The present invention relates to a heat exchanger having a plurality of layer portions each having a plurality of flow paths.
Conventionally, as disclosed in Patent Literatures 1 and 2, there has been known a heat exchanger including a heat exchanger body having a plurality of layer portions each having a plurality of flow paths. In this type of heat exchanger, a plurality of layer portions are laminated to each other, and adjacent layer portions are joined to each other. Heat exchange is performed between a first fluid flowing in a first flow path formed in a first layer portion of the plurality of layer portions and a second fluid flowing in a second flow path formed in a second layer portion of the plurality of layer portions.
In the heat exchanger disclosed in Patent Literature 1, a detection unit formed so as to be relatively easily damaged by thermal stress is provided further outside the outermost layer portion. By feeding nitrogen gas for gas leakage check into the detection unit, the presence or absence of gas leakage from the flow path can be detected by a pressure gauge. The detection unit itself is not configured to flow a heat exchange fluid. Since the damage at the detection unit is earlier than the damage at the layer portion, the damage at the layer portion can be predicted by detecting the damage at the detection unit.
On the other hand, in the heat exchanger disclosed in Patent Literature 2, a protection layer is provided further outside the outermost layer portion. This protection layer has the same strength as that of the layer portion constituting the laminate body. In this heat exchanger, when the heat exchange fluid leaks from the outermost layer portion to the protection layer, the protection layer can function as a portion for holding the pressure similarly to the laminate body of the layer portion. Therefore, even if a fluid leaks from the outermost layer to the protection layer, the heat exchanger can be used continuously.
In Patent Literatures 1 and 2, attention is not paid to the fact that the fluid leaks through a portion where the layer portions are joined together. Therefore, there is a problem that the operation of the heat exchanger cannot be continued when a fluid leaks through the joint portion between the layers. That is, depending on the type of fluid to be subjected to the heat exchange, it is not desirable that the fluid leaked around the heat exchanger accumulate when the fluid leak occurs, and hence the operation of the heat exchanger cannot be continued in some cases. In a case where a fluid leak occurs, it is necessary to, after stopping the operation of the heat exchanger, specify the leak location, repair the specified location, and check whether the leak occurs by applying pressure on a trial basis. This operation requires a time-consuming procedure and does not satisfy the need to continue the operation of the heat exchanger as much as possible.
Patent Literature 1: Japanese Patent Laid-Open No. 2010-249475
Patent Literature 2: Japanese Patent Laid-Open No. 2014-40945
An object of the present invention is to prevent a problem from occurring even if the heat exchange operation is continued when a fluid leak from the heat exchanger occurs.
A heat exchanger according to one aspect of the present invention includes a heat exchanger body having a plurality of layer portions each having a plurality of flow paths, and having a configuration in which adjacent layer portions are joined to each other in a state where the plurality of layer portions are laminated, an inflow header fixed to the heat exchanger body, the inflow header being configured that a fluid is introduced into the inflow header to flow into the plurality of flow paths, an outflow header fixed to the heat exchanger body, the outflow header being configured that a fluid flowing through the plurality of flow paths merges, a cover portion covering all joint portions of the adjacent layer portions or all joint portions of components of the layer portions, the joint portions being exposed on an outer surface of the heat exchanger body at a portion other than a portion where the inflow header and the outflow header are disposed, and a lead-out portion connected to the cover portion and faulting an internal flow path communicating with a space or a gap between the cover portion and the heat exchanger body. The lead-out portion is configured to emit a fluid to a predetermined region set in advance.
Embodiments will be described below with reference to the accompanying drawings. Note that the following embodiments are examples embodying the present invention and are not intended to limit the technical scope of the present invention.
