the second discharge port


143


.




FIG.


40


(


b


) shows the refrigerant flow through the four-way valve


265


in the heating operation, and FIG.


40


(


c


) shows the refrigerant flow through the four-way valve


280


in the heating operation. The position of the three-way valve


145


is shown in FIG.


40


(


a


) by broken lines. That is, refrigerant flows through the refrigerant evaporator


210


, evaporating section


251


of the process air cooler


300


, condensing section


252


of the process air cooler


300


, refrigerant condenser


220


, and compressor


260


in this order, and returns to the refrigerant evaporator


210


for circulation. During the heating operation, the blower


160


is not operated and no water is sprayed in the humidifier


165


. Also, as the three-way valve


145


is in the position of closing the inlet of the heat exchanger


121


, regeneration air B exiting the blower


140


does not pass through the heat exchanger


121


, but is discharged from the second discharge port


143


.




In the embodiment shown in

FIG. 40

, like the embodiment shown in

FIG. 39

, the blowers


102


,


140


and compressor


260


are disposed below the desiccant wheel


103


, and the refrigerant condenser


220


and refrigerant evaporator


210


are disposed above the desiccant wheel


103


. In the process air cooler


300


, process air A and cooling air (outside air C) exchange their heat through refrigerant; the process air A is cooled and the cooling air (outside air C) is heated.




The embodiment shown in

FIG. 40

is the same as the embodiment shown in

FIG. 39

in that the intake port


104


of process air A is disposed in the vicinity of the bottom of the cabinet


700


(actually on one side thereof at the lower portion), and the discharge port


106


of process air A is disposed on the top of the cabinet


700


; that the process air passage is disposed, running upwardly from the desiccant wheel


103


to the discharge port


106


; that the intake port


141


of regeneration air B is disposed in the vicinity of the top of the cabinet


700


(actually at one side thereof at the upper portion), and the discharge port


142


of regeneration air B is disposed on the top of the cabinet


700


; the regeneration air passages are disposed proceeding downwardly until they reach the blower


140


after exiting the heat exchanger


121


, and upwardly until they reach the heat exchanger


121


after exiting the blower


140


; and that the compressor


260


and blowers


102


,


140


are disposed in the lowermost positions, and main devices are disposed vertically in the upper and lower positions.




Next, referring to

FIG. 41

, arrangement of the devices of dehumidifying air conditioner of another embodiment of this invention will be described. The same features as the foregoing embodiment shown in

FIG. 39

are omitted and only the differences will be referred to. This embodiment is appropriate for the structure of the apparatus described with reference to FIG.


8


.




The embodiment shown in

FIG. 39

is arranged such that tubes


253


A,


253


B,


253


C constituting the process air cooler


300


equipped in the dehumidifying air conditioner, are disposed horizontally, and vertically in rows, and the temperatures of refrigerant flowing in this tubes are the same at the mouths of the heat-exchanging tubes.




On the other hand, the embodiment of the dehumidifying air conditioner shown in

FIG. 41

is arranged such that the temperatures, at the mouths of the heat-exchanging tubes, of refrigerant flowing in the heat-exchanging tubes of the process air cooler


303


as the third heat exchanger, are the highest for the heat-exchanging tube


253


A disposed in the highest position, and are lowered toward the heat-exchanging tubes disposed lower positions from the second tube


254


B to the third tube


253


C. Therefore, heat exchange efficiency of the process air cooler


303


can be enhanced.




No water is sprayed to the heat-exchanging tubes of the condensing section


252


of the process air cooler


303


. In the process air cooler


303


, process air A and regeneration air B exchange their heat through refrigerant; process air A is cooled and regeneration air B is heated. The blower


102


for process air is disposed directly below the desiccant wheel


103


.




Regeneration air B is heated by the condensing section


252


of the process air cooler


303


, and the passage of regeneration air B is disposed proceeding downwardly, therefore the refrigerant condenser


220


is disposed directly below the condensing section


252


of the process air cooler


303


. No heat exchanger (numeral


121


in

FIG. 39

) is mounted, and the intake port


141


for regeneration air B is provided on the top of the cabinet


700


.




The compressor


260


is mounted at the bottom of the cabinet


700


, and disposed directly below the passage


129


of regeneration air proceeding upwardly.




In the embodiment shown in

FIG. 41

, like the embodiment shown in

FIG. 39

, the blowers


102


,


140


and compressor


260


are disposed below the desiccant wheel


103


, and the refrigerant condenser


220


and refrigerant evaporator


210


are disposed above the desiccant wheel


103


. In the process air cooler


300


, process air A and cooling air (outside air C) exchange their heat through refrigerant; the process air A is cooled and the cooling air (outside air C) is heated. The refrigerant condenser


220


, process air cooler


303


, and refrigerant evaporator


210


are disposed from the lower position to the upper position in this order.




In the embodiment shown in

FIG. 41

, the process air passage proceeds upwardly from the blower


102


to the discharge port


106


, then downwardly until it reaches the blower


140


after passing through the intake port


141


, and then upwardly until it reaches the discharge port


142


after exiting the blower


140


horizontally and changing its direction by 90 degrees. Also, the discharge port


106


of process air A is disposed on the top of the cabinet


700


, and the discharge port


142


of regeneration air B is disposed on the top of the cabinet


700


.




Next, referring to

FIG. 42

, arrangement of the devices of dehumidifying air conditioner of another embodiment of this invention will be described. This embodiment is appropriate for the structure of the dehumidifying air conditioner described with reference to FIG.


29


. The same features as the foregoing embodiments shown in FIG.


39


and

FIG. 41

, are omitted and only the differences will be referred to.




In the embodiment of the dehumidifying air conditioner shown in

FIG. 42

, the refrigerating cycle is composed of a high pressure cycle and a low pressure cycle to improve heat exchange efficiency. In this case, the refrigerant evaporator


210


of the dehumidifying air conditioner in the embodiment shown in

FIG. 41

, is divided into two sections, a high pressure section


210


A and a low pressure section


210


B, and the refrigerant condenser


220


into a high pressure section


220


A and a low pressure section


220


B, each constituting part of the high pressure cycle and the low pressure cycle. The process air cooler


303


as a third heat exchanger is divided into a high pressure section


303


A with a heat-exchanging tube


235


A through which refrigerant of a low pressure cycle flows, and a high pressure section with a heat-exchanging tube


253


B through which refrigerant of a high pressure cycle flows, and provided with two compressors, a high pressure compressor


260


A and a low pressure compressor


260


B, each constituting part of the high and low pressure cycles.




The process air A passes through the blower


102


, desiccant wheel


103


, and evaporating section


251


of the process air cooler


303


in this order, and then the high pressure section


210


A of the refrigerant evaporator


210


to the low pressure section


210


B, therefore the passage of process air A proceeds upwardly from the bottom to the top. In the evaporating section


251


of the process air cooler


303


, it passes through from the high pressure section


303


A to the low pressure section


303


B. In the process air cooler


303


, process air A and regeneration air B exchange their heat through refrigerant; process air A is cooled in the evaporating section


251


and regeneration air B is heated in the condensing section


252


.




Regeneration air B passes through the condensing section


252


of the process air cooler


303


, then the low pressure section


220


B of the refrigerant condenser


220


to the high pressure section


220


A, then through the desiccant wheel


103


and blower


140


, therefore the passage of regeneration air B proceeds downwardly from the top to the bottom throughout the route. In the condensing section


252


of the process air cooler


303


, it passes through from the low pressure section


303


B to the high pressure section


303


A. The heat-exchange between refrigerant and regeneration air B and between refrigerant and process air, is performed only in the process air cooler


303


, refrigerant condenser


220


, and refrigerant evaporator


210


, so that for example, regeneration air B flowing through the passage


129


from the blower


140


, is thermally separated from refrigerant flowing into and out from the compressors


260


A,


260


B.




