This invention relates to a method and apparatus for inspecting, testing, cleaning and/or plugging tubes of a heat exchanger while the heat exchanger is in operation.
There are several types of heat exchangers used in various industries. A common type is known as a shell and tube type. Modern shell and tube exchangers are of several types, including: (1) a straight through version where the heat exchange tubes are generally straight, (2) a U-tube version where the heat exchange tubes are bent into a U so the inlets and outlets of the heat exchange tubes pass through the same tube sheet and open into compartments provided by a channel and (3) a floating head type where the inlets and outlets are at one end of the exchanger, the tubes are straight and open, at the opposite end of the exchanger, into a floating head or manifold that directs flow back toward the outlet. U-tube type heat exchangers have a cost advantage because only one set of inlet/outlet channels is required. Straight through heat exchangers are typically selected when the tube side fluid deposits materials in the tube or is corrosive because it is usually more difficult to clean the curve in a U-tube type.
The performance of shell and tube heat exchangers degrades over time by the deposition of solids from the tube side flow onto the inside wall of the heat exchanger tubes. This is commonly referred to as tube side fouling and can significantly impair the performance of heat exchangers. Fouling deposits act as an insulator and thereby reduce heat transfer across the walls of the tubes. This fouling can also cause increased pressure drops across the tubes thereby decreasing flow through the tubes. Under certain conditions, these deposits can also promote corrosion of the inside of the tube wall, a phenomenon known as under-deposit corrosion. This corrosion, if left unchecked, can produce leak paths through the tube wall allowing commingling of the heat exchange fluid and the process fluid. Even though tube side fouling is a persistent maintenance problem, it is much preferred to shell side fouling because it is much easier to clean and inspect the interior of the heat exchange tubes as compared to the outside. For this reason, in situations where one of the two fluids is more corrosive or more prone to produce deposits in the heat exchanger, this fluid may preferably be put through the tubes rather than through the shell.
Various methods have been developed to clean the inside of heat exchanger tubes to remove deposits. These deposits are often relatively hard and therefore difficult to remove from the tube walls. To effectively clean tube side fouling, the heat exchanger must be taken off-line and out of service to access and mechanically clean the inside of the tubes. These off-line methods of cleaning include high pressure water cleaning known as hydroblasting, mechanical cleaning using brushes, scrapers or projectiles, and blasting with abrasive media. Once the tubes are cleaned and while the heat exchanger is off-line, the tubes may be inspected to determine if corrosion has thinned or pitted the tube wall and a determination can be made to replace or retain the tube. In some circumstances, the tube may be replaced or simply plugged, i.e. a plug is placed in the tube to block flow through it.
As currently practiced, all inspection techniques require the heat exchanger to be out of service. Cleaning by circulation of abrasive media may conventionally be done while a heat exchanger is in operation by inserting media into the flow entering the tubes and then separating the media from flow out of the tubes. As currently practiced, heat exchangers must be out of service in order to plug a leaking or unserviceable tube. The cost of disassembling and then reassembling the heat exchanger to permit access to the tubes for cleaning and inspection can be significant. More significant in many situations is the lost production cost from taking the heat exchanger and its associated equipment out of service.
The costs associated with reduced capacity of heat exchanger tubes can also be substantial in situations where the throughput of process fluids has to be curtailed. In one oil refinery, the estimated lost production costs of reduced throughput from a catalytic cracker due to deteriorating heat exchange performance has been in the range of $500,000/year.
Disclosures relative to this invention are found in U.S. Pat. Nos. 571,016; 2,882,022; 3,312,274; 3,708,098; 3,954,136; 4,599,975; 4,920,994; 5,060,600; 5,083,606; 5,307,866; 5,512,140; 5,983,994 and 6,408,936 and in WIPO publications WO 87/05992, WO 90/09556 and WO 2010/095110.