As shown in
The heat exchanger body 12 has a plurality of layer portions 20, and the plurality of layer portions 20 are laminated. A plurality of flow paths 20a are formed in each layer portion 20. In the first embodiment, as shown in
By joining the partition plate 22 to one surface of the corrugated plate 21, the space between the corrugated plate 21 and the partition plate 22 becomes the flow path 20a. In the adjacent layer portions 20, the partition plate 22 of one layer portion 20 and the corrugated plate 21 of the other layer portion 20 are joined to each other, whereby the space between the partition plate 22 and the corrugated plate 21 also becomes the flow path 20a. Then, heat of the fluid flowing through the flow path 20a formed in a certain layer portion 20 is transmitted to the partition plate 22 via the corrugated plate 21, and heat of the partition plate 22 is transmitted via the corrugated plate 21 to the fluid flowing through the flow path 20a formed in the adjacent layer portion 20.
The corrugated plate 21 functions as a fin, and is made of an aluminum alloy, for example. The corrugated plate 21 is brazed with the aluminum alloy on the surface of the partition plate 22. The side bar 23 is also made of an aluminum alloy, for example, and brazed with the aluminum alloy on the surface of the partition plate 22. The material of the corrugated plate 21, the partition plate 22, and the side bar 23 is not limited to these, and any metal may be used as long as heat is transferred between the corrugated plate 21 and the partition plate 22.
In a state where the plurality of layer portions 20 are laminated, the layer portions 20 are joined to each other. In adjacent layer portions 20, the joint portion between the partition plate 22 of one layer portion 20 and the side bar 23 of the other layer portion 20 is exposed on the outer surface of the heat exchanger body 12. The joint portion between the partition plate 22 and the side bar 23 in a layer portion 20 is also exposed on the outer surface of the heat exchanger body 12. These joint portions are exposed on the side surface of the heat exchanger body 12. Note that the layers 20 may be joined by brazing.
The side bar 23 disposed around the corrugated plate 21 has a discontinuity, and the inflow header 14 or the outflow header 15 is attached so as to cover the discontinuity. The flow path 20a communicates with the inflow header 14 and the outflow header 15 through the discontinuity of the side bar 23.
In the present embodiment, in the heat exchanger body 12, heat exchange is performed among a first fluid, a second fluid, and a third fluid. That is, as the layer portion 20, there are a first layer portion 20A having the flow paths 20a through which the first fluid flows, a second layer portion 20B having the flow paths 20a through which the second fluid flows, and a third layer portion 20C having the flow paths 20a through which the third fluid flows. The second layer portion 20B is disposed on one side of the first layer portion 20A, and the third layer portion 20C is disposed on the other side of the first layer portion 20A. Note that the heat exchanger body 12 is not limited to the configuration in which heat exchange is performed among the three fluids, but may be a configuration in which heat exchange is performed between two fluids or a configuration in which heat exchange is performed among four or more fluids.
Since the flow paths 20a formed in the heat exchanger body 12 are open to the side surface of the heat exchanger body 12, the inflow header 14, the outflow header 15, and the cover portion 17 are disposed on the side surface (four sides) of the heat exchanger body 12.
The inflow header 14 has a first inflow header 14a having an inflow port into which the first fluid flows, a second inflow header 14b having an inflow port into which the second fluid flows, and a third inflow header 14c having an inflow port into which the third fluid flows. The first inflow header 14a is attached to a first side surface 12a of the heat exchanger body 12. The first fluid flows into the heat exchanger body 12 through the first inflow header 14a. The second inflow header 14b is attached to a second side surface 12b, which is the side surface opposite to the first side surface 12a. The second fluid flows into the heat exchanger body 12 through the second inflow header 14b. The third inflow header 14c is attached to a third side surface 12c, which is one of the pair of side surfaces adjacent to the first side surface 12a and the second side surface 12b. The third fluid flows into the heat exchanger body 12 through the third inflow header 14c.
