The present disclosure relates to a heat exchanger.
A heat exchanger has plate members stacked with each other. The plate member is formed with a refrigerant passage through which refrigerant flows and a cooling water passage through which cooling water flows. In the heat exchanger, the refrigerant passage and the cooling water passage are alternately arranged in the stacking direction of the plate members.
According to one aspect of the present disclosure, a heat exchanger includes a plurality of plate members stacked with each other to define a refrigerant passage and a fluid passage. A refrigerant flowing through the refrigerant passage and a fluid flowing through the fluid passage exchange heat with each other. The heat exchanger includes an inner fin arranged in the refrigerant passage. The inner fin has a plurality of side wall portions formed to extend in a predetermined direction and arranged in parallel with each other. A gap formed between the side wall portions facing each other is a passage portion through which the refrigerant flows. Each of the side wall portions has a plurality of openings arranged in the predetermined direction. A part of the side wall portion located between the openings adjacent to each other has an inclined surface inclined with respect to the predetermined direction.
To begin with, examples of relevant techniques will be described.
A heat exchanger has plate members are stacked with each other. The plate member is formed with a refrigerant passage through which refrigerant flows and a cooling water passage through which cooling water flows. In the heat exchanger, the refrigerant passage and the cooling water passage are alternately arranged in the stacking direction of the plate members. In the heat exchanger, heat is exchanged between the refrigerant flowing through the refrigerant passage and the cooling water flowing through the cooling water passage.
In the heat exchanger, an inner fin is arranged in the refrigerant passage. The inner fin has plate-shaped side walls arranged parallel to each other. A linear refrigerant passage is formed between the side walls facing each other. The side wall includes a first portion having an opening for communicating adjacent refrigerant passages and a second portion having no opening. The first portion and the second portion are arranged alternately along the extending direction of the refrigerant passage. A louver portion is formed on the inner peripheral portion of the opening. The louver portion is a plate-shaped portion protruding into the refrigerant passage. The louver portion is arranged parallel to the extending direction of the refrigerant passage.
In the heat exchanger, the refrigerant alternately repeats colliding with the louver portion in the first portion and flowing linearly along the second portion. Therefore, the pressure of the refrigerant becomes high in the first portion and low in the second portion. Such fluctuations in the pressure of the refrigerant make it possible to improve the distributability of the refrigerant in the refrigerant passage.
In the heat exchanger, the flow of refrigerant changes in each of the first portion and the second portion due to various factors such as the flow velocity of the refrigerant, the passage, and the physical properties. The pressure difference of the refrigerant generated in the first portion and the second portion changes due to the factors. That is, it may not be possible to improve the distributability of the refrigerant in the refrigerant passage in some cases due to the change in pressure difference of the refrigerant in each of the first portion and the second portion depending on the factors. In the conventional heat exchanger, there is room for improvement in the distributability of the refrigerant.
The present disclosure provides a heat exchanger capable of more accurately increasing the distributability of refrigerant.
According to one aspect of the present disclosure, a heat exchanger includes a plurality of plate members stacked with each other to define a refrigerant passage and a fluid passage. A refrigerant flowing through the refrigerant passage and a fluid flowing through the fluid passage exchange heat with each other. The heat exchanger includes an inner fin arranged in the refrigerant passage. The inner fin has a plurality of side wall portions formed to extend in a predetermined direction and arranged in parallel with each other. A gap formed between the side wall portions facing each other is a passage portion through which the refrigerant flows. Each of the side wall portions has a plurality of openings arranged in the predetermined direction. A part of the side wall portion located between the openings adjacent to each other has an inclined surface inclined with respect to the predetermined direction.
Accordingly, the refrigerant flowing in the passage portion flows along the inclined surface, so that the flow direction of the refrigerant can be changed in a direction inclined with respect to the predetermined direction. As a result, the flow direction of the refrigerant changes in the direction intersecting the predetermined direction, so that a gas-phase refrigerant, for example, can flow from a path where the pressure loss is high to a path where the pressure loss is low in the refrigerant passage. Therefore, the distributability of the liquid-phase refrigerant in the refrigerant passage can be improved.
Hereinafter, embodiments will be described with reference to the drawings. To facilitate understanding, identical constituent elements are designated with identical symbols in the drawings where possible with the duplicate description omitted.