The overall goal of the disclosed method and apparatus is to clean, inspect, test and/or plug heat exchanger tubes while the heat exchanger is in operation. Modern heat exchangers include a densely packed array of tubes opening into a pair of compartments where the tubes provide a first flow path and a second flow path is provided on the outside of the tubes. In the case of a shell and tube heat exchanger, the shell provides a second flow path. In the case of an air fin heat exchanger, the outside of the tubes are open to the atmosphere and a fan is provided to force air across the outside of the tubes. A characteristic of modern heat exchangers is that the tubes are very close together as explained more fully hereinafter.
In one aspect of the disclosed method and apparatus, an independent isolated flow path is established through a selected tube by passing conduits through the compartments and seating the conduits in fluid tight relation with the tube inlet and outlet. The isolated flow path may be emptied, purged or reduced in pressure thereby allowing cleaning, testing, inspecting and/or plugging the tube without contending with pressurized fluid in the tube. The system used to accomplish these goals can reach at least 80% of the tubes in a heat exchanger. Several different embodiments and accessories are disclosed to accomplish these functions in either newly constructed heat exchangers or in existing heat exchangers modified for this purpose.
In another aspect of the disclosed method and apparatus, a series of brushes are mounted inside the compartment into which the tubes open. The brush shafts extend through seals in the compartment wall. When it is desired to clean the tubes, the brushes are advanced singly into selected ones of the tubes and may preferably be rotated by a drive motor outside the heat exchanger. Several different embodiments or accessories are disclosed to accomplish these functions.
It is an object of this invention to provide an improved method and apparatus for cleaning, testing, inspecting and/or plugging heat exchanger tubes while the heat exchanger is in operation.
A more specific object of this invention is to provide an improved method and apparatus for cleaning heat exchanger tubes while the heat exchanger is in operation utilizing brushes which may be incorporated into the heat exchanger.
A further object of this invention is to provide a heat exchanger having a compartment wall designed to accommodate the leak free insertion of tube isolation tools and or other maintenance equipment during operation of the heat exchanger at high capacity.
These and other objects and advantages of this invention will become more apparent as this description proceeds, reference being made to the accompanying drawings and appended claims.
Although there are a variety of embodiments disclosed which involve cleaning, inspecting, testing and/or plugging of heat exchanger tubes while the exchanger is in operation, it is understood that these embodiments are merely suggestive of numerous other approaches or techniques which may be adopted for these purposes. In general, descriptive statements do not delimit the claims in this application and some statements relative to one embodiment or feature are not necessarily applicable to other embodiments or features.
Tubular heat exchangers come in many forms and have many names. Some of the more common industrial heat exchangers that can be cleaned, inspected, tested and/or plugged with the devices disclosed herein include shell and tube heat exchangers, boilers, surface condensers and air cooled fin tube exchangers. In one sense, the disclosed devices operate on the inside of the tubes and what occurs on the outside of the tubes may be of any description. The devices disclosed may be used in many industries and many applications including oil refiners, petrochemical plants, chemical or pharmaceutical plants, coal and gas fired power plants, nuclear power plants, pulp and paper plants, mining and smelting operations, food and consumer product manufacturing, commercial heating and cooling, and military installations and equipment.
Referring to
Although the heat exchanger 10 is illustrated as being a shell and tube heat exchanger of the U-tube type, it will be apparent that the disclosed method and apparatus are useable in other types of heat exchangers as mentioned above, including a shell and type heat exchanger having straight tubes exiting through a pair of opposite tube sheets and accessible through a pair of removable channel covers and other heat exchangers as discussed previously.
