The invention relates generally to heat exchangers, in particular heat exchangers comprising a stack of spaced apart flat plates.
Bar and plate or plate and frame heat exchangers are most commonly used in industry for prototype applications or for low volume production and high model mix applications. For these types of applications it is desirable to keep production and manufacturing costs to a minimum, especially while allowing for flexibility in design without corresponding re-investment in expensive tooling. Traditional bar and plate or plate and frame style heat exchangers allow design flexibility and typically require minimal tooling costs, which is desirable given their application. However, bar and plate or plate and frame style heat exchangers are often labour intensive to build/manufacture, and may require numerous bar or frame components that are relatively expensive in material cost, and that may be relatively complex to assemble.
There is a continual need to reduce costs associated with the design and manufacture of this type of plate-type heat exchangers as well as to reduce the labour intensity and assembly complexity often required for their manufacture.
Accordingly, there is an on-going need to maintain or increase flexibility in plate type heat exchanger designs, while reducing or avoiding tooling costs, reduce the overall number of components and associated material costs, and to provide simpler and more robust assembly methods.
In accordance with a first example embodiment of the present disclosure there is provided a heat exchanger comprising a plurality of stacked heat exchanger plates; a plurality of frame members interposed between each of said heat exchanger plates, the frame members spacing apart each of said plates, the frame members and plurality of stacked heat exchanger plates together defining fluid channels therebetween; corresponding pairs of openings formed in each of said heat exchanger plates, the corresponding pairs of openings in adjacent plates aligning so as to define respective inlet and outlet manifolds for the flow of a first and a second fluid through corresponding ones of said fluid channels in said heat exchanger; wherein each of the frame members comprises a first sealing member adapted to correspond to the periphery of at least a portion of the heat exchanger plates; a second sealing member adapted to form fluid boundaries around the corresponding pair of openings formed in the heat exchanger plates; at least two free ends forming at least one joint such that said frame member provides a first fluid tight seal around the entire periphery of the plates, and a second fluid tight seal around one of said corresponding pairs of openings formed in the plates.
In accordance with another example embodiment of the present disclosure there is provided a method of making a heat exchanger, comprising the steps of providing a plurality of heat exchange plates having fluid openings formed therein; providing a plurality of frame members, the frame members being formed from at least one length of material having two free ends; bending said at least one length of material into a configuration to provide a first sealing member following the periphery of the heat exchange plates, and a second sealing member forming a boundary around at least one of said fluid openings in said plates, each of said free ends forming at least part of a joint to form a sealing frame member; forming an alternating stack of said heat exchanger plates and said sealing frame members to form first and second sets of fluid channel members.
Exemplary embodiments of the present disclosure will now be described by way of example with reference to the accompanying drawings, in which:
Referring now to
As shown, fluid channel member 10 comprises a pair of first and second plates 12, 14 that are spaced apart from one another and connected together by a frame member 16 so as to form a fluid passageway 18 therebetween. A turbulizer or other heat transfer augmenting device (not shown) may be positioned within fluid passageway 18 between plates 12, 14 depending upon the particular design and application of heat exchanger 100. Plates 12, 14 are essentially identical to each other and it will be understood that as fluid channel members 10 are stacked one on top of the other to form the heat exchanger 100, the first (or upper) plate 12 of one fluid channel member 10 becomes the second (or lower) plate 14 of the adjacent fluid channel member 10.
First and second plates 12, 14 are generally rectangular in shape and made from any suitable material, such as aluminum or stainless steel. Aluminum plates are preferably made from pre-clad aluminum brazing sheet. Stainless steel plates may be made from stainless steel sheet clad with a filler metal such as copper; or the plates may be pre-coated with another suitable filer metal; or a filler metal may be provided as a shim in contact with each plate surface. Plates 12, 14 are also generally flat and are each provided with four openings 20, 22, 24, 26 with one opening being positioned at each of the respective corners of the plates 12, 14. The openings 20, 22, 24, 26 serve as respective inlet/outlet ports for the inletting and discharging of a fluid into their corresponding fluid passageway 18. When a plurality of fluid channel members 10 are arranged one on top of the other, the openings 20, 22, 24, 26 align with the corresponding openings 20, 22, 24, 26 in the adjacent fluid channel member 10 to form respective pairs of inlet/outlet manifolds (not shown) for two separate fluids to flow through the heat exchanger 100 as is known in the art.
