The present disclosure relates generally to heat exchangers and, more specifically, heat exchangers including unit cells forming furcating flow passageways.
At least some known heat exchangers utilize heat transfer fluids that flow through the heat exchangers and transfer heat. A heat transfer efficiency of the heat exchangers is determined, at least in part, by the flow of the heat transfer fluids through the heat exchangers. As the heat transfer fluids flow through the heat exchangers, the heat transfer fluids tend to establish a boundary layer which increases thermal resistance and reduces the heat transfer efficiency of the heat exchangers. In addition, the heat transfer efficiency of the heat exchangers is affected by characteristics of the heat exchanger such as material properties, surface areas, flow configurations, pressure drops, and resistivity to thermal exchange. Improving any of these characteristics allows the heat exchanger to have an increased heat transfer efficiency.
In addition, some systems or applications require heat exchangers to fit within a specified system volume and weigh less than a specified weight. However, reducing the size of the heat exchangers to meet system requirements affects the characteristics that determine heat transfer efficiency. Also, at least some heat exchangers are not properly shaped to fit within the systems, which results in ineffective use of space and/or wasted volume. Moreover, at least some known heat exchangers are formed to meet system requirements using fabrication techniques that require multiple joints, such as brazed and welded joints. Such joints may deteriorate over time, thereby decreasing a service life of the heat exchangers.
In one aspect, a heat exchanger is provided. The heat exchanger includes a core defining a first passageway configured for a first fluid to flow through and a second passageway configured for a second fluid to flow through. The core includes a plurality of unit cells coupled together. Each unit cell of the plurality of unit cells includes a sidewall at least partly defining a first passageway portion, a second passageway portion, a plurality of first openings for the first fluid to flow through, and a plurality of second openings for the second fluid to flow through. Each unit cell of the plurality of unit cells is configured to enable the first fluid to combine and divide in the first passageway portion. Each unit cell is further configured to enable the second fluid to combine and divide in the second passageway portion.
In another aspect, a heat exchanger is provided. The heat exchanger includes a core defining a first passageway for a first fluid to flow through and a second passageway for a second fluid to flow through. The core includes a first unit cell, a second unit cell, and a third unit cell. The first unit cell includes a first sidewall at least partially defining a first passageway first portion and a second passageway first portion. The second unit cell includes a second sidewall at least partially defining a first passageway second portion and a second passageway second portion. The second unit cell is coupled to the first unit cell. The third unit cell includes a third sidewall at least partially defining a first passageway third portion and a second passageway third portion. The third unit cell is coupled to the first unit cell. The first unit cell is configured to enable the first fluid to flow from the first passageway first portion to the first passageway second portion and the first passageway third portion. In addition, the first unit cell is further configured to enable the second fluid to flow into the second passageway first portion from the second passageway second portion and the second passageway third portion.
These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
Unless otherwise indicated, the drawings provided herein are meant to illustrate features of embodiments of the disclosure. These features are believed to be applicable in a wide variety of systems including one or more embodiments of the disclosure. As such, the drawings are not meant to include all conventional features known by those of ordinary skill in the art to be required for the practice of the embodiments disclosed herein.
In the following specification and the claims, reference will be made to a number of terms, which shall be defined to have the following meanings.
The singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise.
“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.
Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about,” “substantially,” and “approximately,” are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
As used herein, the terms “axial” and “axially” refer to directions and orientations that extend substantially parallel to a centerline of the heat exchanger. Moreover, the terms “radial” and “radially” refer to directions and orientations that extend substantially perpendicular to the centerline of the heat exchanger. In addition, as used herein, the terms “circumferential” and “circumferentially” refer to directions and orientations that extend arcuately about the centerline of the heat exchanger. It should also be appreciated that the term “fluid” as used herein includes any medium or material that flows, including, but not limited to, air, gas, liquid, and steam.