One characteristic of practical modern heat exchangers is there is a rather small variation in tube diameter and a rather small variation in spacing between tubes. Smaller tubes have greater heat exchange surface but produce larger pressure drops in tube side flow while larger tubes have the opposite characteristics. Larger spacing between the tubes produces smaller pressure drops in shell side flow but sometimes awkward flow distribution and thus less efficient heat exchange. This combination of effects tends to produce practical heat exchangers with a small variation in tube O.D.'s and a small variation in spacing between tubes. In the industry, this combination is known as tube pitch where:
Pt=do+c
where Pt is tube pitch, do is tube outside diameter and C is clearance or horizontal spacing between the O.D. of horizontal tubes as shown in
These values are taken from a publication of P & I Design Ltd., Teesside, U.K. and is available at: www.chemstations.com/content/documents/Technical_Articles/shell.PDF. In these tube O.D.'s, it will be seen that clearance C varies from ¼″ to ⅜″ in square pitch heat exchangers while clearance C varies from 5/32″ to ⅜″ in triangular pitch heat exchangers. Of interest, a majority of industrial heat exchangers have ¾″ O.D. tubes followed by heat exchangers having 1″ O.D. tubes with other sizes amounting to a small percentage of heat exchangers. If one were to construct a ratio of C/do, it would vary between 0.25-0.4 for square pitch heat exchangers and would be between about 0.20-0.25 for triangular heat exchangers. As will become apparent, the method and apparatus disclosed herein can be particularly useful with heat exchangers having closely spaced tubes, i.e. a ratio of C/do in the range of about 0.2-0.5 and ideally with heat exchangers having a ratio of C/do of 0.2-0.4.
In order to clean, inspect or repair heat exchanger tubes in many industrial applications, it is not sufficient to isolate one or a few heat exchanger tubes because, running at more-or-less maximum capacity for months or years on end, many different tubes in a heat exchanger suffer from one problem or other and not all experience the same problem. In many industrial applications, one cannot shut down a heat exchanger without shutting down a considerable part of a plant, such an oil refinery or chemical plant. In these situations, heat exchanger maintenance is done during turnarounds where all or a substantial part of the plant or refinery is shut down and all sorts of maintenance or repair work is done on an expedited around the clock basis. If a heat exchanger in such an industrial plant begins to function inefficiently or a leak develops in a tube, there is little that can be done other than reduce process flow through the production unit to maintain the desired heat exchange outlet temperatures or minimize leakage.
Heat exchangers are intentionally over designed in the sense that the exchanger will deliver its required performance when less than all of the tubes are functioning at predicted levels. For example, heat exchangers are often designed to function at their desired capacity when only 90% of the heat exchanger tubes are performing normally. This leaves some room for reduced performance due to loss of heat transfer efficiency across the tube walls, for loss of flow capacity through the tubes and/or plugging of leaking tubes. Thus, if one has the capability of servicing a high percentage of tubes in a heat exchanger while it is operating, one has the capability of keeping a heat exchanger operating at capacity until the next turnaround when the heat exchanger can be more thoroughly repaired or replaced. Being able to prolong high capacity in a heat exchanger can have substantial economic effects. In heat exchangers operated in conjunction with a crude unit in an oil refinery, the cost of heating process fluids can rise as much as 25% between turnarounds as the efficiency of the heat exchangers declines.
The difficulty in servicing most, or all, of the tubes of a heat exchanger is space and geometry. Heat exchangers have many tubes spaced very close together as is apparent from the discussion about tube pitch. Consideration of Table I shows the distance between adjacent tubes in the stated size range is between ¼-⅜″, meaning that adjacent tubes have a clear area around the O.D. of ⅛- 3/16″ greater than the O.D. of the tube. In other words, in the configuration of
A goal of the method and apparatus disclosed is to have the capability of servicing at least 80% of the tubes of a heat exchanger. It may be preferred to have the capability of servicing at least 90% of the tubes of a heat exchanger and, ideally, it may be preferred to have the capability of servicing all of the tubes of a heat exchanger.
To this end, one approach can be to provide one access opening for a series of adjacent heat exchanger tubes. One version of this concept is shown in
Referring to
To reduce or control leakage, the valve-seal assemblies 68 can include a valve 70 and a seal assembly 72. The valve 70 can include a valve body 74 attached to the channel cover 28 in any suitable manner such as by threading onto an external boss 76. The seal assembly 72 can include a bushing or guide block 80 having a passage 82 therethrough equipped with seals 84 such as O-rings or the like. In the alternative, the O-rings may be on the outside of the isolation tool and seal against a smooth passage on the inside of the guide block 80. The guide block 80 can be attached to the valve body 74 in any suitable manner or may be located in a housing attached to the valve body 74 in any suitable manner for purposes more fully apparent hereinafter. The passage 82 of the guide block 80 is designed to pass a probe or isolation tool 90 therethrough to mate with the aligned tube end 52, 56 i.e. the passage 82 may be in the center of the guide block 80 having an axis coincident with the axis of the tube end 52, 56.
