This application is the U.S. national phase of international application PCT/GB2005/004781 filed 13 Dec. 2005, which designated the U.S. and claims benefit of GB 0427362.9 filed 14 Dec. 2004, the entire contents of each of which are hereby incorporated by reference.
The present invention relates to a heat exchanger and a method of producing a heat exchanger. Preferred embodiments of the invention relate to a heat exchanger and method of producing a heat exchanger which is suitable for use with a Stirling engine.
A Stirling engine's heater (the heat exchanger through which a hot fluid, typically hot gases from the combustion of a fuel, but also waste heat, heat from solar energy and other sources, transfers some of its heat to the pressurized charge gas inside the engine) may be assembled from a typically cylindrical array of U-shaped tubes, with the combustion gases typically passing downwards and radially outwards from above the centre of the array or radially outward from within it, first between the inner arms of the U-shaped tubes, and then between their outer arms. The tubes may, for instance, be made of stainless steel or heat resistant alloys. Also, the combustor is usually physically separated from the heat exchanger, and relatively large combustion chambers are needed to contain a long flame length, to promote complete mixing and to generate turbulence. Heat transfer between the combustion gases and the tube walls is mainly convective.
Specifying and designing the structure of a Stirling heater raises a number of problems due in part to the need to balance considerations such as the desirability of high rates of heat transfer between combustion gases and charge gases via the tube walls of the heater, low pressure drops through the tubes, low internal volume of the tubes, low cost, and thermal robustness. To improve the Stirling engine's power output and reducing overall size, weight and cost, there is a need to reduce the internal volume (charge gas side) of the heat exchanger while increasing the external heat transfer area (combustion gas side). This requires that the heater consist of large numbers of fine bore tubes, rather than smaller numbers of wider bore tubes. In order to maintain acceptable gas speeds and to maintain pressure drops at acceptable levels, short, fine bore tubes are preferred rather than long ones. Also, the fluid supplying the heat is a gas which is typically at a lower pressure than the pressure of the charge gas inside the engine. Due to this, and in order to obtain a high rate of heat transfer between the fluid supplying the heat and the charge gases within an acceptable length of tube, it is desirable to provide a high ratio between the external and internal heat transfer surface areas of the tubes. Such high ratios can be achieved by increasing the wall thickness of the tube beyond what is needed to contain the pressure of the charge gas, but this increases weight and cost, leads to higher stresses, and reduces the rate of heat transfer through the wall of the tube itself. One solution is for all or part of the U-tube—in the example described above it will usually be the outer, downstream arm that receives the fluid that has already lost some of its heat to the inner, upstream arm—to be finned, to increase its heat transfer area and maximize heat transfer to the walls of the tubes. However, these fins increase weight and costs, can be difficult to fabricate, and can be thermally vulnerable.
In practice, the expense and the technical difficulties involved in the assembly of heat exchangers or heaters having large numbers of short, fine bore tubes induce a compromise in which they will consist of a smaller number of larger, longer tubes than is desirable. Typical engines for commercial applications may use 20 to 200 tubes of 3 mm to 10 mm bore, which may be 200 to 500 mm long. Such heaters have relatively low surface area densities of, typically, less than 200 m2/m3, with surface porosities of less than 0.4.
Surface area density is a measure of the wetted heat transfer surface area per unit box volume of the heat exchanger. Porosity is a measure of the proportion of the total surface volume of the heat exchanger accounted for by the wetted fluid passage volumes within that total volume. The heat exchanger format described above for Stirling engines has the following disadvantages:
There are many other different types of known heat exchanger but none matches the dimensional and performance requirements of heaters for Stirling engines. In recent years, the development of “compact” heat exchangers, with smaller fluid ducts and higher heat transfer surface densities of over 300 m2/m3, with porosities that can reach over 0.8, demonstrate the potential for meeting the initial dimensional requirement: large numbers of short ducts with smaller hydraulic diameters. However, none of the known types of compact heat exchanger is capable of meeting the combined high pressure and temperature performance requirements.
One method of manufacturing a heat exchanger that comes closest to the performance requirements as well as to the dimensional requirements is the diffusion bonded heat exchanger. This involves the assembly of a number of plates, one or both faces of which have been machined or etched with channels or grooves (see U.S. Pat. No. 6,695,044 and PCT/GB90/00675). When the plates are stacked together, these grooves are closed and thereby form passages through which fluids may flow, react and/or transfer heat. Such grooves may zig-zag or otherwise curve within the plane of the plate to provide turbulent flow and enhance heat transfer. It is also possible to provide apertures in one or more of the grooves or groove walls, to allow fluid to pass from a groove to an adjacent groove in the same plate, or to an adjacent groove in another plate. If required, catalysts may be included in the system, either as the material of a duct wall, or placed/coated in or on a duct. Such heat exchangers may allow several fluids to exchange heat and/or react.