The systems and methods described herein include a core that enables heat exchangers to have different shapes, sizes, and flow configurations. The core includes a plurality of unit cells. The unit cells define passageways for at least two different heat exchange fluids such that the fluids combine and divide in close proximity separated only by a sidewall of the unit cell. In some embodiments, each unit cell is configured to receive flows of heat exchange fluid from at least three other unit cells such that the flows combine into a single flow. In addition, each unit cell forms a trifurcated passageway portion such that the flow divides and is discharged into at least three other unit cells. As a result, the thermal boundary layers of the heat exchange fluids are reduced and the heat exchange fluids more efficiently transfer heat through the sidewalls of the unit cells in comparison to heat exchange fluids in known heat exchangers. Moreover, the heat exchangers described herein include multiple arrangements and flow configurations to meet overall system requirements and have increased efficiency.
In the exemplary embodiment, manifold portion 104 includes a first inlet 118, a second inlet 120, an inlet header 122, an outlet header 124, a first outlet 126, and a second outlet 128. In alternative embodiments, manifold portion 104 has any configuration that enables heat exchanger 100 to operate as described herein. For example, in some embodiments, manifold portion 104 includes a plurality of first inlets 118, second inlets 120, inlet headers 122, outlet headers 124, first outlets 126, and/or second outlets 128. In further embodiments, heat exchanger 100 includes a plurality of manifold portions 104 coupled to core 102.
In the exemplary embodiment, each of inlet header 122 and outlet header 124 include a plurality of ports 130 in fluid communication with first passageway 110. Inlet header 122 and outlet header 124 change in cross-sectional area along the direction of flow of first fluid 112 to accommodate the differing volume of first fluid 112 in inlet header 122 and outlet header 124 due to first fluid 112 flowing through ports 130. Specifically, inlet header 122 tapers in cross-sectional area from a maximum cross-sectional area adjacent first inlet 118 to a minimum cross-sectional area adjacent a distal end of inlet header 122. Outlet header 124 increases in cross-sectional area from a minimum cross-sectional area adjacent a distal end of outlet header 124 to a maximum cross-sectional area adjacent first outlet 126. Ports 130 are substantially bell-shaped to facilitate smooth fluid flow through ports 130 and to minimize irreversible flow losses. In alternative embodiments, heat exchanger 100 includes any inlet header 122 and outlet header 124 that enables heat exchanger 100 to operate as described herein. For example, in some embodiments, heat exchanger 100 includes a plurality of inlet headers 122 and outlet headers 124. In further embodiments, at least one inlet header 122 and/or outlet header 124 is coupled to second passageway 114.
In the exemplary embodiment, core 102 further includes an inlet plenum 134 and an outlet plenum 136. Inlet plenum 134 and outlet plenum 136 are in fluid communication with second passageway 114. Inlet plenum 134 is coupled to second inlet 120 and outlet plenum 136 is coupled to second outlet 128. Inlet plenum 134 and outlet plenum 136 are adjacent inlet header 122 and outlet header 124 to facilitate first fluid 112 and second fluid 116 exchanging heat as first fluid 112 and second fluid 116 flow into and out of core 102. Moreover, a plurality of conduits 125 are coupled to inlet header 122 and outlet header 124 and extend through inlet plenum 134 and outlet plenum 136. In alternative embodiments, heat exchanger 100 includes any inlet plenums 134 and outlet plenums 136 that enable heat exchanger 100 to operate as described herein.
Also, in the exemplary embodiment, core 102 is manufactured using an additive manufacturing process. An additive manufacturing process allows core 102 to have complex geometries while limiting the number of joints of core 102. In alternative embodiments, core 102 is formed in any manner that enables heat exchanger 100 to operate as described herein.
During operation of heat exchanger 100, first fluid 112 flows into inlet header 122 through first inlet 118 and is distributed into first passageway 110 through ports 130. First fluid 112 in first passageway 110 is directed through core 102, redirection portion 103, and manifold portion 104. After flowing through first passageway 110, first fluid 112 flows through ports 130 into outlet header 124 and is discharged from heat exchanger 100 through first outlet 126. Second fluid 116 flows into inlet plenum 134 through second inlet 120 and is distributed into second passageway 114. Second fluid 116 in second passageway 114 is directed through core 102, redirection portion 103, and manifold portion 104. After flowing through second passageway 114, second fluid 116 flows into outlet plenum 136 where second fluid 116 is discharged from heat exchanger 100 through second outlet 128.