The outflow header 15 has a first outflow header 15a having an outflow port from which the first fluid is led out, a second outflow header 15b having an outflow port from which the second fluid is led out, and a third outflow header 15c having an outflow port from which the third fluid is led out. The first outflow header 15a is attached to the second side surface 12b of the heat exchanger body 12. The first fluid flowing through the flow paths 20a in the heat exchanger body 12 merges in the first outflow header 15a and flows to the outside of the heat exchanger 10 through the first outflow header 15a. The second outflow header 15b is attached to the first side surface 12a of the heat exchanger body 12. The second fluid flowing through the flow paths 20a in the heat exchanger body 12 merges in the second outflow header 15b and flows to the outside of the heat exchanger 10 through the second outflow header 15b. The third outflow header 15e is attached to a fourth side surface 12d, which is the side surface opposite to the third side surface 12c. The third fluid flowing through the flow paths 20a in the heat exchanger body 12 merges in the third outflow header 15c and flows to the outside of the heat exchanger 10 through the third outflow header 15c. Any or all of the first to third fluids flow to the outside of the heat exchanger 10 and then are supplied to a demand destination.
Note that the disposition positions of the inflow header 14 and the outflow header 15 are not limited to the above positions. The positions may be set in accordance with the shape of the flow paths 20a and the flow direction of the fluid.
The cover portion 17 has a first cover member 26 fixed to the first side surface 12a of the heat exchanger body 12, a second cover member 27 fixed to the second side surface 12b of the heat exchanger body 12, a third cover member 28 fixed to the third side surface 12c of the heat exchanger body 12, and a fourth cover member 29 fixed to the fourth side surface 12d of the heat exchanger body 12. Each cover member 26 to 29 is formed of a flat plate material.
Each cover member 26 to 29 covers the side surface of the heat exchanger body 12 in a place where the inflow header 14 and the outflow header 15 are not disposed. That is, since the first side surface 12a is provided with the first inflow header 14a and the second outflow header 15b, the first cover member 26 covers a portion of the first side surface 12a other than the portion where the first inflow header 14a and the second outflow header 15b are disposed. Therefore, the first cover member 26 covers the joint portion exposed on the first side surface 12a of the heat exchanger body 12. The first cover member 26 is fixed to the first inflow header 14a and also fixed to the second outflow header 15b. Therefore, no gap or a slight gap exists between the first cover member 26 and the first inflow header 14a. Also, no gap or a slight gap exists between the first cover member 26 and the second outflow header 15b.
Since the second side surface 12b is provided with the second inflow header 14b and the first outflow header 15a, the second cover member 27 covers a portion of the second side surface 12b other than the portion where the second inflow header 14b and the first outflow header 15a are disposed. Therefore, the second cover member 27 covers the joint portion exposed on the second side surface 12b of the heat exchanger body 12. The second cover member 27 is fixed to the second inflow header 14b and also fixed to the first outflow header 15a. Therefore, no gap or a slight gap exists between the second cover member 27 and the second inflow header 14b. Also, no gap or a slight gap exists between the second cover member 27 and the first outflow header 15a.
Since the third side surface 12c is provided with the third inflow header 14c, the third cover member 28 covers a portion of the third side surface 12c other than the portion where the third inflow header 14c is disposed. Therefore, the third cover member 28 covers the joint portion exposed on the third side surface 12c of the heat exchanger body 12. The third cover member 28 is fixed to the third inflow header 14c. Therefore, no gap or a slight gap exists between the third cover member 28 and the third inflow header 14c.
Since the fourth side surface 12d is provided with the third outflow header 15c, the fourth cover member 29 covers a portion of the fourth side surface 12d other than the portion where the third outflow header 15c is disposed. Therefore, the fourth cover member 29 covers the joint portion exposed on the fourth side surface 12d of the heat exchanger body 12. The fourth cover member 29 is fixed to the third outflow header 15c. Therefore, no gap or a slight gap exists between the third cover member 28 and the third outflow header 15c.
The cover portion 17 is welded to the heat exchanger body 12. That is, the outer peripheral portion of the first cover member 26 is welded to the first side surface 12a of the heat exchanger body 12 on the entire periphery. The same applies to any of the second cover member 27 to the fourth cover member 29. In this configuration, the first cover member 26 to the fourth cover member 29 are welded directly to the heat exchanger body 12. Accordingly, in an area surrounded by the welded portion, a gap is formed between the first cover member 26 and the first side surface 12a of the heat exchanger body 12. The same applies to the second to fourth cover members 27 to 29.