The isolation tool 90 can include a conduit 92 having a valve 94 near the end having a fitting 96 for connection to a hose to discharge the contents of a selected one of the tubes 18 as will be explained more fully hereinafter. The conduit 92 can be round to easily seal against the seals 84 providing leak free or relatively leak free insertion of the isolation tool 90 into the heat exchanger 10. Preferably, the conduit 92 can be forced into mating engagement with the tube end 62, 64. To this end, the tool 90 can include a stop 98 fixed to the conduit 92 and a coupling 100 slidable on the conduit 92. Threads on the inside of the coupling 100 engage threads on the guide block 80 so threading the coupling 100 on the guide block 80 causes the coupling 100 to engage the stop 98 and force the conduit 92 to the right in
A comparison of the upper and lower parts of
Referring to
Conducting maintenance operations on an aligned tube and then on the family of non-aligned tubes surrounding or partly surrounding the aligned tube is typically repeated as desired as more fully discussed hereinafter. It will accordingly be seen that a very large percentage of the tubes 18 of the heat exchanger 10 can be isolated, depressured, deinventoried, cleaned and/or inspected. Thus, it is possible to conduct considerable maintenance on a heat exchanger while it is operating at high capacity and thereby keep it in operation until the next turnaround or regularly scheduled off-line maintenance opportunity.
One cleaning tool may be a simple brush 126 comprising bristles 128 on the end of a shaft 130 as shown in
It will be seen that the arrangement of
It will be apparent there are seals between the conduit 92 and the guide blocks 80, 110, between the guide blocks 80, 110 and their housings 86 and any others as necessary to control pressure inside the heat exchanger 10 and thereby prevent or minimize leakage of the heat exchange fluid or the process fluid to atmosphere in or around the isolation tools 90.
Another maintenance operation that can be conducted in an inspection of the tubes 18 with a device to measure the thickness of the wall of the tubes. These are typically eddy current devices and are commercially available. For eddy current devices to work optimally, the O.D. of the eddy current device should be on the order of at least 80% of the I.D. of the tube being inspected. Thus, the I.D. of isolation tool 90 through which the eddy current device may be run may ideally be the same as the I.D. of the tubes 18.
It will be apparent that the tubes 18 may be pressure tested during a maintenance operation by passing a test tool (not shown) through isolation tools into opposite ends of the selected tube 18. A mechanically, pneumatically or hydraulically expandable plug on each test tool is expanded to seal off the selected tube. A suitable pressure or a suitable vacuum can be applied to the selected tube 18 between the test tool seals. Another simple way to determine if a selected tube 18 is leaking is to watch for any fluid escaping through the conduit 92 during cleaning. If the fluid is from tube side flow, there is an inadequate seal with the tube ends 52, 56. If the fluid is from shell side flow, the selected tube is leaking.
It may occur that conducting maintenance on one of the tubes 18 reveals that it is leaking thereby allowing the commingling of process and heat exchange fluids. In these situations, it may be decided to plug the unserviceable tube. Referring to
When the on-line maintenance of the heat exchanger 10 is complete, the isolation tools 90 and any other equipment are removed from the heat exchanger 10. A variety of approaches may be used to plug the openings 50, 52 through which the isolation tools are run. The valves 70 may be left in place. A plug 194 may be run through the valve 70 and seated in the passage 50 and the valve 70 then removed. Other approaches may be apparent to those skilled in the art.