Frame member 16 comprises a first or outer peripheral sealing member 32 and a second or manifold sealing member 34. The first sealing member 32 generally follows the periphery or perimeter of the plates 12, 14 around the longitudinal and end edges 35, 37 of the plates 12, 14, the first sealing member 32 joining the first and second plates 12, 14 together at their peripheries in a spaced apart relationship thereby forming a leak-tight, fluid passageway 18 therebetween. The first sealing member 32, therefore, provides a fluid tight seal around the entire periphery of the fluid channel member 10, the plates 12, 14 and frame member 16 being joined together by brazing or any other suitable method to form a sealed, fluid passageway between plates 12, 14 and frame member 16.
The second sealing member 34 forms a fluid barrier or fluid boundary around two of the corresponding openings 20, 22, 24, 26 formed in the plates 12, 14. In the example embodiment shown in
Frame member 16 is generally comprised of mating first and second frame portions 16(1), 16(2). In the subject example embodiment, the first and second frame portions 16(1), 16(2) are generally identical to each other, with the second frame portion 16(2) being rotated 180 degrees with respect to the first portion 16(1), or vice versa, as shown more clearly in
In order to ensure that the first and second frame portions 16(1), 16(2) are appropriately aligned with each other in order to form a robust, first seal 32 around the entire periphery of the plates 12, 14 and a robust second seal 34 around the manifold regions within fluid channel member 10 when the components are brazed or otherwise joined together, the first and second frame portions 16(1), 16(2) are provided with corresponding interlocking features to ensure the frame portions 16(1), 16(2) are securely positioned in their mating relationship. As shown in
The second end 42 of frame portions 16(1), 16(2) is generally provided with a blunt end edge, or free end, which simply abuts up against a corresponding end edge 50 of the first sealing member 32 where of the first sealing member 32 ends and transitions into the second or manifold sealing member 34 forming a butt joint. Although, it will be understood that the second end 42 could also be provided with similar interlocking features, if desired. However, provided that one of the free first or second ends 40, 42 of the frame portions 16(1), 16(2) is provided with interlocking features to form a mechanical connection between the two, the first and second frame portions 16(1), 16(2) should be self-aligning and self-fixturing in order to facilitate assembly/manufacture of the heat exchanger 100.
It will be appreciated by one skilled in the art, that in any of the interlocking, intersecting, or overlapping frame joints described above or in the following sections, the geometry and clearances in these joints is selected to be sufficient to encourage capillary flow of molten brazing filler metal, so that during brazing assembly the mechanical joints are securely and hermetically bonded. That is, the frame ends or frame portions are bonded to each other, and also the entire frame is bonded to the mating heat exchanger plates 12, 14 to create strong and leak-tight fluid passages 18.
Referring now to
A corresponding female interlocking member 148 in the form of a recess that corresponds to the rounded jigsaw or “puzzle-piece” male interlocking member 146 is formed in the corresponding end edge 150 of the mating frame portion 116(1), 116(2) where the first sealing member 132 transitions into the second sealing member 134 at the first end 140 of the frame portion 116(1), 116(2). When the first and second frame portions 116(1), 116(2) are positioned together to form frame member 116, the male interlocking member 146 fits within the female interlocking member 148 thereby forming a mechanical connection or joint within the first sealing member 132 formed by the two frame portions 116(1), 116(2), the mechanical connection thereby aligning and securely positioning the two frame portions 116(1), 116(2) in their mating relationship. Accordingly, frame portions 116(1), 116(2) are self-aligning and self-fixturing.