In the embodiment shown in

FIG. 42

, like the embodiment shown in

FIG. 39

, the blowers


102


,


140


and compressor


260


are disposed below the desiccant wheel


103


, and the refrigerant condenser


220


and refrigerant evaporator


210


are disposed above the desiccant wheel


103


. The refrigerant condenser


220


, process air cooler


303


, and refrigerant evaporator


210


are disposed from the lower position to the upper position in this order.




The embodiment shown in

FIG. 42

is the same as described in the embodiment shown in

FIG. 41

in that the refrigerant air passage proceeds upwardly from the blower


120


to the discharge port


106


, and that the regeneration air passage proceeds downwardly until it reaches the blower


140


after passing through the intake port


141


, and then upwardly until it reaches the discharge port


142


after exiting the blower


140


horizontally and changing the direction by


90


degrees. Further, this embodiment is the same as in the embodiment in

FIG. 41

in that the intake port


104


of process air A is disposed in the vicinity of the bottom of the cabinet


700


(actually on one side thereof at the lower portion), and the discharge port


106


of process air A is disposed on the top of the cabinet


700


; and that the intake port


141


of regeneration air B is disposed on the top of the cabinet


700


, and the discharge port


142


of regeneration air B is disposed on the top of the cabinet


700


.




Next, referring to

FIG. 43

, the arrangement of devices of dehumidifying air conditioner, which is another embodiment according to the present invention will be described below. In comparison with the embodiments shown in

FIGS. 39 and 42

, only dissimilar features will be described and similar ones will not be repeated. This structure is preferable for the dehumidifying air conditioner described, referring to FIG.


33


.




In the embodiment of a dehumidifying air conditioner shown in

FIG. 43

, a process air cooler


303


as a second is divided into a high pressure part


303


A which is located vertically on the lower side and a low pressure part


303


B which is located vertically on the upper side. Four heat exchanging tubes extending in horizontal direction are mounted vertically on the process air cooler


303


. Each heat exchanging tube has one throttle opening at the respective inlet and outlet of the process air cooler. Two of the four heat exchanging tubes are disposed on the low pressure part


303


B and the other two heat exchanging tubes are disposed on the high pressure part


303


A.




Evaporating section


251


of the process air cooler


303


contains a high pressure cycle heat exchanging tube for the high pressure part, a high pressure cycle heat exchanging tube for the low pressure part, a low pressure cycle heat exchanging tube for the high pressure part and a low pressure cycle heat exchanging tube for the low pressure part which are disposed vertically in this order. Operating temperatures decrease also in this order.




On the other hand, condensing section


252


of the process air cooler


303


contains a high pressure cycle heat exchanging tube for the high pressure part, a high pressure cycle heat exchanging tube for the low pressure part, a low pressure cycle heat exchanging tube for the high pressure part, and allow pressure cycle heat exchanging tube for the high pressure part which are disposed vertically in this order. Throttle opening diameter is set such that operating temperature can decrease in this order. If the operating temperatures of the heat exchanging tubes are set in this manner, a refrigerant condenser, a process air cooler and a refrigerant evaporator can maintain a high heat exchange efficiency. Additionally, the process air cooler


303


exchanges heat with the process air A and the regeneration air B, i.e., the process air A is cooled in the evaporating section


251


while the regeneration air B is heated in the condensing section


252


.




In the embodiment shown in

FIG. 43

, in the same manner as shown in

FIG. 39

, a blower


102


, a blower


140


and compressors


260


A,


260


B are disposed vertically below the desiccant wheel, while a refrigerant condenser


220


and a refrigerant evaporator


210


are disposed vertically above the desiccant wheel. The refrigerant condenser


220


, the process air cooler


303


and the refrigerant evaporator


210


are also disposed vertically upward in this order.




Additionally, in the embodiment shown in

FIG. 43

, it is the same with the embodiment shown in

FIG. 41

in that the passage for the process air extends vertically upward from the blower


102


to the discharge port


106


, that the passage for the regeneration air extends vertically downward from the intake port


141


to the blower


140


, and extends vertically upward to the discharge port


142


, after extending from the blower


140


and then bent at a right angle. Furthermore, it is also the same with the embodiment shown in

FIG. 41

in that the intake port


104


for the process air A is disposed near the bottom face of cabinet


700


(actually in the lower side face), that the discharge port


106


of the regeneration air A is disposed on the top face of the cabinet


700


, that the intake port


141


of the regeneration air B is disposed on the top face of the cabinet


700


, and that the discharge port


142


of the regeneration air B is disposed on the top face of the cabinet


700


.




Next, referring to

FIG. 44

, the arrangement of the devices of dehumidifying air conditioner, which is another embodiment will be described below. In comparison with the embodiments shown in

FIGS. 39 and 41

, only dissimilar features are described and similar ones are not repeated. This structure is preferable for the dehumidifying air conditioner described, referring to FIG.


26


.




In the embodiment of dehumidifying air conditioner shown in

FIG. 44

, refrigerant path in the refrigerant condenser


220


is made to branch out on the way and the refrigerant is taken out from the refrigerant condenser


220


. The heat exchanger


270


exchanges heat between the refrigerant taken out and the refrigerant flowing into the compressor


260


from refrigerant evaporator


210


, and the former refrigerant is joined, at the header


235


, with the refrigerant immediately before flowing into the process air cooler


303


as the second heat exchanger.




In the heat exchanger


270


, refrigerant flowing into the compressor


260


is heated with saturated steam of the refrigerant which has been compressed. The refrigerant which has been compressed and raised in temperature is condensed in the refrigerant condenser


220


and exchanges heat with the regeneration air B (secondary heating of the regeneration air). The refrigerant is then evaporated in the evaporating section


251


of the process air cooler


303


, undergoes heat exchange with the process air A (cooling of the process air), and additionally condensed in the condensing section


252


to exchange heat with the regeneration air B (primary heating of the regeneration air). The regeneration air B thus has a temperature high enough to regenerate the desiccant, which will result in the desiccant having a higher dehumidifying capacity.




As described above, the regeneration air B is primarily heated at the condensing section


252


of the process air cooler


303


and then secondarily heated in the refrigerant condenser


220


before regenerating the desiccant.




Additionally, the process air cooler


303


exchanges heat through refrigerant, with the process air A and regeneration air B, and the process air A is cooled at the evaporating section


251


, while the regeneration air B is heated in the condensing section


252


.




The embodiment shown in

FIG. 44

is the same with the embodiment shown in

FIG. 39

in that a blower


102


, a blower


140


and a compressor


260


are disposed vertically below the desiccant wheel


103


, while a refrigerant condenser


220


and a refrigerant evaporator


210


are disposed above the desiccant wheel


103


. The refrigerant condenser


220


, the process air cooler


303


and the refrigerant evaporator


210


are disposed vertically upward in this order.




Furthermore, the embodiment shown in

FIG. 44

is the same with the embodiment shown in

FIG. 41

in that the passage for the process air extends vertically upward from the blower


102


to the discharge port


106


, that the passage for the regeneration air extends vertically downward from the intake port


141


to the blower


140


, and extends vertically upward to the discharge port


142


, after extending from the blower


140


and then bent at right angle. Furthermore, it is also the same with the embodiment shown in

FIG. 41

in that the intake port


104


for the process air A is disposed near the bottom face of cabinet


700


(actually in the lower side face), that the discharge port


106


of the regeneration air A is disposed on the top face of the cabinet


700


, that the intake port


141


of the regeneration air B is disposed on the top face of the cabinet


700


, and that the discharge port


142


of the regeneration air B is disposed on the top face of the cabinet


700


.