Referring to
In
In
In
In
In
In
The arrangement of
It will be seen that the junctions of
Another approach for maintaining 80% or more of the tubes of a heat exchanger is shown in
Although the passages 190 could be sealed with a simple threaded plug,
When it is desired to conduct maintenance operations on the heat exchanger 180, a valve 218 having a flange 206 can be attached to the plugs 194 surrounding the passage 190 aligned with the tube to be worked on. This can be accomplished by threading bolts 208 into the blind passages 204 of the plugs 194 in a circle around the selected passage 190 as shown best in
A valve-seal assembly 216 includes the valve 218 and a seal assembly 220 for sealing against the outside of an isolation tool and is thus analogous to the valve-seal assembly 68 of
One of the valve-seal assemblies 216 is attached to the channel cover 188 on each side of the partition wall 186 through openings 190 aligned with the inlet and outlet ends of a selected heat exchanger tube. An isolation tool 228 can then be passed through one of the assemblies 216 to seat against the inlet end of the selected tube and an isolation tool 228a can then be passed through the other valve-seal assembly to seat against the outlet end of the selected tube to isolate one of the heat exchanger tubes from tube side flow. Suitable maintenance operations can then be conducted through the isolation tools 228 in the same manner as in the embodiment of
After the maintenance operations are finished on the initial selected passage 190 and its plug 194 replaced, the valve-seal assembly 216 is removed and attached to another set of plugs 194 to enter another selected passage 190. When this is repeated enough, the outside edge of the flange 206 no longer overlaps one of the plugs 194 but instead overlies one of the blind threaded openings 191. When this occurs, the blind opening 191 is used as an anchor for one of the fasteners 208 and thereby allow removal of a plug 194 adjacent the outer periphery of the array of heat exchanger tubes.
Referring to
Referring to
When it is desired to conduct a maintenance operation on a selected one of the tubes 246, the valve 254 is closed and the closure 264 aligned with the selected tube 246 is removed. An isolation tool 266 is inserted into the open passage 252 until the seals 262 seat around the outside of the tool 266. The valve 254 is then opened which allows the tool 266 to be passed through the valve 254 along the axis 268 into sealing engagement with the selected tube 246. The same operation is conducted on the other end of the tube 246 to isolate it from tube side flow. A cleaning implement, wall thickness measuring device or other maintenance tool is run through the isolation tools 266 to perform the desired maintenance. The isolation tools 266 are then removed from the heat exchanger 242 in reverse order to place the selected tube back into service. This is repeated with successive ones of the tubes 246 until a desired number of the tubes are cleaned and/or inspected.
One of the peculiarities of the embodiment of
Referring to
A seal assembly 310 and a closure 312 is provided for each of the passages 284. The closure 312 can be a simple plug providing a polygonal head for receiving a wrench or socket and sealed by an o-ring or gasket. The valves 286, 288, which may be aligned as shown or offset, are normally closed to block flow through the passages 284 although it will be seen they may be open. The number of gate valves can vary from one to many. With one gate valve, it will intersect every passage 284. If the channel cover 272 were partitioned, as many gate valves could be used as there are partitions.
When it is desired to conduct a maintenance operation on a selected one of the tubes 274, the valves 286, 288 can be closed and the closure 312 aligned with one end of the selected tube 274 is removed. An isolation tool 314 is inserted into the open passage 284 until the seals 310 seat around the outside of the tool 314 and the associated valve 286, 288 opened. This allows the tool 314 to be passed through the passage 284 along the axis 316 into sealing engagement with the selected tube 274. The same operation is conducted on the other end of the tube 274, i.e. another isolation tool 314 is run into the heat exchanger 270 on the other side of the partition 276 to seat against the opposite end of the selected tube 274 thereby isolating the selected tube 274 from tube side flow. A cleaning implement, wall thickness measuring device or other maintenance tool is run through the isolation tools 314 to perform the desired maintenance. The isolation tools 314 are then removed from the heat exchanger 270 in reverse order to place the selected tube back into service. This is repeated with successive ones of the tubes 274 until a desired number of the tubes 274 are cleaned and/or inspected.