The main advantage of these exchangers is that they can allow reduction of the the ducts hydraulic diameter to 1 mm or less, and they can achieve surface area densities of up to or exceeding 5,000 m2/m3, allowing large reductions in overall size and weight compared with, for example, shell and tube heat exchangers with equivalent heat transfer loads. When made of suitable materials, they can operate at very high pressures of over 400 bar, or at high temperatures of up to 900° C.
However, compact heat exchangers manufactured in this manner also have disadvantages.
The present invention seeks to provide compact heat exchangers that overcome these problems of compact diffusion bonded heat exchangers and which also improve other types of compact heat exchanger such as the welded or brazed plate-fin compact heat exchanger.
One aspect of the invention provides a method of making at least a portion of a heat exchanger, said portion having a plurality of conduits passing therethrough, the method comprising the steps of:
providing a plurality of successive layers of a material to be remelted;
energy beam remelting predetermined regions of each layer in accordance with a predetermined design, the laser remelting of each layer being performed prior to the addition of a successive layer;
wherein the regions of each layer subjected to energy beam laser remelting form solid structures within the layer, and wherein the energy beam laser remelting of each layer fuses the remelted regions of each layer to the remelted regions of the preceding layer;
and wherein said plurality of conduits have substantially continuously curved outer cross-sections.
A heat exchanger formed by energy beam remelting (such as, for example, selective laser remelting SLR) and having conduits with substantially continuously curved cross-sections (ignoring interruptions such as reentrant protrusions, internal fins and spacers/supports for further conduits, junctions with other conduits etc.) allows the above described problems to be addressed, and in particular allows compact heat exchangers capable of simultaneously high temperature and pressure operation, with increased surface area density and porosity to be achieved. The none re entrant outer cross-section being continuously curved reduces the problems associated with stress concentrations in other systems. The energy beam remelting could use laser beams, electron beams or some other form of energy beam. Conventional sintering uses high temperatures and pressures to fuse particles together, by friction and/or heat. “Energy beam” sintering fuses particles together in layers with precisely targeted temperatures which at least partially melts the material (possibly fully melts) so that it fuses into the remelted previous layer and this process is a form of energy beam remelting encompassed within the present techniques. Energy beam remelting can use one or more beams of various forms to provide various degrees of remelting to fuse together layers of material (powder).
The present techniques have both general and specific advantages depending upon the particular embodiments. Not at all of the advantages apply to every embodiment. Of the general advantages, first, it is suitable for lower cost production as it can be continuous and software driven; second, it allows the ability to build the structure in 3D—this provides a design freedom previously not available. Its specific advantages will vary according to the conventional heat exchanger that it displaces.
If made in the form of the diffusion bonded plate type heat exchanger, it has the following specific advantages over that type of heat exchanger.
The energy beam remelting process can also be used to manufacture heat exchangers of the conventional plate-fin type, whether vacuum brazed, welded or constructed by other means. In this case, the advantages are as follows:
The energy beam remelting process can also be used to form heat exchangers whose design is not constrained by the block form of the diffusion bonded heat exchanger and which can consist of very large numbers of fine bore ducts are in the form of tubes, preferably of elliptical or circular cross section. In this case the advantages are:
One or more portions of the heat exchanger may be manufactured by energy beam remelting and some by other means. For example, some or all conduits may be manufactured by conventional processes such as rolling and welding, or seamless extrusion. Some conduits may be inserted into predetermined positions in other components of an energy beam remelted heat exchanger, and may be fixed in place and/or attached to the energy beam remelted heat exchanger by a number of different means: for example, interference fit or shrink fit; they may be welded or brazed in place along all or part of their length by a variety of means. Such conduits may also be fixed in place by further energy beam remelting components to the external wall of the conduit. Energy beam melted manifolds may be constructed, typically using the end of the conduits as the base for starting the process. Alternatively, the manifolds or fins on the external surfaces of the conduits, might be the only components of the heat exchanger made using laser remelting.