In alternative embodiments, heat exchanger 100 includes any passageways that enable heat exchanger 100 to operate as described herein. For example, in some embodiments, heat exchanger 100 includes at least one bypass passageway (not shown) to enable first fluid 112 and/or second fluid 116 to bypass at least a portion of first passageway 110 and/or second passageway 114. The bypass passageway (not shown) extends through any portions of heat exchanger 100, e.g., through core 102, redirection portion 103, manifold portion 104, and/or along an external periphery of heat exchanger 100. As a result, the bypass passageway (not shown) facilitates management of pressure drop due to excess amounts of first fluid 112 and/or second fluid 116.
Moreover, in the exemplary embodiment, core 102 is configured such that first fluid 112 and second fluid 116 exchange heat as first fluid 112 and second fluid 116 flow through core 102, redirection portion 103, and manifold portion 104. For example, as shown in
In some embodiments, core 102 is divided up into independent zones. Unit cells 108 facilitate sectioning and/or segmenting core 102 into the independent zones. In further embodiments, heat exchanger 100 includes a plurality of discrete cores 102. The repeating geometric shapes of unit cells 108 facilitate core 102 coupling to other cores 102 in multiple different configurations. In some embodiments, heat exchanger 100 includes a segment (not shown) linking separate cores 102 such that a portion of fluid flows through the segment between cores 102.
Also, in the exemplary embodiment, each unit cell 108 forms a first passageway portion 148 of first passageway 110 and a second passageway portion 150 of second passageway 114. First passageway portion 148 and second passageway portion 150 are configured for first fluid 112 and second fluid 116 to exchange thermal energy through sidewall 138. In operation, first fluid 112 flows into first passageway portion 148 from other first passageway portions 148 associated with other unit cells 108. First passageway portion 148 furcates such that first fluid 112 flows out of first passageway portion 148 towards further first passageway portions 148. In particular, first passageway portion 148 trifurcates such that first fluid 112 flows into three flow paths towards three different first passageway portions 148. Second fluid 116 flows into second passageway portion 150 from other second passageway portions 150. Second passageway portion 150 furcates such that second fluid 116 flows out of second passageway portion 150 towards further second passageway portions 150. In particular first passageway portion 148 trifurcates such that second fluid 116 flows into three flow paths towards three different second passageway portions 150. First passageway portion 148 and second passageway portion 150 furcate at an approximately 90° angle. In alternative embodiments, first passageway portion 148 and second passageway portion 150 furcate at any angles that enable heat exchanger 100 to operate as described herein.
The furcated shapes of first passageway portion 148 and second passageway portion 150 provide for additional surface area to facilitate heat exchange between first fluid 112 and second fluid 116. Moreover, the furcation of unit cells 108 reduces and/or inhibits the formation of thermal boundary layers in first fluid 112 and second fluid 116. For example, thermal and momentum boundary layers are broken up each time first fluid 112 and second fluid 116 are redirected due to unit cells 108 furcating. Moreover, the repeated furcation in unit cells 108 inhibit first fluid 112 and second fluid 116 from establishing significant thermal and momentum boundary layers. In alternative embodiments, first passageway portion 148 and second passageway portion 150 have any configuration that enables heat exchanger 100 to operate as described herein.
In addition, in the exemplary embodiment, first passageway portion 148 has a first hydraulic diameter 152 and second passageway portion 150 has a second hydraulic diameter 154. First hydraulic diameter 152 and second hydraulic diameter 154 are determined based on flow requirements, such as flow rate, pressure drop, and heat transfer, and/or volume requirements for heat exchanger 100. Unit cell 108 forms first passageway portion 148 such that first hydraulic diameter 152 is approximately equal to the width of unit cell inlet 140. Second passageway portion 150 is formed by multiple unit cells 108. Accordingly, unit cell 108 spans only a portion of second hydraulic diameter 154. In the illustrated embodiment, unit cell 108 spans approximately half of second hydraulic diameter 154. Moreover, in the exemplary embodiment, first hydraulic diameter 152 is approximately equal to second hydraulic diameter 154. In alternative embodiments, first passageway portion 148 and second passageway portion 150 have any hydraulic diameters that enable heat exchanger 100 to operate as described herein. For example, in some embodiments, first hydraulic diameter 152 and second hydraulic diameter 154 are different from each other. In further embodiments, first hydraulic diameter 152 is greater than second hydraulic diameter 154 such that a ratio of first hydraulic diameter 152 to second hydraulic diameter 154 is at least 2:1.
