The present disclosure relates to a technical field of exchanging heat, in particular to a heat exchanger.
In related art, uniformity of refrigerant distribution in heat exchangers needs to be improved.
For this reason, the present disclosure proposes a heat exchanger which is capable of improving uniformity of refrigerant distribution in the heat exchanger.
The heat exchanger according to embodiments of the present disclosure includes a collecting pipe having a pipe wall and an inner cavity; a baffle disposed in the inner cavity of the collecting pipe, the baffle extending along a length direction of the collecting pipe, the inner cavity of the collecting pipe being divided by the baffle into a first cavity and a second cavity; and a plurality of heat exchange tubes disposed along the length direction of the collecting pipe, each of the heat exchange tubes having a first end and an inner channel; wherein the first end of the heat exchange tube passes through the pipe wall of the collecting pipe, the first cavity and the baffle in sequence so that the inner channel of the heat exchange tube is in communication with the second cavity.
According to the heat exchanger of the embodiments of the present disclosure, by providing the baffle in the inner cavity of the collecting pipe to divide the collecting pipe into a first cavity and a second cavity, the first end of the heat exchange tube passes through the pipe wall of the collecting pipe, the first cavity and the baffle in sequence in order to be in communication with the second cavity. The refrigerant entering the second cavity of the collecting pipe from the fluid inlet can be evenly distributed to the plurality of heat exchange tubes. As a result, the uniformity of the refrigerant distribution in the heat exchanger can be improved.
Embodiments of the present disclosure are described in detail below, and examples of the embodiments are shown in drawings. The embodiments described below with reference to the drawings are exemplary, and are intended to explain the present disclosure, but should not be understood as a limitation to the present disclosure. The exemplary embodiments will be described in detail here, and examples thereof are shown in the drawings. When the following description refers to the drawings, unless otherwise indicated, the same numbers in different drawings indicate the same or similar elements. The implementation embodiments described in the following exemplary embodiments do not represent all implementation embodiments consistent with the present disclosure. On the contrary, they are merely examples of devices and methods consistent with some aspects of the present disclosure as detailed in the appended claims.
The terms used in the present disclosure are only for the purpose of describing specific embodiments, and are not intended to limit the present disclosure. In the description of the present disclosure, it should be understood that the terms “center”, “longitudinal”, “transverse”, “length”, “width”, “thickness”, “upper”, “lower”, “front”, ““rear”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “inner”, “outer”, “clockwise”, “counterclockwise” and other directions or positional relationships are based on the positions or positional relationships shown in the drawings, and are only for the convenience of describing the disclosure and simplifying the description. It does not indicate or imply that the pointed devices or elements must have specific orientations, be constructed and operated in specific orientations, thereby it cannot be understood as a limitation of the present disclosure. In addition, the terms “first” and “second” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present disclosure, “a plurality of” means two or more than two, unless otherwise specifically defined.
In the description of the present disclosure, it should be noted that, unless otherwise clearly specified and limited, the terms “installation”, “connected” and “connection” should be understood in a broad meaning. For example, it can be a fixed connection, a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, including the connection between two internal elements or the interaction between two elements. For those of ordinary skill in the art, the specific meanings of the above-mentioned terms in the present disclosure can be understood according to specific circumstances.
In the present disclosure, unless otherwise clearly defined and limited, a first feature located “upper” or “lower” of a second feature may include the first feature and the second feature are in direct contact with each other, or may include the first feature and the second feature are in direct contact but through other features therebetween. Moreover, the first feature located “above”, “over” or “on top of” the second feature includes the first feature is directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than that of the second feature. The first feature located “below”, “under” and “at bottom of” the second feature includes the first feature is directly below and obliquely below the second feature, or it simply means that the level of the first feature is lower than the second feature. The exemplary embodiments of the present disclosure will be described in detail below with reference to the drawings. In the case of no conflict, the following embodiments and features in the embodiments can be mutually supplemented or combined with each other.
The terms used in the present disclosure are only for the purpose of describing specific embodiments, and are not intended to limit the present disclosure. The singular forms of “a”, “said” and “the” described in the present disclosure and appended claims are also intended to include plural forms, unless the context clearly indicates otherwise.