As shown in the embodiments of
A further embodiment of a frame member 216 is shown in
As shown, frame member 216 is comprised of two generally identical frame portions 216(1), 216(2), with one frame portion 216(1), 216(2) being rotated 180 degrees with respect to the other frame portion 216(1), 216(2). Frame portions 216(1), 216(2) each comprise a first sealing member 232 that extends around a portion of the periphery of the corresponding plates 12, 14 and has one end 240 in the form of the second or manifold sealing member 234. The second or manifold sealing member 234 extends or transitions from the first sealing member 232 towards the interior region of the frame member 216 in order to form the boundary or fluid barrier that will be positioned around one of the fluid openings formed in corresponding plates 12, 14. The first sealing member 232 extends along one of the longitudinal edges 35, an end edge 37 and a portion of the opposite longitudinal edge 35 of the plates 12, 14 so as to provide a complete seal or boundary around the perimeter of the plates 12, 14 when the two frame portions 216(1), 216(2) are positioned in their mating relationship and positioned between plates 12, 14 to form fluid channel member 10.
In the subject example embodiment, rather than having a mechanical connection with interlocking features in the form of a jigsaw or dovetail connection as described above in connection with
Another example embodiment of a frame member 316 is shown in
Various other forms of interlocking or self-aligning connections are contemplated within the scope of the present disclosure as shown, for example, in
In
While the frame members 16, 116, 216, 316 have all been shown as being formed by lengths of material having a generally square cross-sectional area, it will be understood that the frame members 16, 116, 216, 316 may also be formed with lengths of material having a rectangular, circular or oval cross-sectional shape. The lengths of material may be any suitable form of material, such as lengths of wire or rods or bars that is capable of being bent or formed into the desired configurations. Although not essential, in instances where circular or oval lengths of material are used, such as circular or oval wire or rods, to form frame members 16, 116, 216, 316, the frame members may be preferably flattened on their upper and lower surfaces, either before or after assembly. Provided that sufficient contact is provided between the frame member 16, 116, 216, 316 and the corresponding surfaces of the plates 12, 14 to achieve the desired seal, the specific cross-sectional shape of the wire or rod-like material used to form frame member 16, 116, 216, 316 may vary depending upon the particular design and/or application of the heat exchanger 100. For instance, certain diameter wire and/or rod material, or wire and/or rod material with certain aspect ratios, may have manufacturing limitations associated with the ability of the material to be bent to the desired radius to achieve a particular configuration of frame member 16, 116, 216, 316. In instances where the fluid channel members 10 must be appropriately sized to accommodate a turbulizer or other heat transfer augmentation device, a wire or rod of material having the required height to achieve the desired spacing apart of the plates 12, 14 may result in the cross-sectional area of the wire or rod for forming the frame member being such that accurate bending of the wire or rod to achieve the desired configuration is difficult to achieve. Therefore, in certain instances where a sharp bend radius may be required to form the frame members, a tall, thin rectangular bar or a thick ribbon of material positioned on its edge may be preferable, as shown for instance in
Referring now to
Second frame portions 416(2) form the second sealing member 434 in the form of a fluid barrier or boundary that will encircle or surround one of the fluid openings 20, 22, 24, 26 in plates 12, 14. The second frame portions 416(2) are positioned in the interior region defined by the first frame portion 416(1) at diagonally opposed corners thereof, the respective ends 451 of the second frame portions 416(2) being received within corresponding pockets 447 formed in the interior surface or edge of the first frame portion 416(1), similar to the interconnection described in relation to the embodiment shown in
Referring now to
Referring no w to
While all of the above-described embodiments relate primarily to frame members suitable for forming fluid channel members 10 for a single pass heat exchanger wherein the fluid enters the fluid flow passageway 18 through an inlet opening positioned at one corner of the plate 12, 14 and exits the fluid flow passageway 18 at a diagonally opposed corner, variations to the fluid channel members 10 so as to accommodate U-flow or two-pass heat exchanger applications are also contemplated within the scope of the present disclosure.