The lead-out portion 18 forms an internal flow path communicating with the gap between the cover portion 17 and the side surface of the heat exchanger body 12. The lead-out portion 18 has a first lead-out portion 18a formed of a tubular member fixed to the first cover member 26, a second lead-out portion 18b formed of a tubular member fixed to the second cover member 27, a third lead-out portion 18c formed of a tubular member fixed to the third cover member 28, and a fourth lead-out portion 18d formed of a tubular member fixed to the fourth cover member 29. An end portion of the lead-out portion 18 penetrates the cover portion 17 and is welded to the cover portion 17. Note that the lead-out portion 18 may be fixed to the cover portion 17 by fastening a screw whose sealing property is ensured.
Since the first lead-out portion 18a is open between the first cover member 26 and the first side surface 12a of the heat exchanger body 12, when the fluid leaks from the heat exchanger body 12 to the first side surface 12a side, the first lead-out portion 18a causes the fluid to flow to a preset region. Since the second lead-out portion 18b is open between the second cover member 27 and the second side surface 12b of the heat exchanger body 12, when the fluid leaks from the heat exchanger body 12 to the second side surface 12b side, the second lead-out portion 18b causes the fluid to flow to a preset region. Since the third lead-out portion 18c is open between the third cover member 28 and the third side surface 12c of the heat exchanger body 12, when the fluid leaks from the heat exchanger body 12 to the third side surface 12c side, the third lead-out portion 18c causes the fluid to flow to a preset region. Since the fourth lead-out portion 18d is open between the fourth cover member 29 and the fourth side surface 12d of the heat exchanger body 12, when the fluid leaks from the heat exchanger body 12 to the fourth side surface 12d side, the fourth lead-out portion 18d causes the fluid to flow to a preset region.
As shown in
The lead-out portion 18 is not limited to be disposed up to the flare stack 32, and may extend to any area as long as it is a predetermined area set by the plant 31 installer. For example, as shown in
As described above, in the present embodiment, the cover portion 17 is located at a portion other than the portion where the inflow header 14 and the outflow header 15 are disposed, and covers all the joint portions exposed on the side surfaces 12a to 12d of the heat exchanger body 12. Therefore, when a fluid leaks from some of the joint portions, the fluid flows into the internal flow path of the lead-out portion 18 through the gap between the cover portion 17 and the heat exchanger body 12. Since the lead-out portion 18 extends to a predetermined region set in advance, the fluid flowing through the internal flow path is discharged to the predetermined region set in advance. Therefore, even if the fluid leaks from some of the joint portions, the leaked fluid does not accumulate around the heat exchanger 10. Therefore, even if the heat exchange operation is continued when the fluid leaks from some of the joint portions existing in the heat exchanger body 12, a problem caused by filling the periphery of the heat exchanger 10 with the fluid is less likely to occur. Therefore, an immediately repair of the heat exchanger 10 is not necessary, and the operation of the heat exchanger 10 can be continued for the time being such as a period until the next scheduled maintenance.
In the present embodiment, each cover member 26 to 29 is welded to the heat exchanger body 12 over the entire outer peripheral portion thereof, but is not welded to the heat exchanger body 12 inside the outer peripheral portion thereof. Due to this, when the fluid leaks from the joint portion located at a portion other than the portion where the inflow header 14 and the outflow header 15 are disposed, the fluid reliably flows into the gap between the cover member 26 to 29 and the heat exchanger body 12. Since the cover member 26 to 29 is directly welded to the heat exchanger body 12, sealability between the cover member 26 to 29 and the heat exchanger body 12 can be ensured. Since the lead-out portion 18 is fixed to the cover portion 17 by welding, it is also possible to ensure the sealability at the connection portion between the cover portion 17 and the lead-out portion 18.
The first embodiment should be considered illustrative in all respects and not restrictive. Various changes, improvements, and the like can be made without departing from the spirit of the first embodiment. In the form shown in
Each flat plate member 29a is welded to the fourth side surface 12d of the heat exchanger body 12. That is, each flat plate member 29a is fixed to the fourth side surface 12d on the entire periphery of the outer peripheral portion thereof. In other words, the fourth cover member 29 is fixed to the heat exchanger body 12 at a plurality of fixing portions.