A heat exchanger 10 according to a first embodiment shown in
The heat exchanger 10 includes plural plate members 11 stacked in the Z direction. The plate members 11 are joined to each other by brazing or the like. Hereinafter, the Z direction is also referred to as “plate stacking direction Z”. A gap is formed between the plate members 11 adjacent to each other. The gap defines a refrigerant passage through which the refrigerant flows or a cooling water passage through which the cooling water flows. In this embodiment, the cooling water passage corresponds to the fluid passage. In the following, the plate members 11 having the refrigerant passage will be referred to as a refrigerant plate member 111, and the plate member 11 having the cooling water passage will be referred to as a cooling water plate member 112. The refrigerant plate member 111 and the cooling water plate member 112 are alternately arranged in the plate stacking direction Z.
As shown in
A refrigerant inflow port 40 and a refrigerant discharge port 41 are formed at two diagonal corners of the refrigerant plate member 111, respectively. Therefore, the inflow port 40 is formed at one end portion of the refrigerant passage 60, and the discharge port 41 is formed at the other end portion of the refrigerant passage 60. The inflow port 40 introduces the refrigerant into the refrigerant passage 60. The discharge port 41 discharges the refrigerant that has flowed through the refrigerant passage 60. In the refrigerant plate member 111, the refrigerant flows from the inflow port 40 toward the discharge port 41. That is, the refrigerant flows in the direction indicated by the arrow L in
Communication holes 50 and 51 for the cooling water are formed at the other two diagonal corners of the refrigerant plate member 111, respectively. The communication holes 50 and 51 make the cooling water passages of the cooling water plate members 112, 112 adjacent to each other through the refrigerant plate member 111 to communicate with each other. Partition walls 70 and 71 are provided in the refrigerant plate member 111, for partitioning the refrigerant passage 60 and the communication holes 50 and 51. The partition walls 70 and 71 suppress the refrigerant flowing through the refrigerant passage 60 from flowing into the communication holes 50 and 51, and suppresses the cooling water flowing through the communication holes 50 and 51 from flowing into the refrigerant passage 60.
An inner fin 80 is arranged in the refrigerant passage 60 of the refrigerant plate member 111. As shown in
As shown in
The cooling water plate member 112 has the inflow port 42 and the discharge port 43 at positions corresponding to the communication holes 50 and 51 defined in the refrigerant plate member 111, respectively. The inflow ports 42, 42 of the cooling water plate members 112, 112 adjacent to each other with the refrigerant plate member 111 interposed therebetween are communicated with each other through the communication hole 50 of the refrigerant plate member 111. Similarly, the discharge ports 43, 43 of the cooling water plate members 112, 112 adjacent to each other with the refrigerant plate member 111 interposed therebetween are communicated with each other through the communication hole 51 of the refrigerant plate member 111.
While the cooling water plate member 112 not provided with the inner fin is shown in
As shown in
As shown in
The refrigerant is introduced from the refrigerant inflow pipe 20 into the heat exchanger 10. The refrigerant is distributed to the refrigerant passage 60 of the refrigerant plate member 111 through the inflow port 40 of the refrigerant plate member 111 and the communication hole 52 of the cooling water plate member 112. As described above, the inflow port 40 of the refrigerant plate member 111 and the communication hole 52 of the cooling water plate member 112 serve as an inlet-side refrigerant tank for distributing the refrigerant to the refrigerant passage 60 of the refrigerant plate member 111. The refrigerant that has flowed through the refrigerant passage 60 of the refrigerant plate member 111 is collected at the discharge port 41 of the refrigerant plate member 111 and the communication hole 53 of the cooling water plate member 112, and is discharged from the refrigerant discharge pipe 21. As described above, the discharge port 41 of the refrigerant plate member 111 and the communication hole 53 of the cooling water plate member 112 serve as an outlet-side refrigerant tank for collecting the refrigerant flowing through the refrigerant passage 60 of the refrigerant plate member 111.
The cooling water is introduced from the cooling water inflow pipe 30 into the heat exchanger 10. The cooling water is distributed to the cooling water passage 61 of the cooling water plate member 112 through the inflow port 42 of the cooling water plate member 112 and the communication hole 50 of the refrigerant plate member 111. Further, the cooling water flowing through the cooling water passage 61 of the cooling water plate member 112 passes through the discharge port 43 of the cooling water plate member 112 and the communication hole 51 of the refrigerant plate member 111, and is discharged from the cooling water discharge pipe 31.