Referring now to
A flow separating region 656 is formed integrally within frame member 616 in order to accommodate for the U-shaped or two-pass fluid path through the fluid channel members 10 forming the heat exchanger. Flow separating region 656 is formed by bending the frame material along the end edge 35 opposite to the second or manifold sealing members 640 to form a narrow, elongated fluid barrier that projects into the interior region of the frame member 616. The flow separating region 656 causes the fluid entering the fluid channel member 10 to flow from the inlet opening (for example opening 20) along the length of the fluid passageway 18 formed by fluid channel member 10 in a first direction before turning or reversing directions around the end 657 of the flow separating region 656 and flowing along the length of the fluid channel member 10 in a second direction over the second half of the plates 12, 14 to the outlet opening. The second fluid flowing through the heat exchanger is prevented from entering the fluid flow passageway 18 by the second or manifold sealing members 634 and instead enters the fluid flow passageway formed by the adjacent fluid channel member 10. It will be understood that the frame members 616 in adjacent fluid channel members are rotated 180 degrees with respect to each other in order to create the alternating fluid flow passageways 18(1), 18(2) for the flow of two different fluids through the heat exchanger 100.
Referring now to
The first end 740 or second sealing member 734 of each frame portion 716(1), 716(2) forms a fluid boundary or barrier around one of the fluid openings (i.e. one of openings 20, 22 or 24, 26) of a corresponding pair of openings formed in the corresponding plates 12, 14, the first end 740 of the frame portions 716(1), 716(2) terminating at an end edge 741 in the form of a free end that forms an overlapping or lap joint with the interior edge or surface of a corresponding portion of the first sealing member 732.
At least one flow separating region 756 is formed integrally within each frame portion 716(1), 716(2) in order to create a multi-pass fluid flow passageway through the fluid channel members 10 formed by heat exchange plates 12, 14 and frame member 716. Flow separating region 756 is formed by creating a narrow, elongated, tight-radius bend in the material forming frame portions 716(1), 716(2) along the longitudinal edge of the first sealing member 732 intermediate the first end 740 and second end 742, although more proximal to the second end 742, as shown in the example embodiment of
When the first and second frame portions 716(1), 716(2) are brought together into their mating relationship in order to form frame member 716, the free end at the second end 742 of one frame portion 716(1), 716(2) abuts against a corresponding portion of the first end 740 or second sealing member 734 of the other of the frame portions 716(1), 716(2) thereby forming the first sealing member 734 around the entire periphery of the corresponding plates 12, 14. The flow separating regions 756 from each frame portion 716(1), 716(2) extend into the area bounded by the first sealing member 734 from opposite longitudinal sides of the frame member 716 in spaced apart relation to each other. Accordingly, the flow separating regions 756 effectively forming baffles within the fluid flow passageway 18 formed within fluid channel member 10 causing the fluid to make a series of switch-back or hair-pin turns around the respective ends 757 of the flow separating regions 756 through the fluid flow passageway 18 from the inlet opening (for example inlet opening 22) before exiting the fluid channel member 10 through the corresponding outlet opening (for example outlet opening 24). The second fluid flowing through the heat exchanger is prevented from entering the fluid flow passageway 18 by the second or manifold sealing members 734 and instead enters the fluid flow passageway 18 formed by the adjacent fluid channel member 10 and, in the subject example embodiment, flows in a direction generally opposite to the first fluid flowing through the heat exchanger 100. In the subject embodiment, it will be understood that the combined frame members 716 (i.e. frame portions 716(1), 716(2) arranged in their mating relationship) in adjacent fluid channel members 10 are rotated 180 degrees with respect to each other in order to create the alternating fluid flow passageways 18(1), 18(2) for the flow of two different fluids through the heat exchanger 100.
While the embodiment shown in
Referring now to
In order to create the desired two-pass or U-flow fluid passageway through the fluid channel members 10, frame member 816 also comprises a flow separating region 856 that is formed integrally within frame member 816 in order to accommodate for the U-shaped or two-pass fluid path through the fluid channel members 10 forming the heat exchanger. Flow separating region 856 is formed by bending the frame material to form a narrow, elongated fluid barrier between two adjacent fluid openings, the fluid barrier projecting into the interior region of the frame member 816. The flow separating region 856 causes the fluid entering the fluid channel member 10 to flow from the inlet opening (for example opening 20) along the length of the fluid passageway 18 formed by fluid channel member 10 in a first direction before turning or reversing directions around the end 857 of the flow separating region 856 and flowing along the length of the fluid channel member 10 in a second, opposite direction over the second half of the plates 12, 14 to the outlet opening 22. The second fluid flowing through the heat exchanger is prevented from entering the fluid flow passageway 18 by the second or manifold sealing members 834 and instead enters the fluid flow passageway formed by the adjacent fluid channel member 10.