Next, referring to

FIG. 45

, the arrangement of the devices of dehumidifying air conditioner, which is another embodiment will be described below. In comparison with the embodiments shown in

FIGS. 39 and 44

, only dissimilar features are described and similar ones are not repeated.




In the embodiment of dehumidifying air conditioner shown in

FIG. 45

, refrigerant path in the refrigerant condenser


220


is made to branch out on the way and the refrigerant is taken out from the refrigerant condenser


220


. The heat exchanger


270


exchanges heat between the refrigerant taken out and the refrigerant flowing into the compressor


260


from refrigerant evaporator


210


. The former refrigerant then passes through a throttle


275


and is joined, at the upstream side of the expansion valve


250


located immediately before the refrigerant evaporator


210


. This structure is preferable for the dehumidifying air conditioner described, referring to FIG.


27


.




In the heat exchanger


270


, refrigerant flowing into the compressor


260


is heated with saturated steam of the refrigerant which has been compressed. The refrigerant which has been compressed to be raised in temperature is condensed in the refrigerant condenser


220


and exchanges heat with the regeneration air B (secondary heating of the regeneration air). The refrigerant is then evaporated in the evaporating section


251


of the process air cooler


303


as the second heat exchanger, undergoes heat exchange with the process air A (cooling of the process air), and additionally condensed in the condensing section


252


to exchange heat with the regeneration air B (primary heating of the regeneration air). The regeneration air B thus has a temperature high enough to regenerate desiccant, which will result in the desiccant having a higher dehumidifying capacity. As described above, the regeneration air B is primarily heated at the condensing section


252


of the process air cooler


303


and then secondarily heated in the refrigerant condenser


220


before regenerating desiccant.




Additionally, the process air cooler


303


exchanges heat through refrigerant, with the process air A and regeneration air B, and the process air A is cooled at the evaporating section


251


, while the regeneration air B is heated in the condensing section


252


.




The embodiment shown in

FIG. 45

is the same with the embodiment shown in

FIG. 39

in that a blower


102


, a blower


140


and a compressor


260


are disposed vertically below the desiccant wheel


103


, while a refrigerant condenser


220


and a refrigerant evaporator


210


are disposed above the desiccant wheel


103


. The refrigerant condenser


220


, the process air cooler


303


-and the refrigerant evaporator


210


are disposed vertically upward in this order.




Furthermore, the embodiment shown in

FIG. 44

is the same with the embodiment shown in

FIG. 41

in that the passage for the process air extends vertically upward from the blower


102


to the discharge port


106


, that the passage for the regeneration air extends vertically downward from the intake port


141


to the blower


140


, and extends vertically upward to the discharge port


142


, after extending from the blower


140


and then bent at a right angle. Furthermore, it is also the same with the embodiment shown in

FIG. 41

in that the intake port


104


for the process air A is disposed near the bottom face of cabinet


700


(actually in the lower side face), that the discharge port


106


of the regeneration air A is disposed on the top face of the cabinet


700


, that the intake port


141


of the regeneration air B is disposed on the top face of the cabinet


700


, and that the discharge port


142


of the regeneration air B is disposed on the top face of the cabinet


700


.




Next, referring to

FIGS. 46

,


47


and


48


, the arrangement of the devices of dehumidifying air conditioner, which is an embodiment will be described below.

FIG. 46

is a drawing omitting the blower


140


for the regeneration air from the FIG.


47


.

FIG. 48

is a side view in the left of

FIGS. 46 and 47

.




The process air A is drawn by the blower


102


through the intake port


104


fitted to the side face near the bottom face of the cabinet


700


and then sent vertically upward through the passage. The process air A passes vertically upward through one half (semicircle) of the desiccant wheel


103


, the axis of rotation of which is disposed vertically, and the desiccant adsorbs moisture. The process air A, which passed the desiccant wheel


103


, flows vertically upward through the passage


109


, then changes its direction by 90° and horizontally passes through the process air cooler


302


as the third heat exchanger which is disposed to extend vertically, while being cooled by the cooling air. The process air A further flows through the passage


110


sloped upward, then horizontally passes through the refrigerant evaporator


210


which is vertically disposed, and flows into the discharge port


106


provided near the top face of the side face opposite to the side having the intake port


104


in the cabinet.




The regeneration air B is horizontally drawn through the intake port


141


that is provided on the side face near the bottom face of the cabinet


700


. The regeneration air B, which was raised in pressure the blower


140


, flows aslant and upward through the passage


124


and then pass through the heat exchanger


121


for exchanging heat with the regeneration air B heated by the refrigerant condenser


220


. After flowing into the passage


126


, the regeneration air B changes its direction to flow vertically upward and passes through the refrigerant condenser


220


that is disposed to extend vertically upward, while changing its direction by 180° around there. After leaving the refrigerant condenser


220


, the regeneration air B flows vertically downward through the passage


127


, and then reaches and passes through, the heat exchanger


121


while changing its direction to flow aslant and downward. After leaving the heat exchanger


121


, it changes its direction to pass horizontally through the passage


129


and then flow horizontally through the discharge port


142


which is disposed on the side face near the bottom face of the cabinet


700


.




On the top face of the cabinet


700


is provided a vertical type blower


160


that can draw the cooling air. The blower


160


is shielded by hood


163


. An intake port which is located horizontally and laterally with respect to the blower


150


, is the intake port


166


of the device. The cooling air flows vertically downward and passes through the process air cooler


302


while cooling the process air. Immediately after leaving the process air cooler


302


, the cooling air, after changing its direction by


90


°, flows horizontally through the passage


172


and then flow horizontally through the discharge port


172


which is disposed at a position third of the full height from the uppermost side face of the cabinet


700


.




The flow of refrigerant (not shown in

FIGS. 46-47

though) cools the process air viathe refrigerant evaporator


210


. Evaporated refrigerant is compressed by the compressor


260


, condensed after heating the regeneration air via the refrigerant condenser


220


and returned to the refrigerant evaporator


210


for circulation.




In the embodiments of

FIGS. 46-48

, blowers


102


,


140


, a compressor


260


and a heat exchanger


121


are disposed vertically below the desiccant wheel


103


, while a refrigerant evaporator


210


, a refrigerant condenser


220


and a process air cooler


302


are disposed vertically above the desiccant wheel


103


.




Here, in the fluid passage portion, through which the process air A flows vertically upward, are fluid passages


108


and passage


109


. A second fluid passage portion, through which the regeneration air B flows vertically downward, is a fluid passage


127


, while a first fluid passage portion, through which it flows vertically upward, is a passage


126


.




If the fluid passages for the process air A and regeneration air B are arranged as described above, the process air A and regeneration air B passing through the desiccant wheel


103


will not have to change its direction around there, and therefore flow smoothly. Furthermore, the compressor


260


and blowers


102


,


104


can be disposed on the bottom face while main devices can be arranged vertically upward. Thus the equipment can become compact and decrease the space for installation.




Main devices as described above may contain the compressor


260


, blowers


102


,


140


, refrigerant compressor


220


, refrigerant evaporator


210


, process air cooler


300


, desiccant wheel


103


and so forth.




As described above, the embodiments of dehumidifying air conditioner according to the present invention contain a desiccant wheel, the axis of rotation of which is vertically disposed. The fluid passages for the regeneration air can be constructed such that they have a first passage portion for vertically downward flow and a second passage portion for vertically upward flow. Thus the flows of regeneration air through the equipment can be streamlined, so that they may flow mainly vertically downward to upward. As a result, the regeneration air will not have to change its direction around the desiccant wheel and the main devices can be arranged vertically upward. In comparison with those humidifying air conditioners which have desiccant wheels, axis of rotation of which are horizontally disposed, the equipment herein can become compact and will reduce the space needed for installing the equipment.