Moreover, in the exemplary embodiment, first passageway portion 148 and second passageway portion 150 have a square cross-sectional shape. In alternative embodiments, first passageway portion 148 and second passageway portion 150 have any cross-sectional shape that enables heat exchanger 100 to operate as described herein. For example, in some embodiments, first passageway portion 148 and/or second passageway portion 150 have any of the following cross-sectional shapes, without limitation: rectangular, diamond, circular, and triangular. Moreover, in some embodiments, first passageway portion 148 and/or second passageway portion 150 include any of the following, without limitation: a fin, a surface having engineered roughness, a surface roughened by manufacturing process, any other heat transfer enhancement, and combinations thereof.
In the exemplary embodiment, the shape and size of unit cells 108 is determined based at least in part on any of the following, without limitation: surface area, pressure drop, compactness of core 102, and fluid flow. In the exemplary embodiment, unit cells 108 have substantially the same shape. In particular, unit cells 108 have a partially cuboid shape. In alternative embodiments, core 102 includes any unit cells 108 that enable heat exchanger 100 to operate as described herein. In some embodiments, core 102 includes unit cells 108 that differ in configuration from each other. In further embodiments, the shape of unit cells 108 at least partially conforms to a shape of core 102. For example, in some embodiments, unit cells 108 are at least partially curved to align with an annular shape of core 102.
In some embodiments, at least a portion of unit cells 108 are flexible to facilitate unit cells 108 shifting in response to characteristics of first fluid 112 and/or second fluid 116 such as pressure, flow rate, volume, and density. For example, in some embodiments, sidewalls 138 are flexible and adjust to attenuate fluid surge. In further embodiments, unit cells 108 are flexible such that first fluid 112 causes first passageway 110 to expand and at least partially propel second fluid 116 through second passageway 114. In the exemplary embodiment, sidewalls 138 of unit cells 108 are substantially rigid. In alternative embodiments, unit cells 108 have any amount of flexibility that enables heat exchanger 100 to operate as described herein.
With particular reference to
Unit cells 108 are coupled in flow communication such that each first passageway portion 148 receives first fluid 112 from three other first passageway portions 148 and each second passageway portion 150 receives second fluid 116 from three other second passageway portions 150. In addition, each first passageway portion 148 directs first fluid 112 towards three different first passageway portions 148 and each second passageway portion 150 directs second fluid 116 toward three different second passageway portions 150. Accordingly, first fluid 112 and second fluid 116 flow in at least partially counter-flow directions. In alternate embodiments, first fluid 112 and second fluid 116 flow in any directions that enable heat exchanger 100 to operate as described herein. For example, in some embodiments, heat exchanger 100 is configured such that first fluid 112 and second fluid 116 flow in counter-flow directions, parallel-flow directions, cross-flow directions, and hybrids thereof.
In some embodiments, components of heat exchanger 100, such as core 102, are used in applications not necessarily requiring heat exchange. For example, in some embodiments, components of heat exchanger 100 are used in reactor applications, mass transfer applications, phase-change applications, and solid oxide fuel cells (SOFC). In some embodiments of SOFC systems, unit cells 108 are positioned between anode-electrolyte-cathode layers. In some embodiments of phase-change systems, unit cells 108 include sidewalls 138 having small pores (not shown) and/or engineered surfaces (not shown) to allow fluids to boil and/or condense. In alternative embodiments, heat exchanger 100 is used for any applications and/or systems that require movement of fluid.
In one embodiment, heat exchanger 100 is configured such that first fluid 112 and second fluid 116 flow through core 102 in a counter-flow configuration 200. In counter-flow configuration 200, a first manifold portion 202 and a second manifold portion 204 are coupled to opposed ends of core 102. First manifold portion 202 includes a first fluid inlet 206 and a second fluid outlet 208. Second manifold portion 204 includes a first fluid outlet 210 and a second fluid inlet 212. First fluid 112 is directed through core 102 from first fluid inlet 206 toward first fluid outlet 210 and second fluid 116 is directed through core 102 from second fluid inlet 212 toward second fluid outlet 208. As a result, first fluid 112 and second fluid 116 flow through core 102 in substantially opposed directions.