In the heat exchanger 10, as shown in
Next, the specific structure of the inner fin 80 arranged in the refrigerant passage 60 will be described.
As shown in
The side wall portion 81 is formed so as to extend in the mainstream direction L of the refrigerant. The gap formed between the side wall portions 81 and 81 facing each other is the passage portion 83 through which the refrigerant flows.
The side wall portion 81 has plural openings 84 arranged in the mainstream direction L of the refrigerant. The side wall portion 81 has an inclined surface 85 inclined with respect to the mainstream direction L of the refrigerant at a location between the openings 84, 84 adjacent to each other. The opening 84 and the inclined surface 85 are not formed in the connecting portion 82, but are formed only in the side wall portion 81.
As shown in
Next, an operation example of the heat exchanger 10 of the present embodiment will be described.
As shown in
In this regard, in the heat exchanger 10 of the present embodiment, the refrigerant flowing into the refrigerant passage 60 from the inflow port 40 flows along the first inclined surface 85a when passing through the passage portion 83 of the inner fin 80. The flow direction of the refrigerant can be changed in the width direction W. More specifically, the gas-phase refrigerant passing through the regions A1 and A2 can be changed to flow in the direction toward the outside of the regions A1 and A2. As a result, the liquid-phase refrigerant can easily flow into the regions A1 and A2. That is, the gas-phase refrigerant can flow from the path having a high pressure loss to the path having a low pressure loss, so that the pressure loss difference between the paths can be reduced. It is possible to suppress the uneven distribution of the liquid-phase refrigerant. Therefore, the distributability of the liquid-phase refrigerant in the refrigerant passage 60 can be improved.
According to the heat exchanger 10 of the present embodiment, effects described in the following items (1) to (4) can be obtained.
(1) The inclined surface 85 formed on the inner fin 80 can change the flow direction of the refrigerant in the width direction W. The gas-phase refrigerant can flow from the path where the pressure loss is high to the path where the pressure loss is low in the refrigerant passage 60, by positively changing the flow direction of the refrigerant by the inclined surface 85 in this way. The difference in pressure loss can be reduced, and the distributability of the liquid-phase refrigerant in the refrigerant passage 60 can be improved.
As shown in
As shown in
(2) The opening 84 and the inclined surface 85 are formed by cutting and deforming the inner fin 80. Accordingly, the opening 84 and the inclined surface 85 can be formed in the inner fin 80 without reducing the heat transfer area of the inner fin 80, so that the heat transfer area can be maximized. Therefore, the heat exchange performance can be improved. Further, since the refrigerant flowing in the direction indicated by the arrow L in the passage portion 83 collides with the inclined surface 85, the effect of improving the local heat transfer coefficient is achieved by the front edge effect due to the collision. Further, according to such a method for manufacturing the inner fin 80, since no offcuts are generated, the manufacturability can be improved.
(3) When the refrigerant is in a two-phase state of gas-phase and liquid-phase, the liquid-phase refrigerant tends to flow so as to stick to the vicinity of the curved connecting portion 82 due to its surface tension. That is, the liquid-phase refrigerant tends to flow along the upper end portion and the lower end portion of the side wall portion 81 in the plate stacking direction Z. On the other hand, the gas-phase refrigerant tends to flow in the central portion of the side wall portion 81. In this regard, the opening 84 and the inclined surface 85 are formed only on the side wall portion 81 as in the heat exchanger 10 of the present embodiment. Therefore, the inclined surface 85 formed on the side wall portion 81 allows the flow of the gas-phase refrigerant to easily change the flow direction in the width direction W. As a result, the gas-phase refrigerant, which is the main cause of the pressure loss, easily passes through the opening 84, so that the balance of the pressure loss among the plural passage portions 83 can be made uniform. Therefore, a high effect can be expected in uniformizing the refrigerant distribution in the width direction W. Further, when the inner fin 80 is manufactured, the connecting portion 82 that requires bending and the side wall portion 81 that requires cutting can be processed separately from each other, so that the inner fin 80 can be easily manufactured. Therefore, the manufacturability of the inner fin 80 can be improved.