The present techniques allow, in at least some preferred embodiments, the heat exchangers to achieve surface area densities of greater than 5000 m2/m3 and porosities of greater than 0.6 or in another preferred embodiment, a surface area density of 8000 m2/m3 and a mean average porosity of at least 0.7. Monolithic heat exchangers having these surface area density and mean average porosity characteristics have not previously been realised by existing selective energy beam remelting processes. Current designs used for the construction of heat exchangers by energy beam remelting are based on existing heat exchanger designs used with other manufacturing techniques such as diffusion bonded plates. They maintain the block form of the diffusion bonded heat exchanger, and use rectangular ducts. They cannot therefore operate at the combined temperatures and pressures possible with the present techniques, and have lower surface area density and mean average porosities. The present invention recognises that heat exchangers manufactured using energy beam remelting need not be limited by the same constraints that apply with other manufacturing methods. The method may also be used to form a monolithic heat exchanger having a surface area density of at least 5000 m2/m3 and a mean average porosity of at least 0.6.
The conduit cross-sections can have a variety of shapes, and multiple shapes within a single heat exchanger, but are preferably circular or elliptical (at least in their non-reentrant profile).
Although it will be appreciated that the material to be remelted may be in the form or a gel, liquid, or a sheet of material, the material to be remelted is preferably provided in a powder form. Powder is particularly straightforward to cleanse from the remelted heat exchanger, for instance by application of pressurized air or water through the heat exchanger, after the energy beam remelting process has been completed.
In order to reduce stresses in the remelted structure, each layer of powder may be heated to near its remelting point before energy beam remelting of that layer commences. This results in a lower temperature gradient within the layer, reducing the instances of cracking of the remelted structure when it cools.
Fine control over mixing of fluids within the heat exchanger is possible by varying the porosity of the heat exchanger within a layer and/or between layers. Typically, the walls of conduits within a heat exchanger will have a porosity of substantially zero, that is they will be impermeable to the passage of any fluid which the heat exchanger is designed to contain. However, under certain circumstances it is desirable for the walls between conduits, or part thereof, to be permeable, to allow fluid to flow into or out of a conduit from or to an adjacent conduit to promote mixing or reaction of fluids from separate conduits.
Fine control over the structure and thermal characteristics of the heat exchanger may be obtained by providing that a group of one or more successive layers of powder comprises different materials than another group of one or more successive layers of powder. Accordingly, materials with specific characteristics, most particularly coefficients of thermal expansion and conduction, can be chosen to suit the temperature and pressure differences with which they have to cope, and to maximize heat transfer while minimizing stress and distortion, because these parameters change as a function of position within the heat exchanger. This may, for instance, make it possible to build certain regions of the heat exchanger, which may be subject to greater temperatures and pressures from a more expensive, but more robust material, while making the remainder of the heat exchanger from a cheaper but less robust material, or alternatively from a lighter material.
The energy beam remelting method enables improvements to be made to the format of existing compact heat exchanger designs. Conduits can be provided with a substantially complete curved cross section in which there is no abrupt interruption or change of direction in the curve (at least when considering the non-re entrant profile). Preferably the substantially curved cross section will be a substantially circular or elliptical cross section. Such an arrangement cannot easily be provided for in a diffusion bonded plate heat exchanger due to the two dimensional nature of the plates which lends itself more readily to segment-shaped ducts, in which the curve is interrupted at the junction of the plates in which it is formed and the adjacent plate that closes the curve, or to square or rectangular ducts.
Providing conduits having a preferably circular cross section helps to reduce pressure drops within the conduit. In turn, this allows walls between two adjacent conduits to have a thickness that need be no more than that of the wall needed for a free tube of the same hydraulic diameter as that of the duct. This will be less than, and in many cases much less than, the minimum distances needed between two segment-shaped, square or rectangular ducts of the same cross-sectional area. This applies both to adjacent ducts that in the diffusion bonded version would have been in separate adjacent plates, or between any two grooves that in the diffusion bonded version would have been adjacent grooves in the same plate. This enables a higher porosity and surface area density for a given hydraulic radius, leading to reductions in size, weight and cost of the heat exchanger.
The energy beam remelting method also enables improved freedom in orientation of the conduits within the heat exchanger. It is possible to provide horizontal, vertical or diagonal conduits, or any combination of the three. For example, a first subset of the conduits may have a first orientation and a second subset of the conduits may have a second orientation, the second orientation being different from the first orientation. Further, a third subset of the conduits may have a third orientation, the third orientation being different from both the first or second orientations.
The conduits may be straight or curved, of constant cross section or tapered. The curved conduits may be arranged to weave around other curved or straight conduits, reducing the spaces between adjacent conduits and increasing heat transfer rates and the porosity of the heat exchanger.
Regions of the heat exchanger separating two or more adjacent conduits may comprise a thermal insulator deposited by energy beam remelting or by any other suitable process. The thermal insulator serves to control heat transfer between different regions within the heat exchanger.