The exemplary embodiments of the present disclosure will be described in detail below with reference to the drawings. In the case of no conflict, the following embodiments and features in the embodiments can be combined with each other.
As shown in
The baffle 6 is disposed in the inner cavity of the collecting pipe 1. The baffle 6 extends along a length direction of the collecting pipe 1 (a left-to-right direction shown in
There are a plurality of the heat exchange tubes 2. The plurality of the heat exchange tubes 2 are spaced apart from each other along the length direction of the collecting pipe 1 (the left-to-right direction shown in
Each heat exchange tube 2 has a first end 21 and an inner channel. The first end 21 of the heat exchange tube 2 passes through the pipe wall of the collecting pipe 1, the first cavity 101 and the baffle 6 in sequence, and is inserted into the second cavity 102. The inner channel of the heat exchange tube 2 is in communication with the second cavity 102. In the description of the present disclosure, “a plurality of” means at least two, such as two, three, etc., unless otherwise specifically defined.
According to the heat exchanger of the embodiment of the present disclosure, by providing the baffle 6 in the inner cavity of the collecting pipe 1 to divide the collecting pipe 1 into the first cavity 101, the first end 21 of the heat exchange tube 2 is inserted into the second cavity 102 through the pipe wall of the collecting pipe 1, the first cavity 101 and the baffle 6 in sequence, therefore, the refrigerant entering the second cavity 102 from the fluid inlet can be evenly distributed to the plurality of heat exchange tubes 2, thereby improving the heat exchange efficiency.
The heat exchange tube 2 may be a flat tube which is also known as a microchannel flat tube in the industry. The use of the flat tubes is beneficial to reduce weight and size of air conditioners. Among them, an inside of the flat tube usually includes a plurality of channels/micro-channels for the flow of refrigerant. Adjacent channels are separated from each other. The plurality of the channels are disposed in a row, which together affect a width of the flat tube. The flat tube is flat as a whole, its length is greater than its width, and its width is greater than its thickness. A length direction of the flat tube is the direction of refrigerant flow determined by the channels in the flat tubes. The length direction of the flat tube can be straight, folded or curved. The flat tube mentioned here is not limited to these types and may be of other forms. For example, adjacent channels may not be completely separated. For another example, all the channels can be disposed in two rows, as long as the width thereof is still greater than the thickness thereof.
Optionally, the collecting pipe 1 is placed horizontally and has a length greater than 250 mm. The heat exchange tubes 2 are placed vertically. A diameter of the collecting pipe 1 is greater than a width of the heat exchange tube 2 so that the first end 21 of the heat exchange tube 2 can be completely located in the inner cavity of the collecting pipe 1 in its width direction. Here, it should be understood that, as shown in
In some embodiments, as shown in
In some embodiments, the heat exchanger further includes fins 5 disposed between adjacent heat exchange tubes 2. As a result, heat exchange is performed with the heat exchange tubes 2 through the fins 5, thereby improving the heat exchange efficiency. Specifically, the plurality of heat exchange tubes 2 are spaced apart from each other. The fins 5 are disposed in the gaps between the adjacent heat exchange tubes 2, and the fins 5 are at least partially connected to the heat exchange tubes 2.
In some embodiments, the pipe wall of the collecting pipe 1 includes a plurality of insertion holes extending through the pipe wall of the collecting pipe 1. The plurality of insertion holes are disposed along the length direction of the collecting pipe 1 (the left-to-right direction shown in
Optionally, as shown in
In some embodiments, the heat exchanger further includes a distribution pipe 3 having a first end (a left end of the distribution pipe 3 shown in
The distribution pipe 3 includes a pipe wall and an inner space. The pipe wall of the distribution pipe 3 has a through hole 31 in communication with the second cavity 102 and the inner space of the distribution pipe 3. In other words, as shown in
Optionally, a length of the distribution pipe 3 in the second cavity 102 is substantially the same as a length of the collecting pipe 1. Specifically, the second end of the distribution pipe 3 extends from the first end of the collecting pipe 1 into the second cavity 102, and extends to the second end of the collecting pipe 1. As shown in
In some embodiments, as shown in
In some embodiments, a plurality of through holes 31 are provided, and the plurality of through holes 31 are disposed at intervals along the length direction of the distribution pipe 3 (the left-to-right direction shown in
In some optional embodiments, the plurality of through holes 31 include a first through hole, a second through hole, a third through hole, . . . an (n−1)th through hole and an nth through hole in sequence from the first end of the distribution pipe 3 toward the second end of the distribution pipe 3 (a left-to-right direction as shown in
di=αiL0, i=1, 2, . . . n−1, α=0.618, L0 is a distance between adjacent heat exchange tubes 2.