In another embodiment, heat exchanger 100 is configured such that first fluid 112 and second fluid 116 flow through core 102 in a parallel-flow configuration 214. In parallel-flow configuration 214, a first manifold portion 216 and a second manifold portion 218 are coupled to opposed ends of core 102. First manifold portion 216 includes a first fluid inlet 220 and a second fluid inlet 222. Second manifold portion 218 includes a first fluid outlet 224 and a second fluid outlet 226. First fluid 112 is directed through core 102 from first fluid inlet 220 toward first fluid outlet 224 and second fluid 116 is directed through core 102 from second fluid inlet 222 toward second fluid outlet 226. As a result, first fluid 112 and second fluid 116 flow through core 102 in substantially parallel directions.
In another embodiment, heat exchanger 100 is configured such that first fluid 112 and second fluid 116 flow through core 102 in a cross-flow configuration 228. In cross-flow configuration 228, first manifold portion 230 and second manifold portion 232 are coupled to opposed ends of core 102. Third manifold portion 234 and fourth manifold portion 236 are coupled to sides of core 102. First manifold portion 230 includes a first fluid inlet 238 and second manifold portion 232 includes a first fluid outlet 240. Third manifold portion 234 includes a second fluid inlet 242 and fourth manifold portion 236 includes a second fluid outlet 244. First fluid 112 is directed through core 102 from first fluid inlet 238 towards first fluid outlet 240. Second fluid 116 is directed through core 102 from second fluid inlet 242 towards second fluid outlet 244. As a result, first fluid 112 and second fluid 116 flow through core 102 in substantially transverse directions. In particular, the flow of first fluid 112 is substantially perpendicular to the flow of second fluid 116.
In alternative embodiments, first fluid 112 and second fluid 116 flow through core 102 in any directions that enable heat exchanger 100 to operate as described herein. For example, in some embodiments, at least one of first fluid 112 and second fluid 116 is redirected as first fluid 112 and/or second fluid 116 flows through core 102. In further embodiments, first fluid 112 and second fluid 116 flow through core 102 in any of the following flow configurations, without limitation: counter-flow, parallel flow, cross-flow, and combinations thereof. Moreover, in some embodiments, first fluid 112 and second fluid 116 flow through core 102 in any of the following directions relative to each other, without limitation: diagonal, curved, perpendicular, parallel, transverse, and combinations thereof.
The above-described systems and methods include a core that enables heat exchangers to have different shapes, sizes, and flow configurations. The core includes a plurality of unit cells. The unit cells define passageways for at least two different heat exchange fluids such that the fluids combine and divide in close proximity separated only by a sidewall of the unit cell. In some embodiments, each unit cell is configured to receive flows of heat exchange fluid from at least three other unit cells such that the flows combine into a single flow. In addition, each unit cell forms a trifurcated passageway portion such that the flow divides and is discharged into at least three other unit cells. As a result, the thermal boundary layers of the heat exchange fluids are reduced and the heat exchange fluids more efficiently transfer heat through the sidewalls of the unit cells in comparison to heat exchange fluids in known heat exchangers. Moreover, the above-described heat exchangers include multiple arrangements and flow configurations to meet overall system requirements and have increased efficiency.
An exemplary technical effect of the methods, systems, and apparatus described herein includes at least one of: (a) increasing heat transfer efficiency of heat exchangers; (b) providing a heat exchanger core capable of use in multiple flow configurations; (c) providing a heat exchanger that is configured to meet system requirements such as size, shape, and piping; (d) increasing the flexibility of heat exchangers; (e) providing heat exchangers with different shapes; (f) reducing volume of heat exchangers; (g) reducing weight of heat exchangers; (h) providing a monolithic structure for use as a heat exchanger core; and (i) decreasing the size of passageways for fluid flow through heat exchanger cores.
Exemplary embodiments of a heat exchanger assembly are described above in detail. The assembly is not limited to the specific embodiments described herein, but rather, components of systems and/or steps of the methods may be utilized independently and separately from other components and/or steps described herein. For example, the configuration of components described herein may also be used in combination with other processes, and is not limited to practice with only heat exchangers and related methods as described herein. Rather, the exemplary embodiments can be implemented and utilized in connection with many applications where furcated passageways for fluid are desired.