Furthermore, because the present invention contains a blower for the process air/blower for the regeneration air and compressor which are disposed vertically below desiccant wheel, while having refrigerant compressor which are disposed vertically above the desiccant wheel, space can be horizontally reduced and thus the space needed for installing the equipment can be reduced. Additionally the process air can flow upward through the blower for the process air and desiccant wheel, as arranged in this order, while the regeneration air can flow downward through refrigerant compressor, desiccant wheel and blower for the regeneration air, as arranged in this order. Thus a compact and less tall humidifying air conditioner will come realized.




Additionally, if the refrigerant evaporator is disposed vertically above the desiccant wheel, space will be more reduced horizontally and thus the space needed for installing the equipment will be even more reduced. Allowing the process air to flow upward through the blower for the process air then the desiccant wheel is a smoother arrangement order. Allowing the regeneration air to flow downward through the refrigerant evaporator then the desiccant wheel is a smoother arrangement order. Thus a much more compact and much less tall humidifying air conditioner will come realized.




As the process air blower, regeneration air blower, compressor and desiccant wheel are disposed near the bottom face, the humidifying air conditioner will have a lower center of gravity. Additionally, because the process air blower, regeneration air blower and compressor are arranged at lower positions close to the foundation bolts of the equipment, the humidifying air conditioner will be less affected by any vibration and have a greater stability during installation.




Industrial Applicability




As described above, the present invention allows the provision of a heat exchanger of a higher heat exchange efficiency, higher COP heat pump, higher COP dehumidifying air conditioner, and a more space-saving dehumidifying air conditioner.