Referring to
A similar safety system 338 can be provided for the valve-seal assembly 324 to provide a back up for seals 340 which normally prevent tube side flow from escaping around the outside of one of the isolation tools. The safety system 338 can include a passage 342 opening into the central passage 344 of a guide block 346 between the seals 340. The safety system 338 can provide a fitting 348 on the guide block 346 and a valve 350 to control flow into and out of the passage 342. A source 352 of pressurized gas or liquid can connect to the valve 350 and is at a higher pressure than inside the tube side channel. In the event the seals 340 were to begin leaking, a suitable gas or liquid can be injected between the seals 340 at a higher pressure than in the heat exchanger thereby cutting off the flow of tube side fluid. The gas can be nitrogen in the event tube side flow is flammable or air if tube side flow is water and combustion is not a problem.
Referring to
The heat exchanger 370 is illustrated as of the straight through type having tubes 372 opening through a tube sheet 374 into a compartment 376 provided by a channel 378 closed by a channel cover 380. A shell 382 can provide for shell side flow. The channel cover 380 includes a series of a passages 384 aligned with the tubes 372 and having one or more seal assemblies 386 therein sealing against the exterior of a rod or shaft 388 which is conveniently round. A brush 390, scraper or other suitable cleaning device can be attached to the end of the rod 388. During normal operation of the heat exchanger 380, the brushes 390 are retracted toward the channel cover 380 as shown in the center of
When it is desired to clean the tubes 372, one or more extensions 392 can be attached to the rod 388 to advance the brush 390 into the aligned tube 372 as shown in the bottom of
Referring to
It will be seen that any of the tubes 406 can be cleaned by adding extensions 420 to the shaft 412 of the aligned brush 414 and advancing the brush 414 into the tube 406. As the brush 414 enters the U part of the tube 406, the shaft 412 curves to fit the inside of the U. The length of the flexible part of the shaft 412 can be at least half the length of the U so cleaning the inlet and outlet tubes effectively cleans the entire U-tube. Thus, the rod or shaft 412 is sufficiently flexible to pass at least half way through the U of the tubes 406.
Referring to
Referring to
Referring to
Referring to
The channel cover 524 is of a sufficient depth that there is sufficient room for a series of plugs 542 to be threaded into the open end of the passages 526. The plugs 542 can each include a body 544 having external seals 546 for sealing against the passage 526 and a central passage 548 having interior seals 550 for sealing about the periphery of a brush handle 552 comprising part of a brush assembly 554. With the plugs 542 in place, cleaning of the tubes 512 can commence by retracting the appropriate gate valve body 534, 536 to expose one or more of the brush assemblies 554. As in previous embodiments, extensions (not shown) can be attached to the handles 552 so the brush assemblies 554 can be pushed into and/or through the tubes 512 and rotated if desired. When cleaning is finished, the brush assemblies 554 are retracted to the left and the valve body 534 closed so the plugs 542 can be removed and the passages 526 sealed by simple plugs 541. One advantage of this is that cleaning can be quickly accomplished by loading a desired number of passages 526 with the plugs 542 and brush assemblies 554, cleaning the tubes 512 associated with the loaded passages 526. In the alternative, the plugs 542 can remain in the heat exchanger 510 and the brush assemblies 554 are isolated from tube side flow and are not subject to corrosion. In addition, the plugs 542 can be removed and replaced if the brush assemblies 554 become ineffective.
Although
It is apparent that different strategies may be followed in use of the disclosed method and apparatus. One strategy is to use the disclosed method and apparatus to improve the efficiency of heat exchangers when they exhibit reduced capacity. This is a minimalist approach. Another strategy is to use the disclosed method and apparatus to clean and inspect heat exchangers on a regular schedule so, during the next turnaround, no maintenance has to be done on heat exchangers unless it is to replace plugged tubes. This approach has a subtle cost advantage because regular maintenance is much less expensive than maintenance during turnarounds. Other apparent strategies use the disclosed method and apparatus in some intermediate manner.