For example, a distance between the second through hole and the first through hole is: d1=α1L0, and a distance between the third through hole and the second through hole is: d2=α2L0. Here, it should be understood that the first through hole is the through hole 31 of the distribution pipe 3 closest to the fluid inlet. As shown in
In some specific embodiments, the plurality of heat exchange tubes 2 include a first heat exchange tube, a second heat exchange tube, a third heat exchange tube, a fourth heat exchange tube etc., disposed in sequence from the first end of the distribution pipe 3 toward the second end of the distribution pipe 3 (the left-to-right direction as shown in
In other alternative embodiments, from the first end of the collecting pipe 1 (the left end of the collecting pipe 1 shown in
di=2.5αiL0, i=1, 2, . . . n−1, α=0.618, L0 is a distance between adjacent heat exchange tubes 2.
Optionally, the through hole 31 is a round hole. If di<D0, then di=D0+2, D0 is a diameter of the through hole 31. Specifically, 1 mm<D0<3 mm.
Here, it can be understood that the middle position of the collecting pipe 1 along the length direction is half the length of the collecting pipe 1, for example the position B-B as shown in
In some embodiments, as shown in
Specifically, a plurality of the first supports 41 are provided. The plurality of first supports 41 are disposed at intervals from each other along the length direction of the collecting pipe 1 (the left-to-right direction shown in
In some specific embodiments, the first end of the first support 41 (the lower end of the first support 41 shown in
In some embodiments, the support assembly 4 further includes a second support 42. The second support 42 extends into the second cavity 102 from the second end of the collecting pipe 1 (the right end of the collecting pipe 1 shown in
Hereinafter, a heat exchanger according to a specific embodiment of the present disclosure will be described with
As shown in
The baffle 6 is disposed in the inner cavity of the collecting pipe 1. The baffle 6 extends along a length direction of the collecting pipe 1 (a left-to-right direction shown in
The heat exchange tube 2 is a flat tube. A plurality of heat exchange tubes 2 are provided. The plurality of heat exchange tubes 2 are disposed in sequence along the length direction of the collecting pipe 1 and are spaced apart from each other. Distances between adjacent heat exchange tubes 2 are equal. The first end 21 (an upper end shown in
The fins 5 are disposed in gaps between the adjacent heat exchange tubes 2, and the fins 5 are at least partially connected with the heat exchange tubes 2 so as to improve the heat exchange efficiency.
The left end of the distribution pipe 3 is a fluid inlet so as to facilitate the flow of refrigerant into the distribution pipe 3. The right end of the distribution pipe 3 extends into the second cavity 102. The right end of the distribution pipe 3 extends to the right end of the collecting pipe 1 and the right end of the distribution pipe 3 is closed. The pipe wall of the distribution pipe 3 includes a through hole 31 extending through the pipe wall of the distribution pipe 3. The through hole 31 is a round hole. A diameter of the through hole 31 is D0, where 1 mm<D0<3 mm. The inner space of the distribution pipe 3 and the second cavity 102 are communicated with each other through the through hole 31. That is, the refrigerant in the inner space of the distribution pipe 3 can enter the second cavity 102 through the through hole 31 and further enters each heat exchange tube 2. An outer peripheral surface of the distribution pipe 3 is spaced apart from the end surface 211 of the first end 21 of the heat exchange tube 2 along the top-to-bottom direction.
The through hole 31 may be opened at any position of the distribution pipe 3 along a circumference of the distribution pipe 3. In other words, the through hole 31 may be opened at any position along a circumferential direction of the distribution pipe 3 for one rotation.