It will be understood that in order to create a cross-flow pattern through the heat exchanger where the first fluid flowing through the heat exchanger flows in a direction generally perpendicular to the direction of the second fluid flowing through the heat exchanger, the frame members 816 in adjacent fluid channel members 10 are inverted or flipped and rotated 90 degrees with respect to each other in order to create the alternating cross-flow fluid flow passageways for the flow of two different fluids through the heat exchanger 100. It will also be understood that the heat exchange plates 12, 14 forming the fluid channel members 10 with frame members 816 will not be generally rectangular in shape since one of the pairs of manifolds (i.e. fluid openings 24, 26 shown in
Referring now to
In the subject embodiment, the heat exchanger 100 is comprised of a stack of fluid channel members 10 comprising a pair of first and second plates 12, 14 that are spaced apart from one another and connected together by one of two different frame members 916A, 916B so as to form an alternating stack of fluid passageways 18(1), 18(2) therebetween. As in the previously described embodiments, a turbulizer or other heat transfer augmenting device (not shown) may be positioned within fluid passageways 18(1), 18(2) in the interior region defined by either of frame members 916A, 916B between plates 12, 14 depending upon the particular design and application of heat exchanger 100.
The plates 12, 14 that would form fluid channel members 10 with frame members 916A, 916B are generally flat plates with a modified rectangular shape having an outboard area for accommodating a fluid inlet/outlet opening for the flow of one of the fluid through the heat exchanger. The plates 12, 14 therefore are each provided with four openings 20, 22, 24, 26 with three of the openings 22, 24, 26 being positioned at three respective corners of the plates 12, 14 with the fourth fluid opening 20 being located in the outboard area of the plate. As in the previously described embodiments, the openings 20, 22, 24, 26 serve as respective inlet/outlet ports for the inletting and discharging of a fluid into their corresponding fluid passageway 18. When a plurality of fluid channel members 10 are arranged one on top of the other, the openings 20, 22, 24, 26 align with the corresponding openings 20, 22, 24, 26 in the adjacent fluid channel member 10 to form respective pairs of inlet/outlet manifolds (not shown) for two separate fluids to flow through the heat exchanger 100 as is known in the art with one of the manifolds from one of the pairs of manifolds being located in the outboard area of the heat exchanger.
In order to create the alternating fluid flow passageways 18(1), 18(2) through the heat exchanger for the two different fluids, two different frame members 916A, 916B are required. Frame member 916A is comprised of mating first and second frame portions 916A(1), 916A(2) that are different to each other. Each of the first and second fame portions 916A(1), 916A(2) has a first end 940 in the form of a portion of the second sealing member 934 while the remainder of the frame portion 916A(1), 916A(2) follows the periphery of the corresponding heat exchanger plates 12, 14 along the remainder of a longitudinal edge portion 35 and at least a portion of each of the end edge portions 37 of the plates forming a portion of the first sealing member 932 before each frame portion 916A(1), 916A(2) terminates at a second, free end 942.