The flat plate members 29a are aligned in the longitudinal direction of the fourth side surface 12d. Therefore, in the longitudinal direction of the fourth side surface 12d, the length of the flat plate member 29a is shorter than the length of the fourth cover member 29. Therefore, the area of each flat plate member 29a is smaller than the area of the fourth cover member 29. Therefore, the deformation amount of each flat plate member 29a when a high-pressure fluid flows into the gap between the fourth cover member 29 and the heat exchanger body 12 is suppressed to be small. Also, since the flat plate member 29a having an area smaller than the area of the fourth cover member 29 is fixed to the fourth side surface 12d of the heat exchanger body 12, it becomes possible to reduce the thickness of the fourth cover member 29. That is, when the thickness of the fourth cover member 29 is designed, the thickness is set with the internal pressure to be held as the design pressure. When the fourth cover member 29 is formed of the plurality of flat plate members 29a, the thickness of each flat plate member 29a is designed in accordance with the internal pressure to be held. Therefore, the thickness of each flat plate member 29a is smaller than that in the case where the fourth cover member 29 is formed of a single plate material. Note that
In the form of
The buildup weld 38 is welded to the heat exchanger body 12. Therefore, heat generated when the buildup weld 38 is welded to the heat exchanger body 12 may cause thermal stress in the heat exchanger body 12, and microscopic damage may occur in the heat exchanger body 12. However, since the presence or absence of fluid leakage from the heat exchanger body 12 can be inspected before the cover portion 17 covers the heat exchanger body, even if the above-described damage occurs, it is possible to repair the heat exchanger body 12 before attaching the cover portion 17. In comparison with the case where the cover portion 17 is directly welded to the heat exchanger body 12, it is also possible to suppress the heat when the cover portion 17 is welded to the buildup weld 38, which is a weld material, from being transferred to the heat exchanger body 12.
As shown in
In this configuration, the space formed between the fourth cover member 29 and the heat exchanger body 12 is divided into a plurality of spaces by the weld material 38. Therefore, a communication means for communicating the plurality of spaces may be provided. For example, in the heat exchanger body 12, a dummy layer 40 is provided corresponding to each space so as to be laminated on the layer portion 20. In this case, as shown in
In
As shown in
In the case where the fixing member is formed of the plurality of plate-like bodies 43 disposed at intervals from one another, the space between the fourth cover member 29 and the fourth side surface 12d of the heat exchanger body 12 is partitioned into a plurality of spaces by the plurality of plate-like bodies 43. In this case, as shown in
As shown in
The compressor 45 compresses the fluid flowing through the internal flow path of the lead-out portion 18. By operating the compressor 45, it is possible to suck the fluid flowing into the gap between the cover portion 17 and the heat exchanger body 12 or the space formed between the cover portion 17 and the heat exchanger body 12. Therefore, it is possible to efficiently lead out the fluid from the gap or the space. Moreover, since in the lead-out portion 18, the fluid is compressed by the compressor 45 and the pressure rises, it is possible to efficiently emit the fluid even when the predetermined region where the fluid is emitted from the lead-out portion 18 has a certain pressure.
The buffer tank 46 is disposed in the lead-out portion 18 on the suction side of the compressor 45, and temporarily stores the fluid flowing toward the compressor 45. The compressor 45 is activated when the fluid is detected by a gas detector 47 connected to a suction side portion of the compressor 45 in the lead-out portion 18. That is, it takes time from the detection of the fluid by the gas detector 47 to the suction of the fluid by the compressor 45. However, since the lead-out portion 18 is provided with the buffer tank 46, it is possible to suppress a sudden pressure rise in the lead-out portion 18 within a time until the compressor 45 starts to suck the gas. Accordingly, it is also possible to suppress the increase of the pressure in the gap or in the space. Note that the buffer tank 46 can be omitted. In
As shown in
As shown in
As shown in
As shown in
As shown in
In the second embodiment, the heat exchanger body 12 is formed of a microchannel heat exchanger. As shown in
Here, the diffusion bonding is a method in which metal plates are brought into close contact with each other, pressurized at a temperature lower than the melting point of the material forming the metal plates and to the extent that plastic deformation is not generated as much as possible, and the metal plates are bonded to each other by utilizing diffusion of atoms generated between the bonding surfaces. Therefore, the joint portion between the adjacent layer portions 20 is not clearly seen as the boundary between the layer portions 20. Note that the metal plate is a metal plate made of stainless steel, for example.