Among them, from the left end of the collecting pipe 1 to a middle position of the collecting pipe 1 in the length direction, the distribution pipe 3 includes a plurality of through holes 31. The plurality of through holes 31 are disposed at even intervals along the left-to-right direction shown in
Among them, from the middle position along the length of the collecting pipe 1 to the right end of the collecting pipe 1, the distribution pipe 3 includes a plurality of through holes 31. The plurality of through holes 31 include a first through hole, a second through hole, a third through hole, . . . an (n−1)th through hole and an nth through hole in sequence from the middle position of the collecting pipe 1 toward the second end of the collecting pipe 1, wherein a distance between an (i+1)th through hole and an ith through hole is:
di=2.5αiL0, i=1, 2, . . . n−1, α=0.618, L0 is a distance between adjacent heat exchange tubes 2.
In addition, if di<D0, then di=D0+2, D0 is a diameter of the through hole 31. Through this formula, a relatively regular design can be used to achieve more uniform flow distribution.
The support assembly 4 includes a first support 41 and a second support 42. A lower end of the first support 41 is connected to the outer peripheral surface of the collecting pipe 1. An upper end of the first support 41 extends from the outer peripheral surface of the collecting pipe 1 through the pipe wall of the collecting pipe 1, the first cavity 101 and the baffle 6 and then extends into the second cavity 102. The upper end of the first support 41 is in contact with the outer peripheral surface of the distribution pipe 3. The first support 41 is located at the middle position of the collecting pipe 1 along the length direction to support the distribution pipe 3 at the middle position of the collecting pipe 1 along the length direction. The second support 42 extends into the second cavity 102 from the right end of the collecting pipe 1. The upper surface of the second support 42 is in contact with the outer peripheral surface of the distribution pipe 3 so as to support the distribution pipe 3 at the right end of the distribution pipe 3.
Referring to
In some embodiments, a distance between the first end 21 of the heat exchange tube 2 and the surface of the baffle 6 (the upper surface of the baffle 6 shown in
In some embodiments, the pipe wall of the collecting pipe 1 includes a plurality of insertion holes extending through the pipe wall of the collecting pipe 1. The plurality of insertion holes are spaced apart from each other along the length direction of the collecting pipe 1 (the left-to-right direction shown in
The heat exchanger according to another specific embodiment of the present disclosure will be described below with reference to
As shown in
The baffle 6 is disposed in the inner cavity of the collecting pipe 1. The baffle 6 extends along the length direction of the collecting pipe 1 (the left-to-right direction shown in
The heat exchange tube 2 is a flat tube. A plurality of heat exchange tubes 2 are provided. The plurality of heat exchange tubes 2 are disposed in sequence along the length direction of the collecting pipe 1 and are spaced apart from each other. Distances between adjacent heat exchange tubes 2 are equal. The first end 21 (the upper end shown in
The fins 5 are disposed in gaps between the adjacent heat exchange tubes 2, and the fins 5 are at least partially connected with the heat exchange tubes 2 so as to improve the heat exchange efficiency.
The left end of the distribution pipe 3 is a fluid inlet so as to facilitate the flow of refrigerant into the distribution pipe 3. The right end of the distribution pipe 3 extends into the second cavity 102. The right end of the distribution pipe 3 extends to the right end of the collecting pipe 1 and the right end of the distribution pipe 3 is closed. The pipe wall of the distribution pipe 3 includes a through hole 31 extending through the pipe wall of the distribution pipe 3. The through hole 31 is a round hole. A diameter of the through hole 31 is D0, where 1 mm<D0<3 mm. The inner space of the distribution pipe 3 and the second cavity 102 are communicated with each other through the through hole 31. That is, the refrigerant in the inner space of the distribution pipe 3 can enter the second cavity 102 through the through hole 31 and further enters each heat exchange tube 2. An outer peripheral surface of the distribution pipe 3 is spaced apart from the end surface 211 of the first end 21 of the heat exchange tube 2 along the top-to-bottom direction.
The through hole 31 may be opened at any position of the distribution pipe 3 along a circumference of the distribution pipe 3. In other words, the through hole 31 may be opened at any position along a circumferential direction of the distribution pipe 3 for one rotation.