Each of the first ends 940 of frame portions 916A(1), 916A(2) forms a fluid boundary around a corresponding fluid opening before terminating at an end edge or free end 941and forming an overlapping or lap joint with the interior edge or surface of a corresponding portion of the first sealing member 932 of the same frame portion 916A(1), 916A(2) to provide a complete seal around the corresponding fluid opening. Each of the second ends 942 of each of frame portions 916A(1), 916A(2) abuts a corresponding portion of the first end 940 of the corresponding frame portion 916A(1), 916A(2) forming corresponding butt joints when the frame portions 916A(1), 916A(2) are brought into their mating relationship forming frame member 916 and completing the first sealing member 932. Accordingly, a first series of fluid channel members 10A for forming the heat exchanger are formed by arranging frame member 916A between a pair of corresponding plates, the first series of fluid channel members 10A permitting a first fluid to enter the fluid passageway bounded by frame member 916A through one of openings 22, 26 and exit through the other of the openings 22, 26 while the second fluid flowing through the heat exchanger is prevented from entering the fluid passageway bounded by frame member 916A by means of the second sealing member 934 formed around the remaining two fluid openings formed in the plates.
Frame member 916B (see
Accordingly, it will be understood that the heat exchanger formed with frame members 916A, 916B is comprised of an alternating stack of the first series fluid channel members 10A and the second series fluid channel members 10B, i.e. an alternating stack of heat exchange plate, frame member 916A, heat exchange plate, frame member 916B, etc.
As in the previously described embodiments, frame members 916A, 916B are also formed from lengths of material that are bent or formed into the desired configuration, the frame portions for each of frame members 916A, 916B being brought into a mating relationship to complete the first sealing member 934 and thereby provide a complete, fluid-tight seal around the periphery of the heat exchange plates when all of the components are brazed, or otherwise joined together.
While heat exchanger 100 has been described as being formed by an alternating stack of generally flat plates 12, 14 interposed with frame members 16, variations to the plates 12, 14 are also contemplated within the scope of the present disclosure.
Referring now to
Referring now to
The method of making a heat exchanger 100 comprising plates 12, 14 and frame members 16, 116, 216, 316, 416, 516, 616 is to begin with a plurality of flat heat transfer plates 12, 14 that have been stamped or cut to the desired shape and size with appropriate fluid openings 20, 22, 24, 26 formed therein. Fluid openings 20, 22, 24, 26 can also be stamped or cut into the plates 12, 14. The next step is to provide a plurality of frame members 16 by forming lengths of material such as lengths of wire, rods or bars that are bent into the desired frame shape depending upon the particular application or design of the heat exchanger 100. Where lengths of wire material are used, a wire feed machine or CNC formed wire can be used to fabricate repeating patterns of the individual, mating frame portions 16(1), 16(2) with the wire material being bent into the desired form and in some instances interlocking members are formed in the wire material to provide for a mechanical connection between the individual frame portions 16(1), 16(2). In other instances, instead of using a wire feed machine, the frame members can be formed by bending the wire material free-form around a mandrel or jig. Whether a wire feed or CNC machine is used to fabricate the frame portions 16(1), 16(2) may depend of the type of interlocking connection that is incorporated into the frame portions 16(1), 16(2). For instance, the overlapping or stepped connections 356, 256 are more conducive to be free formed as opposed to the dovetail or jigsaw connections.
In instances where wire material having a square cross-sectional shape is used, the formed wire frame portions may then be subjected to a post-bending flattening operation such as coining or spanking in order to flatten out any deformations in the material that result from the bending of the square-shaped wire material since the square-shaped wire material tends to deform in the vertical direction at the corner areas formed in the frame 16. The flattening operation may also serve to ensure locking or securing together of the frame members at their respective joints. When round or oval wire frame material is used to form the frame members 16, post-bending flattening operations may not be required since the round or oval wire frame material does not tend to deform as much in the vertical direction when bent to form corners as in the case of the square-shaped wire frame material. However, round or oval shaped wire material, rods or bars may be subjected to post-bending flattening operations, if desired, especially if additional locking or securing together of the frame members is required.
In embodiments where the frame members 16 are formed by two mating frame portions 16(1), 16(2), once the plurality of individual frame portions 16(1), 16(2) are formed, the frame portions 16(1), 16(2) are positioned together in their mating relationship by interconnection of the dovetail or jigsaw connections, or by means of the overlapping or stepped connections, to form frame members 16. Fluid channel members 10 are then formed by arranging the plates 12, 14 and frame members 16 in their alternating, stacked relationship with the frame members 16 in the first set of fluid flow passages 18(1) being rotated 180 degress with respect to the frame members 16 in the second set of fluid flow passages 18(2). Preferably, each fluid channel 10 will contain within the boundaries of the frame members 16 a suitable heat transfer augmentation device such as a turbulizer or fin (not shown) as is known in the art. Once the stack of fluid channel members 10 is formed, end plates to seal the outermost fluid channel members 10 in the stack are added, the entire assembly being joined together by brazing to form heat exchanger 100.