The first layer portion 20A is formed of a metal material and is formed as a flat region having a plurality of flow paths (first flow paths) 20a. The second layer portion 20B is formed of a metal material and is formed as a flat region having a plurality of flow paths (second flow paths) 20a. The first flow paths 20a are aligned in one direction in the first layer portion 20A, and the second flow paths 20a are aligned in a direction parallel to the direction in which the first flow paths 20a are aligned. That is, since the metal plates having a plurality of grooves formed on the plate surface of the metal plate at intervals are superposed and diffusion-bonded, the first flow paths 20a and the second flow paths 20a are formed so as to be aligned in one direction, respectively. Each of the first flow path 20a and the second flow path 20a has a semicircular cross section. Note that the layer portion 20 is not limited to a configuration in which only the first layer portion 20A and the second layer portion 20B are formed, and the third layer portion may be formed. In this case, the first layer portion 20A, the second layer portion 20B, and the third layer portion are laminated on one another.
The cover portion 17 is attached to a pair of side surfaces of the heat exchanger body 12, which are the pair of side surfaces where the joint portion between the adjacent layer portions 20A and 20B is exposed. That is, the cover portion 17 is fixed to the side surface to which the inflow header 14 is attached and the side surface to which the outflow header 15 is attached.
In the form shown in
The second embodiment is different from the first embodiment in the configuration of the layer portions 20A and 20B, but the other configurations are the same as those of the first embodiment. Therefore, also in the second embodiment, the description of the forms shown in
The above embodiments will be summarized here.
(1) A heat exchanger according to the embodiment of the present invention includes a heat exchanger body having a plurality of layer portions each having a plurality of flow paths, and having a configuration in which adjacent layer portions are joined to each other in a state where the plurality of layer portions are laminated, an inflow header fixed to the heat exchanger body, the inflow header being configured that a fluid is introduced into the inflow header to flow into the plurality of flow paths, an outflow header fixed to the heat exchanger body, the outflow header being configured that a fluid flowing through the plurality of flow paths merges, a cover portion covering all joint portions of the adjacent layer portions or all joint portions of components of the layer portions, the joint portions being exposed on an outer surface of the heat exchanger body at a portion other than a portion where the inflow header and the outflow header are disposed, and a lead-out portion connected to the cover portion and forming an internal flow path communicating with a space or a gap between the cover portion and the heat exchanger body. The lead-out portion is configured to emit a fluid to a predetermined region set in advance.
In the heat exchanger according to the embodiment, the cover portion covers all the joint portions exposed on the outer surface of the heat exchanger body at a portion other than a portion where the inflow header and the outflow header are disposed. Therefore, when the fluid leaks from some of the joint portions exposed on the outer surface of the heat exchanger body, the fluid flows into the internal flow path of the lead-out portion through the gap between the cover portion and the heat exchanger body or the space formed between the cover portion and the heat exchanger body. Since the lead-out portion extends to a predetermined region set in advance, the fluid flowing through the internal flow path is discharged to the predetermined region set in advance. Therefore, even if the fluid leaks from some of the joint portions, the leaked fluid does not accumulate around the heat exchanger. Therefore, even if the heat exchange operation is continued when the fluid leaks from some of the joint portions existing in the heat exchanger body, a problem caused by filling the periphery of the heat exchanger with the fluid is less likely to occur. Therefore, it is not necessary to immediately repair the heat exchanger, and the operation of the heat exchanger can be continued for the time being such as a period until the next scheduled maintenance.