Among them, from the left end of the collecting pipe 1 to a middle position of the collecting pipe 1 in the length direction, the distribution pipe 3 includes a plurality of through holes 31. The plurality of through holes 31 are disposed at even intervals along the left-to-right direction shown in
Among them, from the middle position along the length of the collecting pipe 1 to the right end of the collecting pipe 1, the distribution pipe 3 includes a plurality of through holes 31. The plurality of through holes 31 include in sequence from the middle position of the collecting pipe 1 toward the second end of the collecting pipe 1 a first through hole, a second through hole, a third through hole, . . . an (n−1)th through hole and an nth through hole, where a distance between an (i+1)th through hole and an ith through hole is:
di=2.5αiL0, i=1, 2, . . . n−1, α=0.618, L0 is a distance between adjacent heat exchange tubes 2.
In addition, if di<D0, then di=D0+2, D0 is a diameter of the through hole 31.
The support assembly 4 includes a first support 41 and a second support 42. A lower end of the first support 41 is connected to the outer peripheral surface of the collecting pipe 1. An upper end of the first support 41 passes through the pipe wall of the collecting pipe 1, the first cavity 101 and the baffle 12 in sequence from the outer peripheral surface of the collecting pipe 1, and extends into the second cavity 102. The upper end of the first support 41 is in contact with the outer peripheral surface of the distribution pipe 3. The first support 41 is located at the middle position of the collecting pipe 1 in the length direction so as to support the distribution pipe 3 in the middle position of the collecting pipe 1 in the length direction. The second support 42 extends into the second cavity 102 from the right end of the collecting pipe 1. The upper surface of the second support 42 is in contact with the outer peripheral surface of the distribution pipe 3 so as to support the distribution pipe 3 at the right end of the distribution pipe 3.
In the description of this specification, descriptions with reference to the terms “an embodiment”, “some embodiments”, “examples”, “specific examples”, or “some examples” etc., mean that the specific features, structures, materials, or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present disclosure. In this specification, the schematic representations of the above terms do not necessarily refer to the same embodiment or example. Moreover, the described specific features, structures, materials or characteristics can be combined in any one or more embodiments or examples in a suitable manner. In addition, those skilled in the art can combine and combine the different embodiments or examples and the features of the different embodiments or examples described in this specification without contradicting each other.
Although the embodiments of the present disclosure have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limiting the present disclosure. Those of ordinary skill in the art can make changes, modifications, substitutions and varieties to the above-mentioned embodiments within the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201811155651.2 | Sep 2018 | CN | national |
201811155652.7 | Sep 2018 | CN | national |
This patent application is a bypass continuation of National Phase conversion of International (PCT) Patent Application No. PCT/CN2019/109050, filed on Sep. 29, 2019, which further claims priorities of a Chinese Patent Application No. 201811155651.2, filed on Sep. 30, 2018 and titled “HEAT EXCHANGER”, and a Chinese Patent Application No. 201811155652.7, filed on Sep. 30, 2018 and titled “HEAT EXCHANGER”, the entire content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1684083 | Bloom | Sep 1928 | A |
9448016 | Wang | Sep 2016 | B2 |
20110290465 | Joshi | Dec 2011 | A1 |
20150027672 | Jindou | Jan 2015 | A1 |
20180283805 | Matsunaga | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
2596365 | Aug 2006 | CA |
103743158 | Apr 2014 | CN |
103983126 | Aug 2014 | CN |
203810795 | Sep 2014 | CN |
203824169 | Sep 2014 | CN |
104880115 | Sep 2015 | CN |
206055926 | Mar 2017 | CN |
207180448 | Apr 2018 | CN |
108267042 | Jul 2018 | CN |
3813339 | Nov 1989 | DE |
790704 | Feb 1958 | GB |
H09166368 | Jun 1997 | JP |
2012-2475 | Jan 2012 | JP |
2013084469 | Jun 2013 | WO |
2013084472 | Jun 2013 | WO |
WO-2017057184 | Apr 2017 | WO |
2020063966 | Apr 2020 | WO |
Number | Date | Country | |
---|---|---|---|
20210278148 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2019/109050 | Sep 2019 | US |
Child | 17329142 | US |