It will be appreciated that although the frame members 16, 116, 216, 316, 416, 516 may be joined together entirely by mechanical means such as interlocking members as described, additional assembly aids such as tack welding may be used if needed, to secure butt joints, for example. Tack welding may also be used to secure butt joints found in one piece frame members 616.
In instances where dished plates or tabbed plates, such as those shown in
While various exemplary embodiments of the heat exchanger with a jointed wire frame have been described and shown in the drawings, it will be understood that certain adaptations and modifications of the described exemplary embodiments can be made as construed within the scope of the present disclosure. Therefore, the above discussed embodiments are considered to be illustrative and not restrictive.
Number | Name | Date | Kind |
---|---|---|---|
1502524 | Price, Jr. | Jul 1924 | A |
1986465 | Dempsey | Jan 1935 | A |
2379671 | Wetherby-Williams | Jul 1945 | A |
2782010 | Simpelaar | Feb 1957 | A |
3017161 | Slaasted | Jan 1962 | A |
3042382 | Hryniszak | Jul 1962 | A |
3175832 | Carrell | Mar 1965 | A |
3245693 | Way | Apr 1966 | A |
3334399 | Teeguarden | Aug 1967 | A |
3375570 | Dubusker | Apr 1968 | A |
3583711 | Engelman | Jun 1971 | A |
3738670 | Jelinek et al. | Jun 1973 | A |
4380856 | Wallace | Apr 1983 | A |
4403652 | Schiltz | Sep 1983 | A |
4580793 | Bronson | Apr 1986 | A |
4646821 | Almqvist | Mar 1987 | A |
4653581 | Yogo | Mar 1987 | A |
4690413 | Adkins | Sep 1987 | A |
4705102 | Kanda | Nov 1987 | A |
4815534 | Fuerschbach | Mar 1989 | A |
4893673 | Rosman | Jan 1990 | A |
5020809 | Mullaney | Jun 1991 | A |
5149108 | Leiszter | Sep 1992 | A |
5149109 | Jelinek et al. | Sep 1992 | A |
5161808 | Walters | Nov 1992 | A |
5236203 | Uchida et al. | Aug 1993 | A |
5618047 | Better | Apr 1997 | A |
6076832 | Pow | Jun 2000 | A |
6308960 | Peale | Oct 2001 | B1 |
6516874 | Mathur et al. | Feb 2003 | B2 |
6989134 | Tonkovich et al. | Jan 2006 | B2 |
7011482 | Underwood et al. | Mar 2006 | B2 |
7404434 | Martin et al. | Jul 2008 | B2 |
8123228 | Muldoon et al. | Feb 2012 | B2 |
20030121649 | Seiler et al. | Jul 2003 | A1 |
20040182541 | Blomgren | Sep 2004 | A1 |
20050082049 | Brost | Apr 2005 | A1 |
20060032621 | Martin et al. | Feb 2006 | A1 |
20100044021 | Noel-Baron et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
0136481 | Apr 1985 | EP |
1526350 | Apr 2005 | EP |
1345815 | Dec 1963 | FR |
2584806 | Jan 1987 | FR |
2219387 | Dec 1989 | GB |
H0979784 | Mar 1997 | JP |
2006313030 | Nov 2006 | JP |
2009052873 | Mar 2009 | JP |
2006017925 | Feb 2006 | WO |
Entry |
---|
International Search Report with Written Opinion for PCT/CA2014/050247. |
English Abstract of JP2006313030A. |
English Language Abstract of JPH0979784(A). |
Number | Date | Country | |
---|---|---|---|
20140262175 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61793865 | Mar 2013 | US |