Claims
  • 1. A heat exchanger comprising:a first compartment for a first fluid flowing therethrough; a second compartment for a second fluid flowing therethrough; a first flow passage passing through the first compartment and for a third fluid flowing therethrough, the third fluid exchanging heat with the first fluid; and a second flow passage passing through the second compartment and for the third fluid flowing therethrough, the third fluid exchanging heat with the second fluid; wherein the first and second flow passages are formed as an integral passage; the third fluid flows through from the first flow passage to the second flow passage, and the third fluid evaporates on a heat transfer surface located at a flow passage side of the first flow passage at a specific pressure, the flow passage side being for the third fluid flowing therein, and condenses on a heat transfer surface located at a flow passage side of the second flow passage at approximately the same pressure as the specific pressure, the flow passage side being for the third fluid flowing therein.
  • 2. A heat exchanger as recited in claim 1, wherein the second fluid flowing through the second compartment is caused to contain water.
  • 3. A heat exchanger as recited in claim 1, further comprising a third flow passage passing through the second compartment and disposed parallel to the second flow passage for the third fluid flowing threrethrough, the third fluid exchanging heat with the second fluid, wherein the third fluid substantially bypasses the first compartment and is supplied to the third flow passage.
  • 4. A heat exchanger as recited in claim 3, wherein the third fluid mainly in liquid phase is supplied to the first flow passage, and the third fluid mainly in vapor phase is supplied to the third flow passage.
  • 5. A heat exchanger comprising:a first compartment for a first fluid flowing therethrough; a second compartment for a second fluid flowing therethrough; first flow passages passing through the first compartment and for a third fluid flowing therethrough, the third fluid exchanging heat with the first fluid; and second flow passages passing through the second compartment and for the third fluid flowing therethrough, the third fluid exchanging heat with the second fluid; wherein the third fluid flows through from the first flow passage to the second flow passage, the third fluid evaporates on the heat transfer surfaces located on the flow passage side of the first flow passages at specific pressures and condenses on the heat transfer surfaces located on the flow passage side of the second flow passages at approximately the same pressures as the specific pressures; the first flow passages are provided in a plurality; and the specific pressures in the plurality of flow passages are different from each other.
  • 6. A heat pump comprising a heat exchanger including:a first compartment for a first fluid flowing therethrough; a second compartment for a second fluid flowing therethrough; a first flow passage passing through the first compartment and for a third fluid flowing therethrough, the third fluid exchanging heat with the first fluid; and a second flow passage passing through the second compartment and for the third fluid flowing therethrough, the third fluid exchanging heat with the second fluid; wherein the first and second flow passages are formed as an integral passage; the third fluid flows through from the first flow passage to the second flow passage, and the third fluid evaporates on a heat transfer surface located at a flow passage side of the first flow passage at a specific pressure, the flow passage side being for the third fluid flowing therein, and condenses on a heat transfer surface located at a flow passage side of the second flow passage at approximately the same pressure as the specific pressure, the flow passage side being for the third fluid flowing therein; a pressure raiser for raising the pressure of the third fluid in vapor phase; a first heat exchanger for taking heat from the third fluid in vapor phase, the third fluid in vapor phase having been boosted with the pressure raiser, with a high temperature fluid, thus causing the third fluid in vapor phase to condense under a first pressure; a first throttle for reducing the third fluid in pressure, the third fluid having been condensed with the first heat exchanger, to the specific pressure and for leading the third fluid to the first flow passage; a second throttle for reducing the third fluid in pressure, the third fluid having been condensed at the specific pressure, to a third pressure; and a third heat exchanger for evaporating the third fluid, the third fluid having been reduced in pressure with the second throttle, by imparting heat to the third fluid from a low temperature fluid under the third pressure.
  • 7. A heat pump comprising a heat exchanger including:a first compartment for a first fluid flowing therethrough; a second compartment for a second fluid flowing therethrough; a first flow passage passing through the first compartment and for a third fluid flowing therethrough, the third fluid exchanging heat with the first fluid; and a second flow passage passing through the second compartment and for the third fluid flowing therethrough, the third fluid exchanging heat with the second fluid; wherein the first and second flow passages are formed as an integral passage; the third fluid flows through from the first flow passage to the second flow passage, and the third fluid evaporates on a heat transfer surface located at a flow passage side of the first flow passage at a specific pressure, the flow passage side being for the third fluid flowing therein, and condenses on a heat transfer surface located at a flow passage side of the second flow passage at approximately the same pressure as the specific pressure, the flow passage side being for the third fluid flowing therein a compressor for compressing the pressure of the third fluid in vapor phase; a first heat exchanger for taking heat from the third fluid in vapor phase, the third fluid in vapor phase having been compressed with the compressor, with a high temperature fluid, thus causing the third fluid in vapor phase to condense under a first pressure; a first throttle for reducing the third fluid in pressure, the third fluid having been condensed with the first heat exchanger, to the specific pressure and for leading the third fluid to the first flow passage; a second throttle for reducing the third fluid in pressure, the third fluid having been condensed at the specific pressure, to a third pressure; and a third heat exchanger for evaporating the third fluid, the third fluid having been reduced in pressure with the second throttle, by imparting heat to the third fluid from a low temperature fluid under the third pressure.
  • 8. A dehumidifier comprising;the heat pump as recited in claim 7; and a moisture adsorber having a desiccant for adsorbing moisture in the first fluid; wherein the heat exchanger is disposed on the downstream side of the first fluid flow relative to the moisture adsorber, so as to cool the first fluid from which moisture is adsorbed by the desiccant.
  • 9. A heat pump comprising;a pressure raiser for raising the pressure of a refrigerant; a first heat exchanger for condensing the refrigerant, the refrigerant having been boosted with the pressure raiser, by taking heat from the refrigerant with a high temperature fluid under a first pressure; a first throttle for reducing the refrigerant in pressure, the refrigerant having been condensed with the first heat exchanger, to a second pressure; a second heat exchanger for evaporating the refrigerant, the refrigerant having been reduced in pressure with the first throttle, by the heat from the first fluid under the second pressure, and for condensing the refrigerant, after the evaporation, by taking heat from the refrigerant with a second fluid; a second throttle for reducing the refrigerant in pressure, after being condensed with the second heat exchanger, to a third pressure; and a third heat exchanger for evaporating the refrigerant, the refrigerant having been reduced in pressure with the second throttle, by imparting heat to the refrigerant from low temperature fluid under the third pressure.
  • 10. A heat pump comprising;a compressor for compressing a refrigerant; a first heat exchanger for condensing the refrigerant, the refrigerant having been compressed with the compressor, by taking heat from the refrigerant with a high temperature fluid under a first pressure; a first throttle for reducing the refrigerant in pressure, the refrigerant having been condensed with the first heat exchanger, to a second pressure; a second heat exchanger for evaporating the refrigerant, the refrigerant having been reduced in pressure with the first throttle, by the heat from the first fluid under the second pressure, and for condensing the refrigerant, after the evaporation, by taking heat from the refrigerant with a second fluid; a second throttle for reducing the refrigerant in pressure, after being condensed with the second heat exchanger, to a third pressure; and a third heat exchanger for evaporating the refrigerant, the refrigerant having been reduced in pressure with the second throttle, by imparting heat to the refrigerant from low temperature fluid under the third pressure.
  • 11. A heat pump as recited in claim 10:wherein the second heat exchanger comprises; a first compartment for the first fluid flowing therethrough, a second compartment for the second fluid flowing therethrough, a first flow passage passing through the first compartment and for the refrigerant flowing therethrough, the refrigerant exchanging heat with the first fluid, and a second flow passage passing through the second compartment and for the refrigerant flowing therethrough, the refrigerant exchanging heat with the second fluid; wherein the refrigerant flows through from the first flow passage to the second flow passage, the refrigerant evaporates under the second pressure on the heat transfer surface located on the flow passage side of the first flow passage, and condenses approximately under the second pressure on the heat transfer surface located on the flow passage side of the second flow passage.
  • 12. A heat pump as recited in claim 10, comprising:a vapor-liquid separator disposed between the first throttle and the second heat exchanger so as to separate the refrigerant, that has been reduced in pressure to the second pressure, into refrigerant liquid and refrigerant vapor.
  • 13. A heat pump as recited in claim 11, comprising:a vapor-liquid separator disposed between the first throttle and the second heat exchanger so as to separate the refrigerant, the refrigerant having been reduced in pressure to the second pressure, into refrigerant liquid and refrigerant vapor; and a third flow passage disposed parallel to the second flow passage; wherein the refrigerant liquid separated with the vapor-liquid separator is caused to flow to the first flow passage, and the refrigerant vapor separated with the vapor-liquid separator is caused to bypass the first flow passage and to flow to the third flow passage.