In a case where the heat exchanger is installed in the plant, the predetermined regions include, for example, safety areas such as a predetermined area set by the plant installer, an area where the plant installer permits fluid discharge, and an area where various equipment of the plant is not installed. The predetermined regions can include an area separated by a partition from an area where the heat exchanger is installed and a region that is high enough for the fluid not to affect humans (in this case, the fluid is released to the atmosphere). The predetermined regions can include a flare stack or a vent stack, or a pipe connected to the flare stack or the vent stack.
(2) The cover portion may be welded directly or indirectly to the heat exchanger body on an entire periphery of the cover portion. The lead-out portion may be fixed to the cover portion by welding or screw fastening.
In this aspect, the cover portion is welded to the heat exchanger body over its entire periphery. Due to this, when the fluid leaks from the joint portion located at a portion other than the portion where the inflow header and the outflow header are disposed, the fluid reliably flows into the gap between the cover portion and the heat exchanger body or the space formed between the cover portion and the heat exchanger body. Since the cover portion is welded directly or indirectly to the heat exchanger body, the sealability between the cover portion and the heat exchanger body can be ensured. Since the lead-out portion is fixed to the cover portion by welding or screw fastening, it is also possible to ensure the sealability at the connection portion between the cover portion and the lead-out portion.
(3) The cover portion may include a cover member disposed on one side surface of the heat exchanger body. The cover member may be fixed to the heat exchanger body at a plurality of fixing portions.
In this aspect, the deformation amount of the cover member can be suppressed even when a high-pressure fluid flows into the gap between the cover member and the heat exchanger body or the space formed between the cover member and the heat exchanger body. That is, since the cover member is fixed to the heat exchanger body at a plurality of fixing portions, the deformation amount of the cover member can be reduced as compared with a configuration in which the cover member is fixed to the heat exchanger body at only one portion such as the entire circumference of the outer peripheral portion. Also, it becomes possible to reduce the thickness of the cover member while suppressing the deformation amount to a predetermined value or less. Therefore, it becomes possible to reduce the thickness of the cover member. Therefore, even when the cover member is fixed by welding, it becomes possible to reduce the heat input to the heat exchanger body.
(4) The cover member may be configured to be divided into a plurality of members. In this case, each of the plurality of members may be fixed to the heat exchanger body on the one side surface.
In this aspect, the area of each member is smaller than the area of the cover member. Therefore, the deformation amount of each member when a high-pressure fluid flows into the gap between the cover member and the heat exchanger body or the space formed between the cover member and the heat exchanger body is suppressed to be small. Also, since the member having an area smaller than the area of the cover member is fixed to the side surface of the heat exchanger body, it becomes possible to reduce the thickness of the cover member. Therefore, even when the cover member is fixed by welding, it becomes possible to reduce the heat input to the heat exchanger body.
(5) A weld material located in a plurality of welding holes formed in the cover member and fixed to the heat exchanger body may be disposed in each of the plurality of fixing portions.
In this aspect, a weld material is disposed in each of the plurality of welding holes, and the cover portion is fixed to the heat exchanger body via this weld material. Since the deformation of the cover member at a plurality of weld portions is prevented, it is possible to reduce the deformation amount of the overall cover member. Also, it becomes possible to reduce the thickness of the cover member. Therefore, when the cover member is fixed by welding, it becomes possible to reduce the heat input to the heat exchanger body.
(6) The cover portion may be welded to a fixing member fixed to the heat exchanger body.
In this aspect, heat generated when the cover portion is welded to the fixing member is transferred to the heat exchanger body via the fixing member. Therefore, it becomes possible to reduce the heat input to the heat exchanger body during welding. Therefore, it is possible to suppress adverse effects due to heat input to the heat exchanger body by welding. Even if the fixing member is configured to be welded to the heat exchanger body, it is possible to check the leakage of the fluid after finishing the welding of the fixing member to the heat exchanger body. Therefore, it is possible to suppress the occurrence of a problem by welding the fixing member to the heat exchanger body. The fixing member is also a fixing portion of the cover portion to the heat exchanger body.
(7) The fixing member may include a buildup weld provided in advance on a fixing surface of the heat exchanger body.