In the case of a floating head heat exchanger, there is no tube that extends directly from the inlet compartment to the outlet compartment. In such a situation, only one isolation tool need be inserted through a channel cover to provide a path of movement for a cleaning element or an inspection tool. Any debris removed from the tube wall necessarily flows to the outlet and may be separated from tube side flow in any suitable manner. In fact, cleaning of any heat exchanger can be done by inserting only one isolation tool and cleaning only the tube it seats against.
Referring to
If the improvements disclosed herein are incorporated into a heat exchanger at the time of manufacture, alignment of passages in the channel covers with the heat exchanger tubes is accomplished at this time. If the improvements disclosed herein are retrofitted onto existing heat exchangers during a turnaround, it is possible that the modified channel covers can be manufactured based on drawings of the tube sheet and tube array of the heat exchanger to be retrofitted. If existing heat exchangers have too much variation in the placement of tubes in the tube sheet, the existing channel covers are removed and measurements taken of the location of the ends of the heat exchanger tubes so passages can be machined in the channel covers in alignment with the heat exchanger tubes. During a turnaround, machining or modification of the tube sheet or tubes can be done to provide the junction shown in
Although this invention has been disclosed and described in its preferred forms with a certain degree of particularity, it is understood that the present disclosure of the preferred forms is only by way of example and that numerous changes in the details of operation may be resorted to without departing from the spirit and scope of the invention as hereinafter claimed.
This application is based on Provisional Applications Ser. No. 61/322,851, filed Apr. 10, 2010 and Ser. No. 61/351,877 filed Jun. 5, 2010, priority of which is hereby claimed, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
571016 | Pratt | Oct 1896 | A |
1807457 | Weis | May 1931 | A |
2069574 | Bowers | Feb 1937 | A |
2634164 | Drake | Apr 1953 | A |
2882022 | Greathouse et al. | Apr 1959 | A |
3312274 | Sebald | Apr 1967 | A |
3384161 | Malmstrom et al. | May 1968 | A |
3708098 | Roznovsky | Jan 1973 | A |
3954136 | Gugel | May 1976 | A |
4054060 | Ueno | Oct 1977 | A |
4174750 | Nichols | Nov 1979 | A |
4269264 | Goeldner | May 1981 | A |
4357991 | Cameron | Nov 1982 | A |
4452183 | Yazidjian | Jun 1984 | A |
4545426 | Collins | Oct 1985 | A |
4562886 | Holm | Jan 1986 | A |
4599975 | Reeve | Jul 1986 | A |
4778005 | Smith | Oct 1988 | A |
4844021 | Stoss | Jul 1989 | A |
4920994 | Nachbar | May 1990 | A |
5060600 | Brown | Oct 1991 | A |
5083606 | Brown | Jan 1992 | A |
5307866 | Weigel | May 1994 | A |
5311929 | Verret | May 1994 | A |
5499639 | Williams, Jr. | Mar 1996 | A |
5512140 | Rutan | Apr 1996 | A |
5518067 | Finch et al. | May 1996 | A |
5537832 | Keus | Jul 1996 | A |
5846301 | Johnson et al. | Dec 1998 | A |
5979543 | Graham | Nov 1999 | A |
5983994 | Tsou | Nov 1999 | A |
6408936 | Duran | Jun 2002 | B2 |
6609531 | Lesko | Aug 2003 | B2 |
6827091 | Harrison | Dec 2004 | B2 |
6945316 | Schildmann et al. | Sep 2005 | B2 |
7410611 | Salbilla | Aug 2008 | B2 |
8485139 | Kim et al. | Jul 2013 | B2 |
20050067148 | Grobelny et al. | Mar 2005 | A1 |
20060144562 | Castello | Jul 2006 | A1 |
20080000620 | Tao | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
WO 8705992 | Oct 1987 | WO |
WO 9009556 | Aug 1990 | WO |
WO 2010095110 | Aug 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20110247786 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
61322851 | Apr 2010 | US | |
61351877 | Jun 2010 | US |