  • 14. A heat pump as recited in claim 10:wherein the second heat exchanger comprises; a first compartment for the first fluid flowing therethrough; a second compartment for the second fluid flowing therethrough; first flow passages passing through the first compartment and for the refrigerant flowing therethrough, the refrigerant exchanging heat with the first fluid; and second flow passages passing through the second compartment and for the refrigerant flowing therethrough, the refrigerant exchanging heat with the second fluid; wherein the refrigerant flows through from the first flow passages to the second flow passages; the refrigerant evaporates under the second pressure on the heat transfer surfaces located on the flow passage side of the first flow passages, and condenses approximately under the second pressure on the heat transfer surfaces located on the flow passage side of the second flow passages; the first flow passages are provided in a plurality; and the second pressures in the plurality of flow passages are different from each other.
  • 15. A dehumidifier comprising:the heat pump as recited in claim 10; and a moisture adsorber having a desiccant for adsorbing moisture in the low temperature fluid; wherein the second heat exchanger is disposed on the downstream side of the low temperature fluid flow relative to the moisture adsorber, so as to cool the low temperature fluid, from which moisture has been adsorbed with the desiccant, and before low temperature fluid causes the refrigerant to evaporate with the third heat exchanger.
  • 16. A dehumidifier comprising:a moisture adsorber having a desiccant for adsorbing moisture in the process air; and a process air cooler, disposed on the downstream side of the process air flow relative to the moisture adsorber, for cooling the process air from which moisture has been adsorbed with the desiccant; wherein the process air cooler cools the process air by the evaporation of a refrigerant, the evaporation being at a specific pressure, wherein all of the refrigerant is forced to flow generally in one direction and the process air cooler condenses the evaporated refrigerant at approximately the same pressure as the specific pressure in the process air cooler, cooled with a cooling fluid.
  • 17. A method of dehumidifying process air, comprising:a first step of cooling the process air with a refrigerant that evaporates at a low pressure; a second step of raising the pressure of the refrigerant, that has evaporated in the first step, to a high pressure; a third step of heating regeneration air for regenerating a desiccant with the refrigerant that condenses at the high pressure; a fourth step of regenerating the desiccant by desorbing moisture from the desiccant with the regeneration air heated in the third step; a fifth step of adsorbing moisture in the process air with the desiccant regenerated in the fourth step; a sixth step of cooling the process air, from which moisture has been removed by adsorption in the fifth step, by evaporating the refrigerant, that has condensed in the third step, at an intermediate pressure between the low pressure and the high pressure; and a seventh step of condensing the refrigerant, that has evaporated at the intermediate pressure, at a pressure which is approximately the same as the intermediate pressure.
  • 18. A dehumidifier comprising:a first refrigerant-air heat exchanger having a first refrigerant inlet-outlet port and a second refrigerant inlet-outlet port, and for causing heat exchange between a refrigerant and a process air; a compressor having an intake port and a discharge port for taking in and discharging the refrigerant, with the second refrigerant inlet-outlet port being disposed to be selectively connectable to either the intake port or the discharge port; a second refrigerant-air heat exchanger having a third refrigerant inlet-outlet port and a fourth refrigerant inlet-outlet port, and for causing heat exchange between the refrigerant and the process air, with either the intake port or the discharge port, that has not been connected to the second refrigerant inlet-outlet port, being disposed to be connectable to the third refrigerant inlet-outlet port; a third refrigerant-air heat exchanger, disposed on the upstream side of the process air flow flowing through the first refrigerant-air heat exchanger, having a fifth refrigerant inlet-outlet port and a sixth refrigerant inlet-outlet port, and for causing heat exchange among the refrigerant, the process air, and a cooling fluid, with the fourth refrigerant inlet-outlet port being disposed to be selectively connectable to either the fifth refrigerant inlet-outlet port or a sixth refrigerant inlet-outlet port, and a moisture adsorber disposed on the upstream side of the process air flow passing through the third refrigerant-air heat exchanger and having a desiccant for adsorbing moisture in the process air, wherein: either the fifth refrigerant inlet-outlet port or the sixth refrigerant inlet-outlet port that has not been connected to the fourth refrigerant inlet-outlet port is connected to the first refrigerant inlet-outlet port, and the third refrigerant-air heat exchanger cools the process air passing through the third refrigerant-air heat exchanger by the evaporation of the refrigerant supplied from the fourth refrigerant inlet-outlet port to the fifth refrigerant inlet-outlet port when the fourth refrigerant inlet-outlet port and the fifth refrigerant inlet-outlet port are interconnected, and cools and condenses the evaporated refrigerant with the cooling fluid, so that the condensed refrigerant can be supplied to the first refrigerant-air heat exchanger.
  • 19. A dehumidifier as recited in claim 18, further comprising:a first switching mechanism for switching the selective connecting relation of the intake and discharge ports of the compressor to the second and the third refrigerant inlet-outlet ports; and a second switching mechanism for switching the selective connecting relation of the fifth and the sixth refrigerant inlet-outlet ports to the fourth and the first refrigerant inlet-outlet ports.
  • 20. A dehumidifier comprising:a first refrigerant-air heat exchanger having a first refrigerant inlet-outlet port and a second refrigerant inlet-outlet port, and for causing heat exchange between a refrigerant and a process air; a compressor having an intake port and a discharge port for taking in and discharging the refrigerant, with the second refrigerant inlet-outlet port being disposed to be selectively connectable to either the intake port or the discharge port; a second refrigerant-air heat exchanger having a third refrigerant inlet-outlet port and a fourth refrigerant inlet-outlet port, and for causing heat exchange between the refrigerant and the process air, with either the intake port or the discharge port, that has not been connected to the second refrigerant inlet-outlet port, being disposed to be connectable to the third refrigerant inlet-outlet port; a third refrigerant-air heat exchanger, disposed on the upstream side of the process air flow flowing through the first refrigerant-air heat exchanger, having a fifth refrigerant inlet-outlet port and a sixth refrigerant inlet-outlet port, and for causing heat exchange among the refrigerant, the process air, and a cooling fluid, with the fourth refrigerant inlet-outlet port being disposed to be selectively connectable to either the fifth refrigerant inlet-outlet port or a sixth refrigerant inlet-outlet port, and a moisture adsorber disposed on the upstream side of the process air flow passing through the third refrigerant-air heat exchanger and having a desiccant for adsorbing moisture in the process air, wherein: either the fifth refrigerant inlet-outlet port or the sixth refrigerant inlet-outlet port that has not been connected to the fourth refrigerant inlet-outlet port is connected to the first refrigerant inlet-outlet port, the third refrigerant-air heat exchanger cools the process air passing through the third refrigerant-air heat exchanger by the evaporation of the refrigerant supplied from the fourth refrigerant inlet-outlet port to the fifth refrigerant inlet-outlet port when the fourth refrigerant inlet-outlet port and the fifth refrigerant inlet-outlet port are interconnected, and cools and condenses the evaporated refrigerant with the cooling fluid, so that the condensed refrigerant can be supplied to the first refrigerant-air heat exchanger a first switching mechanism for switching the selective connecting relation of the intake and discharge ports of the compressor to the second and the third refrigerant inlet-outlet ports; a second switching mechanism for switching the selective connecting relation of the fifth and the sixth refrigerant inlet-outlet ports to the fourth and the first refrigerant inlet-outlet ports an expansion valve disposed in the refrigerant passage between the sixth refrigerant inlet-outlet port and the second switching mechanism, the expansion valve having a first temperature sensor and a second temperature sensor, wherein the first temperature sensor is disposed in the refrigerant passage between the second refrigerant inlet-outlet port and the first switching mechanism, and the second temperature sensor is disposed in the refrigerant passage between the first switching mechanism and the third refrigerant inlet-outlet port, and the first and the second temperature sensors can be selectively switched.
  • 21. A dehumidifier as recited in claim 18;wherein the regeneration air is passed through the second refrigerant-air heat exchanger and the moisture adsorber, the desiccant being regenerated with the regeneration air, is disposed on the downstream side of the regeneration air flow relative to the second refrigerant-air heat exchanger; and further comprising: a sensible heat exchanger, disposed on the upstream side of the regeneration air relative to the second refrigerant-air heat exchanger, for causing heat exchange between the regeneration air that has passed through the moisture adsorber and the regeneration air before exchanging heat in the second refrigerant-air heat exchanger; and a switching mechanism for switching the sensible heat exchanger between operative and inoperative states.
  • 22. A dehumidifier comprising:a first refrigerant-air heat exchanger having a first refrigerant inlet-outlet port and a second refrigerant inlet-outlet port, and for causing heat exchange between a refrigerant and a process air; a compressor having an intake port and a discharge port for taking in and discharging the refrigerant, with the second refrigerant inlet-outlet port being disposed to be selectively connectable to either the intake port or the discharge port; a second refrigerant-air heat exchanger having a third refrigerant inlet-outlet port and a fourth refrigerant inlet-outlet port, and for causing heat exchange between the refrigerant and the process air, with either the intake port or the discharge port, that has not been connected to the second refrigerant inlet-outlet port, being disposed to be connectable to the third refrigerant inlet-outlet port; a third refrigerant-air heat exchanger, disposed on the upstream side of the process air flow flowing through the first refrigerant-air heat exchanger, having a fifth refrigerant inlet-outlet port and a sixth refrigerant inlet-outlet port, and for causing heat exchange among the refrigerant, the process air, and a cooling fluid, with the fourth refrigerant inlet-outlet port being disposed to be selectively connectable to either the fifth refrigerant inlet-outlet port or a sixth refrigerant inlet-outlet port, and a moisture adsorber disposed on the upstream side of the process air flow passing through the third refrigerant-air heat exchanger and having a desiccant for adsorbing moisture in the process air, wherein: either the fifth refrigerant inlet-outlet port or the sixth refrigerant inlet-outlet port that has not been connected to the fourth refrigerant inlet-outlet port is connected to the first refrigerant inlet-outlet port, the third refrigerant-air heat exchanger cools the process air passing through the third refrigerant-air heat exchanger by the evaporation of the refrigerant supplied from the fourth refrigerant inlet-outlet port to the fifth refrigerant inlet-outlet port when the fourth refrigerant inlet-outlet port and the fifth refrigerant inlet-outlet port are interconnected, and cools and condenses the evaporated refrigerant with the cooling fluid, so that the condensed refrigerant can be supplied to the first refrigerant-air heat exchanger, wherein air is used as the cooling fluid, and liquid state water is supplied together with the air before condensing the refrigerant in the third refrigerant-air heat exchanger.