(4) A part of the side wall portion 81 between the inflow port 40 and the central portion in the mainstream direction L of the refrigerant has the first inclined surface 85a so as to change the flow direction of the refrigerant in a direction away from the discharge port 41. Further, a part of the side wall portion 81 between the discharge port 41 and the central portion in the mainstream direction L of the refrigerant has the second inclined surface 85b that is inclined so as to change the flow direction of the refrigerant toward the discharge port 41. Such a configuration is effective for improving the distributability of the refrigerant in the heat exchanger 10 in which the refrigerant inflow port 40 and the refrigerant discharge port 41 are arranged diagonally of the refrigerant plate member 111, as shown in
Next, a first modification of the heat exchanger 10 of the first embodiment will be described.
As shown in
Next, a second embodiment of the heat exchanger 10 will be described. Hereinafter, the differences from the heat exchanger 10 of the first embodiment will be mainly described.
Depending on the physical properties such as the surface tension of the refrigerant and the degree of opening of the opening 84, even when the first inclined surface 85a and the second inclined surface 85b are formed as in the inner fin 80 of the first embodiment, it may not be possible to improve the distributability of the refrigerant. The shape, number, and the like of the inclined surfaces 85 formed on the inner fin 80 can be changed as appropriate. Hereinafter, specific modifications thereof will be described with reference to
In the inner fin 80 shown in
In the inner fin 80 shown in
The inner fin 80 shown in
In the inner fin 80 shown in
The inner fin 80 shown in
Next, a third embodiment of the heat exchanger 10 will be described. Hereinafter, the differences from the heat exchanger 10 of the first embodiment will be mainly described.
As shown in
Since the cooling water plate member 112 has a structure similar to that of the refrigerant plate member 111, detailed description thereof will be omitted.
As shown in
According to the heat exchanger 10 having such a refrigerant plate member 111, the flow direction of the refrigerant flowing through the refrigerant passage 60 can be changed in the width direction W by using the inner fin 80 as shown in
Next, a fourth embodiment of the heat exchanger 10 will be described. Hereinafter, the differences from the heat exchanger 10 of the first embodiment will be mainly described.
As shown in
A first refrigerant passage 60a and a second refrigerant passage 60b are partitioned by an inner wall 73 inside the refrigerant plate member 111. The inflow port 40 is formed at one end of the first refrigerant passage 60a. The discharge port 41 is formed at one end of the second refrigerant passage 60b. The first refrigerant passage 60a and the second refrigerant passage 60b are communicated with each other at the other ends. The inner fins 80c and 80d are arranged in the refrigerant passages 60a and 60b, respectively. The structure of the inner fin 80c, 80d is the same as the inner fin 80 of the first embodiment.
In the refrigerant plate member 111 of the present embodiment, the refrigerant that has flowed into the first refrigerant passage 60a from the inflow port 40 flows in the direction indicated by the arrow L1. After that, the refrigerant flows from the other end of the first refrigerant passage 60a into the other end of the second refrigerant passage 60b, flows through the second refrigerant passage 60b in the direction indicated by the arrow L2, and then is discharged from the discharge port 41.
In the heat exchanger 10 having such a refrigerant plate member 111, the flow direction of the refrigerant flowing through the refrigerant passage 60 can be changed in the width direction W by using the inner fin 80c, 80d as shown in
Next, a fifth embodiment of the heat exchanger 10 will be described.
Hereinafter, the differences from the heat exchanger 10 of the first embodiment will be mainly described.
As shown in
Next, a sixth embodiment of the heat exchanger 10 will be described. Hereinafter, the differences from the heat exchanger 10 of the fifth embodiment will be mainly described.
As shown in
Plural protrusions 110 are formed on the bottom surface of the refrigerant plate member 111 so as to be located in the gap between the first fin piece 801 and the second fin piece 802. The protrusion 110 on the refrigerant plate member 111 can increase the heat transfer area of the refrigerant plate member 111, so that the heat transfer property of the refrigerant can be promoted.
Next, a seventh embodiment of the heat exchanger 10 will be described. Hereinafter, the differences from the heat exchanger 10 of the first embodiment will be mainly described.
As shown in
The ends of the inner fin 80 may be processed in the direction indicated by the arrow L to have a shape that matches the shape of the inflow port 40 and the discharge port 41.