In this aspect, after the weld material is fixed to the heat exchanger body, the cover portion is welded to the weld material, whereby the cover portion is subjected to buildup weld to the heat exchanger body. Since the leakage of fluid from the joint portion can be checked before covering the heat exchanger body with the cover portion, even if heat is input to the heat exchanger body when the weld material is fixed to the heat exchanger body, the problem caused by the heat input can be checked.
(8) The fixing member may include a plate-like body fixed to the heat exchanger body.
In this aspect, since the heat generated when the cover portion is welded to the plate-like body is transferred to the heat exchanger body via the plate-like body, the heat input to the heat exchanger body can be effectively reduced.
(9) The fixing member may divide the space between the cover portion and the heat exchanger body into a plurality of spaces. In this case, a communication means for communicating the plurality of spaces may be provided.
In this aspect, even when the space between the cover portion and the heat exchanger body is divided into a plurality of spaces, it is not necessary to provide the lead-out portion corresponding to each of the plurality of spaces. Therefore, the configuration of the heat exchanger can be prevented from becoming complicated.
(10) The cover portion and the heat exchanger body may be made of metal materials different from each other. In this case, the fixing member may be for riled of a dissimilar joint welded to the cover portion and welded to the heat exchanger body.
In this aspect, even when the cover portion and the heat exchange body are made of different materials from each other, the cover portion can be welded to the heat exchange body. This improves the degree of freedom in selecting the material of the cover portion, and it is hence possible to further enhance the strength of the cover portion.
(11) The lead-out portion may be provided with a compressor for compressing a fluid flowing through the internal flow path of the lead-out portion.
In this aspect, it is possible for the compressor to suck the fluid flowing into the gap between the cover portion and the heat exchanger body or the space formed between the cover portion and the heat exchanger body. Therefore, it is possible to efficiently lead out the fluid from the gap or the space. Moreover, since in the lead-out portion, the fluid is compressed by the compressor, it is possible to efficiently emit the fluid even when the predetermined region where the fluid is emitted has a certain pressure.
(12) A buffer tank may be disposed on the suction side of the compressor in the lead-out portion.
In this aspect, in a state before the compressor is activated, it is possible to reduce the rising speed of the pressure in the gap between the cover portion and the heat exchanger body or the pressure in the space formed between the cover portion and the heat exchanger body.
Accordingly, it is also possible to suppress the increase of the pressure in the gap or in the space.
(13) A reinforcement rib may be welded to the cover portion. In this aspect, since the cover portion is reinforced, the thickness of the cover portion can be reduced. Therefore, when the cover member is fixed by welding, it becomes possible to reduce the heat input to the heat exchanger body.
(14) A reinforcement rib may be mechanically attached to the cover portion. In this aspect, the reinforcement rib can be fixed to the cover portion even when the material of the reinforcement rib is different from the material of the cover portion. Therefore, the degree of freedom in selecting the material of the cover portion and the reinforcement rib is increased.
(15) The cover portion may be reinforced by winding a steel band around the heat exchanger body and the cover portion. In this aspect, since the cover portion is reinforced, the thickness of the cover portion can be reduced. Therefore, when the cover member is fixed by welding, it becomes possible to reduce the heat input to the heat exchanger body.
(16) The cover portion may include one or a plurality of semi-cylindrical members. In this aspect, since the rigidity of the cover portion is increased, the thickness of the cover portion can be reduced. Therefore, when the cover member is fixed by welding, it becomes possible to reduce the heat input to the heat exchanger body.
(17) Each of the plurality of layer portions may have a partition plate, a corrugated plate brazed to the partition plate, and a side bar surrounding the corrugated plate.
(18) The adjacent layer portions may be diffusion-bonded to each other.
As described above, it is possible to prevent a problem from occurring even if the heat exchange operation is continued when a fluid leak from the joint portion on the side surface of the heat exchanger occurs.
Number | Date | Country | Kind |
---|---|---|---|
2018-169773 | Sep 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/034648 | 9/3/2019 | WO | 00 |