  • 23. An operation method of a dehumidifier includinga first refrigerant-air heat exchanger having a first refrigerant inlet-outlet port and a second refrigerant inlet-outlet port, and for causing heat exchange between a refrigerant and a process air; a compressor having an intake port and a discharge port for taking in and discharging the refrigerant, with the second refrigerant inlet-outlet port being disposed to be selectively connectable to either the intake port or the discharge port; a second refrigerant-air heat exchanger having a third refrigerant inlet-outlet port and a fourth refrigerant inlet-outlet port, and for causing heat exchange between the refrigerant and the process air, with either the intake port or the discharge port, that has not been connected to the second refrigerant inlet-outlet port, being disposed to be connectable to the third refrigerant inlet-outlet port; a third refrigerant-air heat exchanger, disposed on the upstream side of the process air flow flowing through the first refrigerant-air heat exchanger, having a fifth refrigerant inlet-outlet port and a sixth refrigerant inlet-outlet port, and for causing heat exchange among the refrigerant, the process air, and a cooling fluid, with the fourth refrigerant inlet-outlet port being disposed to be selectively connectable to either the fifth refrigerant inlet-outlet port or a sixth refrigerant inlet-outlet port, and a moisture adsorber disposed on the upstream side of the process air flow passing through the third refrigerant-air heat exchanger and having a desiccant for adsorbing moisture in the process air, wherein: either the fifth refrigerant inlet-outlet port or the sixth refrigerant inlet-outlet port that has not been connected to the fourth refrigerant inlet-outlet port is connected to the first refrigerant inlet-outlet port, the third refrigerant-air heat exchanger cools the process air passing through the third refrigerant-air heat exchanger by the evaporation of the refrigerant supplied from the fourth refrigerant inlet-outlet port to the fifth refrigerant inlet-outlet port when the fourth refrigerant inlet-outlet outlet port and the fifth refrigerant inlet-outlet port are interconnected, and cools and condenses the evaporated refrigerant with the cooling fluid, so that the condensed refrigerant can be supplied to the first refrigerant-air heat exchanger, said method comprising the steps of: interconnecting, in the cooling operation mode, the second refrigerant inlet-outlet port and the intake port, the discharge port and the third refrigerant inlet-outlet port, the fourth refrigerant inlet-outlet port and the fifth refrigerant inlet-outlet port, and the sixth refrigerant inlet-outlet port and the first refrigerant inlet-outlet port, respectively; interconnecting, in the heating mode, the second refrigerant inlet-outlet port and the discharge port, the intake port and the third refrigerant inlet-outlet port, the fourth refrigerant inlet-outlet port and the sixth refrigerant inlet-outlet port, and the fifth refrigerant inlet-outlet port and the first refrigerant inlet-outlet port, respectively; and setting the third refrigerant-air heat exchanger at inoperative state.
  • 24. An operation method as recited in claim 23, further comprising a step of interconnecting, in the defrosting mode, the second refrigerant inlet-outlet port and the intake port, the discharge port and the third refrigerant inlet-outlet port, the fourth refrigerant inlet-outlet port and the sixth refrigerant inlet-outlet port, and the fifth refrigerant inlet-outlet port and the first refrigerant inlet-outlet port, respectively.
  • 25. A dehumidifier comprising:a moisture adsorber having a desiccant for adsorbing moisture in the process air; and a process air cooler for cooling the process air from which moisture has been removed by adsorption with the desiccant; wherein the process air cooler has a construction of cooling the process air by the evaporation of the refrigerant, and the evaporated refrigerant is cooled and condensed with a cooling fluid at substantially the same pressure as the evaporating pressure; and the process air cooler has a plurality of evaporation pressures of the refrigerant for cooling the process air and a plurality of condensation pressures of the refrigerant cooled and condensed with the cooling fluid corresponding to the evaporation pressures, the plurality of evaporation pressures being different from each other.
  • 26. A dehumidifier as recited in claim 25, comprising:an evaporator for further cooling the process air, the process air having been cooled with the process air cooler, by evaporating the refrigerant condensed with the process air cooler; a compressor for compressing the refrigerant vaporized by evaporation with the evaporator; and a condenser for cooling and condensing the refrigerant, the refrigerant having been compressed with the compressor, with the regeneration air; wherein, the refrigerant having been condensed with the condenser is supplied to the process air cooler.
  • 27. A dehumidifier as recited in claim 25:wherein air is used as the cooling fluid, and the air, after having condensed the refrigerant in the process air cooler, is led as the regeneration air for regenerating the desiccant, to the moisture adsorber.
  • 28. A dehumidifier comprising:a moisture adsorber having a desiccant adsorbing moisture from the process air and being regenerated with the regeneration air; a heat pump, having a compressor for compressing a refrigerant, for pumping up heat from a low temperature heat source to a high temperature heat source using the process air as the low temperature heat source and the regeneration air as the high temperature heat source; and a process air cooler, disposed on the downstream side of the process air flow relative to the moisture adsorber, for cooling the process air from which moisture has been removed by adsorption with the desiccant; wherein the refrigerant before being taken into the compressor is heated by the refrigerant after being compressed with the compressor subsequently exchanging heat with the regeneration air before regenerating the desiccant, and the process air cooler has a construction of cooling the process air by the evaporation of the refrigerant, and of cooling to condense the refrigerant with a cooling fluid at substantially the same pressure as the evaporating pressure.
  • 29. A dehumidifier as recited in claim 28, comprising:an evaporator for further cooling the process air, the process air having been cooled with the process air cooler, by evaporating the refrigerant, the refrigerant having been condensed with the process air cooler; and a condenser for cooling to condense the refrigerant, the refrigerant having been compressed with the compressor; wherein the refrigerant having been condensed with the condenser is supplied to the process air cooler.
  • 30. A dehumidifier as recited in claim 29, wherein the regeneration air, before flowing into the condenser, is used as the cooling fluid.
  • 31. A dehumidifier comprising:a moisture adsorber having a desiccant adsorbing moisture from the process air and being regenerated with the regeneration air; a heat pump, having a compressor for compressing a refrigerant, for pumping up heat from a low temperature heat source to a high temperature heat source using the process air as the low temperature heat source and the regeneration air as the high temperature heat source; and a process air cooler, disposed on the downstream side of the process air flow relative to the moisture adsorber, for cooling the process air from which moisture has been removed by adsorption with the desiccant; wherein the refrigerant before being taken into the compressor is heated by the refrigerant after being compressed with the compressor subsequently exchanging heat with the regeneration air before regenerating the desiccant, and the process air cooler has a construction of cooling the process air by the evaporation of the refrigerant, and of cooling to condense the refrigerant with a cooling fluid, wherein the process air cooler has a construction such that air is used as the cooling fluid, and liquid state water is supplied together with the air.
  • 32. A dehumidifier comprising:a moisture adsorber having a desiccant for adsorbing moisture in process air, with the adsorbed moisture being desorbed with regeneration air; a first heat pump for pumping up heat from a first evaporation temperature to a first condensation temperature by circulating a refrigerant, the first heat pump evaporating the refrigerant at a first intermediate temperature between the first evaporation temperature and the first condensation temperature, followed by condensing the refrigerant at a temperature that is approximately equal to the first intermediate temperature; and a second heat pump for pumping up heat from a second evaporation temperature which is lower than the first evaporation temperature to a second condensation temperature which is lower than the first condensation temperature by circulating a refrigerant, the second heat pump evaporating the refrigerant at a second intermediate temperature between the second evaporation temperature and the second condensation temperature, followed by condensing the refrigerant at a temperature that is approximately equal to the second intermediate temperature; wherein the process air from which moisture has been removed by adsorption with the desiccant is first cooled with the refrigerant that evaporates at either the first intermediate temperature or the second intermediate temperature whichever higher, then cooled with the refrigerant that evaporates at the lower intermediate temperature, then cooled with the refrigerant that evaporates at the first evaporation temperature, then cooled with the refrigerant that evaporates at the second evaporation temperature; the regeneration air is heated with the refrigerant that condenses at either a temperature that is approximately equal to the first intermediate temperature or a temperature that is approximately equal to the second intermediate temperature, whichever is lower, then heated with the refrigerant that condenses at the higher temperature, then heated with a refrigerant that condenses at the second condensation temperature, then heated with a refrigerant that condenses at the first condensation temperature, and then the moisture is removed from the desiccant by desorption with the heated regeneration air.