Next, an eighth embodiment of the heat exchanger 10 will be described. Hereinafter, the differences from the heat exchanger 10 of the above embodiments will be mainly described.
The heat exchanger 10 is used as a so-called evaporator in which the cooling water is cooled while the refrigerant evaporates by exchanging heat between the cooling water and the refrigerant. The heat exchanger 10 of the present embodiment is used as a so-called condenser in which the refrigerant is cooled and condensed by cooling water. It is possible to apply the structure of the heat exchanger 10 of the first to seventh embodiments to the heat exchanger 10 used as the condenser. In the heat exchanger 10 used as a condenser, for example, the gas-phase refrigerant flows into the refrigerant inflow pipe 20. The gas-phase refrigerant flowing into the refrigerant inflow pipe 20 is cooled and condensed by exchanging heat with the cooling water flowing through the cooling water plate member 112 when flowing through the refrigerant passage 60 of the refrigerant plate member 111. The condensed liquid-phase refrigerant is discharged from the refrigerant discharge pipe 21.
When the heat exchanger 10 is used as a condenser in this way, it is effective to use the inner fin 80 as shown in
In the heat exchanger 10 used as a condenser, the proportion of the gas-phase refrigerant is larger than that of the liquid-phase refrigerant on the upstream side of the refrigerant passage 60 near the inflow port 40. Therefore, regarding the pressure loss of the refrigerant flowing in the width direction W, the pressure loss on the upstream side is larger than the pressure loss on the downstream side of the refrigerant passage 60. In the heat exchanger 10, if the inner fin 80 having the inclined surface 85 as shown in
Next, a ninth embodiment of the heat exchanger 10 will be described. Hereinafter, the differences from the heat exchanger 10 of the eighth embodiment will be mainly described.
The heat exchanger 10 of the present embodiment has a structure as shown in
As shown in
The heat exchanger 10 has three types of refrigerant plate members 111a to 111c. The refrigerant plate members 111a to 111c are arranged in this order from the end plate member 11a toward the other end plate member 11b.
As shown in
As shown in
As shown in
In
Further, the refrigerant passages 60a to 60c are formed in the refrigerant plate members 111a to 111c shown in
Further, in the heat exchanger 10, the discharge port 41a of the first refrigerant plate member 111a shown in
With the above structure, the refrigerant flows as shown by the single chain line L10 in
In the heat exchanger 10, the inner fin 80a as shown in
As shown in
According to the heat exchanger 10, it is possible to more efficiently exchange heat between the refrigerant and the cooling water. Further, according to the heat exchanger 10 of the present embodiment, the pressure loss difference between the paths can be reduced as in the heat exchanger 10 of the eighth embodiment. Thus, it is possible to improve the distributability of the liquid-phase refrigerant in the refrigerant passage 60a to 60c.
The inner fins 80a to 80c may be arranged on the refrigerant plate members 111a to 111c so that the inclined surfaces 85 have the same orientation. Specifically, the inner fins 80a, 80c as shown in
The embodiments described above can be also implemented in the following forms.
The number of the openings 84 and the inclined surfaces 85, the inclination orientation and the inclination angle of the inclined surface 85, and the like can be arbitrarily changed in the inner fin 80, 80a, 80b, 80c of each embodiment.
The present disclosure is not limited to the specific examples described above. The specific examples described above which have been appropriately modified in design by those skilled in the art are also encompassed in the scope of the present disclosure so far as the modified specific examples have the features of the present disclosure. Each element included in each of the specific examples described above, and the placement, condition, shape, and the like of the element are not limited to those illustrated, and can be modified as appropriate. The combinations of the elements in each of the specific examples described above can be changed as appropriate, as long as it is not technically contradictory.
Number | Date | Country | Kind |
---|---|---|---|
2018-212962 | Nov 2018 | JP | national |
2019-182356 | Oct 2019 | JP | national |
The present application is a continuation application of International Patent Application No. PCT/JP2019/043484 filed on Nov. 6, 2019, which designated the U.S. and claims the benefit of priority from Japanese Patent Application No. 2018-212962 filed on Nov. 13, 2018 and Japanese Patent Application No. 2019-182356 filed on Oct. 2, 2019. The entire disclosures of all of the above applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2019/043484 | Nov 2019 | US |
Child | 17308655 | US |