Although specific features of various embodiments of the disclosure may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the disclosure, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
This written description uses examples to disclose the embodiments, including the best mode, and also to enable any person skilled in the art to practice the embodiments, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
This application is a continuation-in-part of International Patent Application Serial Number PCT/US2015/054115, entitled “MULTI-BRANCH FURCATING FLOW HEAT EXCHANGER”, which was filed on Oct. 6, 2015, and which claims the priority of provisional Patent Application Ser. No. 62/060,719 entitled “MULTI-BRANCH FURCATING FLOW HEAT EXCHANGER”, which was filed on Oct. 7, 2014, and which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3228464 | Stein et al. | Jan 1966 | A |
3548932 | Menkus | Dec 1970 | A |
4149591 | Albertsen | Apr 1979 | A |
4343354 | Weber | Aug 1982 | A |
4784218 | Holl | Nov 1988 | A |
4915164 | Harper, Jr. | Apr 1990 | A |
5941303 | Gowan et al. | Aug 1999 | A |
6877552 | King | Apr 2005 | B1 |
7044207 | Guidat | May 2006 | B1 |
7069980 | Hofbauer | Jul 2006 | B2 |
7866377 | Slaughter | Jan 2011 | B2 |
7871578 | Schmidt | Jan 2011 | B2 |
8015832 | Setoguchi et al. | Sep 2011 | B2 |
8235101 | Taras et al. | Aug 2012 | B2 |
8240365 | Obana | Aug 2012 | B2 |
8794820 | Mathys et al. | Aug 2014 | B2 |
9134072 | Raisin et al. | Sep 2015 | B2 |
20050006064 | Garimella | Jan 2005 | A1 |
20050016721 | Antonijevic | Jan 2005 | A1 |
20080149299 | Slaughter | Jun 2008 | A1 |
20100270011 | Takahashi et al. | Oct 2010 | A1 |
20130139541 | Seybold et al. | Jun 2013 | A1 |
20130206374 | Roisin et al. | Aug 2013 | A1 |
20130276469 | Dryzun | Oct 2013 | A1 |
20130277021 | Huebel | Oct 2013 | A1 |
20140014493 | Ryan | Jan 2014 | A1 |
20140251585 | Kusuda | Sep 2014 | A1 |
20150010874 | Ghazvini et al. | Jan 2015 | A1 |
20160116218 | Shedd | Apr 2016 | A1 |
20160116222 | Shedd | Apr 2016 | A1 |
20170248372 | Erno | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
102721303 | Apr 2014 | CN |
1777479 | Apr 2007 | EP |
1837616 | Sep 2007 | EP |
2310896 | Sep 1997 | GB |
3192788 | Dec 2001 | WO |
2011115883 | Sep 2011 | WO |
2014105113 | Jul 2014 | WO |
Entry |
---|
Biswas (Heat transfer and flow structure in laminar and turbulent flows in a rectangular channel with longitudinal vortices) (Year: 1994). |
Jungwon Ahn (Fundamental Studies of Crossflow Heat Exchangers for Laminar and Turbulent Flows) (Year: 2017). |
Dejong (Flow, Heat Transfer, and Pressure Drop Interactions in Louvered-Fin Arrays) (Year: 1999). |
Silva et al., “Constructal multi-scale tree-shaped heat exchangers”, Journal of Applied Physics, vol. 96, Issue: 3, 2004. |
Kim et al., “Two-phase flow distribution of air-water annular flow in a parallel flow heat exchanger”, International Journal of Multiphase Flow, vol. 32, Issue: 12, pp. 1340-1353, Dec. 2006. |
International Search Report and Written Opinion, dated Jan. 22, 2016, for International Application No. PCT/US2015/054115. |
Partial European Search Report and Opinion issued in connection with corresponding EP Application No. 17162283.0 dated Oct. 26, 2017. |
Number | Date | Country | |
---|---|---|---|
20160202003 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
62060719 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2015/054115 | Oct 2015 | US |
Child | 15077191 | US |