  • 33. A dehumidifier comprising:a moisture adsorber having a desiccant for adsorbing moisture in process air, the moisture being desorbed with regeneration air; a process air cooler, disposed on the downstream side of the process air flow relative to the moisture adsorber, for cooling the process air; a first condenser for heating the regeneration air by condensing a refrigerant at a first condensing pressure; and a second condenser for heating the regeneration air by condensing a refrigerant at a second condensing pressure which is lower than the first condensing pressure; wherein the process air cooler has a construction of cooling the process air by the evaporation of the refrigerant, and of cooling to condense the evaporated refrigerant with the regeneration air before removing moisture from the desiccant in the moisture adsorber; the second condenser and the first condenser are disposed in that order in the passage from the regeneration air between the process air cooler and the moisture adsorber; the process air cooler has, as evaporation pressures of the refrigerant for cooling the process air, a first intermediate pressure which is lower than the first condensation pressure and a second intermediate pressure which is lower than the first intermediate pressure; the process air cooler has a construction of cooling the refrigerant with the regeneration air to condense the refrigerant at approximately the first intermediate pressure and at approximately the second intermediate pressure; the process air cooler has a construction of cooling the process air with the refrigerant that evaporates at the second intermediate pressure after the regeneration air is cooled with the refrigerant that evaporates at the first evaporation pressure, and heating the regeneration air with the refrigerant that condenses approximately at the first intermediate pressure, after heating the regeneration air is heated with the refrigerant that condenses approximately at the second intermediate pressure; and the refrigerant condensed with the first condenser is supplied so as to be evaporated at either one of the first or the second intermediate pressures, and the refrigerant condensed with the second condenser is supplied so as to be evaporated at the other one of the first or the second intermediate pressures.
  • 34. A dehumidifier as recited in claim 33, further comprising:a first evaporator, disposed on the downstream side of the process air coming from the process air cooler, for cooling the process air by evaporating the refrigerant at a first evaporation pressure which is lower than the first intermediate pressure; a second evaporator, disposed on the downstream side of the process air coming from the first evaporator, for cooling the process air by evaporating the refrigerant at a second evaporation pressure which is lower than the first evaporation pressure; a first compressor for compressing the refrigerant evaporated with the first evaporator and sending the refrigerant to the first condenser; and a second compressor for compressing the refrigerant evaporated with the second evaporator and supplying the refrigerant to the second condenser.
  • 35. A dehumdifier comprising:a moisture adsorber having a desiccant for adsorbing moisture in process air, the moisture being desorbed with regeneration air; a process air cooler, disposed on the downstream side of the process air flow relative to the moisture adsorber, for cooling the process air; a first condenser for heating the regeneration air by condensing a refrigerant at a first condensing pressure; and a second condenser for heating the regeneration air by condensing a refrigerant at a second condensing pressure which is lower than the first condensing pressure; wherein the process air cooler has a construction of cooling the process air by the evaporation of the refrigerant, and of cooling to condense the evaporated refrigerant with the regeneration air before removing moisture from the desiccant in the moisture adsorber; the second condenser and the first condenser are disposed in that order in the passage from the regeneration air between the process air cooler and the moisture adsorber; the process air cooler has, as evaporation pressures of the refrigerant for cooling the process air, a first intermediate pressure which is lower than the first condensation pressure and a second intermediate pressure which is lower than the first intermediate pressure; the process air cooler has a construction of cooling the refrigerant with the regeneration air to condense the refrigerant at approximately the first intermediate pressure and at approximately the second intermediate pressure; the process air cooler has a construction of cooling the process air with the refrigerant that evaporates at the second intermediate pressure after the regeneration air is cooled with the refrigerant that evaporates at the first evaporation pressure, and heating the regeneration air with the refrigerant that condenses approximately at the first intermediate pressure, after heating the regeneration air is heated with the refrigerant that condenses approximately at the second intermediate pressure; and the refrigerant condensed with the first condenser is supplied so as to be evaporated at either one of the first or the second intermediate pressures, and the refrigerant condensed with the second condenser is supplied so as to be evaporated at the other one of the first or the second intermediate pressures, wherein the first intermediate pressure further includes a plurality of pressures.
  • 36. A dehumidifier comprisinga moisture adsorber having a desiccant for adsorbing moisture in process air, the moisture being desorbed with regeneration air; a process air cooler, disposed on the downstream side of the process air flow relative to the moisture adsorber, for cooling the process air; a first condenser for heating the regeneration air by condensing a refrigerant at a first condensing pressure; and a second condenser for heating the regeneration air by condensing a refrigerant at a second condensing pressure which is lower than the first condensing pressure; wherein the process air cooler has a construction of cooling the process air by the evaporation of the refrigerant, and of cooling to condense the evaporated refrigerant with the regeneration air before removing moisture from the desiccant in the moisture adsorber; the second condenser and the first condenser are disposed in that order in the passage from the regeneration air between the process air cooler and the moisture adsorber; the process air cooler has, as evaporation pressures of the refrigerant for cooling the process air, a first intermediate pressure which is lower than the first condensation pressure and a second intermediate pressure which is lower than the first intermediate pressure; the process air cooler has a construction of cooling the refrigerant with the regeneration air to condense the refrigerant at approximately the first intermediate pressure and at approximately the second intermediate pressure; the process air cooler has a construction of cooling the process air with the refrigerant that evaporates at the second intermediate pressure after the regeneration air is cooled with the refrigerant that evaporates at the first evaporation pressure, and heating the regeneration air with the refrigerant that condenses approximately at the first intermediate pressure, after heating the regeneration air is heated with the refrigerant that condenses approximately at the second intermediate pressure; and the refrigerant condensed with the first condenser is supplied so as to be evaporated at either one of the first or the second intermediate pressures, and the refrigerant condensed with the second condenser is supplied so as to be evaporated at the other one of the first or the second intermediate pressures, wherein the first and the second condensers are positioned vertically above the process air cooler.
  • 37. A dehumidifier comprisinga first air flow passage having a first intake port at its one end and a first discharge port at the other end, for flowing first air from the first intake port toward the first discharge port; a second air flow passage having a second intake port at its one end and a second discharge port at the other end, for flowing regeneration air from the second intake port toward the second discharge port; a desiccant wheel, having a desiccant for the process air to pass through, with its rotation axis directed vertically; and a third heat exchanger for cooling the process air, wherein the desiccant removes moisture from the process air before being cooled by the third heat exchanger; and wherein the first air passage mainly includes a downward flow passage portion directed vertically downward and an upward flow passage portion directed vertically upward; and wherein moisture of the desiccant is removed by the regeneration air, and the second air flow passage mainly includes a flow passage portion directed vertically upward.
  • 38. A dehumidifier as recited in claim 37, comprising:a first heat exchanger for heating the regeneration air; and a heat pump having a high temperature heat source and a low temperature heat source; wherein the third heat exchanger constitutes the low temperature heat source, and the first heat exchanger constitutes the high temperature heat source.
  • 39. A dehumidifier comprising:a process air blower for blowing process air; a regeneration air blower for blowing regeneration air; a compressor for compressing a refrigerant; a refrigerant condenser for heating the regeneration air by condensing the compressed refrigerant; a refrigerant evaporator for cooling the process air by evaporating the refrigerant condensed with the refrigerant condenser; and a desiccant wheel, having a desiccant which is regenerated by the regeneration air heated with the refrigerant condenser as the regeneration air passes through the desiccant and which processes the process air as the process air passes through the desiccant; wherein the process air blower, the regeneration air blower, and the compressor are positioned vertically below the desiccant wheel, and the refrigerant condenser is positioned vertically above the desiccant wheel.
  • 40. A dehumidifier as recited in claim 39, wherein the process air is cooled with the refrigerant evaporator after being processed with the desiccant, and the refrigerant evaporator is positioned vertically above the desiccant wheel.
Priority Claims (13)
Number Date Country Kind
10-199847 Jun 1998 JP
10-207181 Jul 1998 JP
10-218574 Jul 1998 JP
10-250424 Aug 1998 JP
10-250425 Aug 1998 JP
10-274359 Sep 1998 JP
10-280530 Sep 1998 JP
10-283505 Sep 1998 JP
10-286091 Sep 1998 JP
10-299167 Oct 1998 JP
10-332861 Nov 1998 JP
10-333017 Nov 1998 JP
10-345964 Dec 1998 JP
PCT Information
Filing Document Filing Date Country Kind
PCT/JP99/03512 WO 00
Publishing Document Publishing Date Country Kind
WO00/00774 1/6/2000 WO A
US Referenced Citations (15)
Number Name Date Kind
4540420 Wharton et al. Sep 1985 A
4887438 Meckler Dec 1989 A
4918942 Jaster Apr 1990 A
5325676 Meckler Jul 1994 A
5364455 Komareni et al. Nov 1994 A
5448895 Coellner et al. Sep 1995 A
5718122 Maeda Feb 1998 A
5758509 Maeda Jun 1998 A
5761923 Maeda Jun 1998 A
5761925 Maeda Jun 1998 A
5791157 Maeda Aug 1998 A
5816065 Maeda Oct 1998 A
5931015 Maeda Aug 1999 A
5943874 Maeda Aug 1999 A
5950447 Maeda Sep 1999 A
Foreign Referenced Citations (6)
Number Date Country
55-38492 Mar 1980 JP
61-18432 Feb 1986 JP
10-26433 Jan 1998 JP
10-26434 Jan 1998 JP
10-54586 Feb 1998 JP
10-26369 Apr 1998 JP