The energy beam remelting process also allows conduits to be formed within other conduits. Accordingly, one or more of the conduits may be an outer conduit and have an inner conduit disposed within it along at least a portion of its length. The outer conduit and the inner conduit may be arranged to receive either the same or different fluids, and the direction of flow of the fluids within the inner and outer conduits may either be in the same or different directions. The inner conduit may terminate within the outer conduit or may extend the whole length of the outer conduit. If the inner conduit terminates within the outer conduit, it may be terminated with a closed end, or may be left open to allow fluid to exit the inner conduit and to mix with the fluid within the outer conduit. Other structures may also be provided to terminate the inner conduit, such as a jet, nozzle, venture or the like.
The wall of the inner conduit may include one or more apertures or may be porous to allow mixing between the fluid in the outer conduit and the fluid in the inner conduit. Such apertures may be designed and located to provide appropriate control of the degree of mixing. The inner conduit and the outer conduit may have a substantially common longitudinal axis, or alternatively the inner conduit may have a longitudinal axis which is offset from the longitudinal axis of the outer conduit. It is also possible to have multiple layers of conduits inside each other, such that the inner conduit has a further inner conduit disposed within it along at least a portion of its length.
The inner surfaces of any of the conduits may be coated with a material different from the material of the conduit walls, for instance a catalyst. Further, the interior or exterior surfaces of one or more conduits may be provided with one or more protuberances. The protuberances may be fluid directing formations, may provide heat transfer into a fluid or an adjacent conduit or may provide structural support to the conduit. For example, the protuberances may take the form of fins, which might be perpendicular to the longitudinal axis of the duct, or spiral, or take the form of pins at any angle to the axis of the duct. As an example, by providing “stays” within the duct, it is possible to strengthen the duct and reduce the wall thickness for a given pressure to be contained and hydraulic diameter. The protuberances may be perforated to either enhance their function, to equalize fluid pressure or to reduce weight. The protuberances may include stays which attach an inner conduit to an outer conduit, or which attach adjacent conduits together or to other elements of the body of the heat exchanger. To help reduce stresses, the protuberances may be curved in one or more of any planes. To improve heat exchange rates the thickness of the protuberances may vary over its length. The protuberances can be used to enable the construction of lightweight “honeycomb” structures of conduits joined by the minimum amount of metal or the like necessary for heat transfer, structural cohesion and stability. These structures are more suitable for coping with the stresses and distortions caused by high temperatures and/or pressures, and may be more rapidly manufactured, than quasi-solid blocks such as those provided by diffusion bonding. This enables the provision of a lighter, cheaper and more rapidly manufactured compact heat exchanger, which is less prone to stress from differential temperature gradients.
The conduits may be formed from welded tubes. Welded tube is made by rolling up flat strip and welding the edges. Protuberances may be laser remelted on to the surface of the strip that becomes the inner surface of the tube, and then the tube completed in the normal way. In this way it becomes possible to put fluid controlling protuberances inside a fine tube, which is otherwise difficult.
For certain applications it may be desirable to provide the heat exchanger with an integral combustor for generating heat. The combustor may have walls of remelted, porous materials, such as ceramics or high nickel alloys, and may be housed in, and possibly sealed within, a chamber formed during the laser remelting process. The combustor itself could also be formed, either separately from the heat exchanger, or monolithically with the heat exchanger, by laser remelting. To control combustion within the combustor and/or the heat exchanger, a combustion controller may be provided which includes for example glow plugs, resistance wire igniters, thermocouples, flame detectors, pressure sensors and similar structures. The combustion controller elements may be placed in appropriate positions during the manufacture process or apertures and fittings may be provided during manufacture for their subsequent insertion. Combustion may also be controlled to take place within one or more of the conduits either instead of or as well as in the combustor chamber. The combustor may be arranged to receive pre-mixed fuel and combustion air, or may alternatively be arranged to receive the fuel and combustion air separately, the fuel and combustion air being mixed within the heat exchanger. In the latter case, the mixed fuel and combustion air may be combusted at predetermined locations within the heat exchanger. Porous ceramic materials or other combustion catalysts may be included in the construction of the combustion chamber and/or conduits to promote ignition and combustion. Such materials may be provided in the form of layers, coatings, inserts or meshes put in place during the remelting process or inserted, flowed or injected into the conduits or combustion chamber after the remelting process has been completed.
The heat exchanger may be integrated with other components of a complete system, such as, in the case of a Stirling engine, the regenerator and/or the cooler. Each of the latter can be built up in the same way and at the same time as the heat exchanger, thus eliminating any manifolds between the three components. Alternatively, manifolds may be manufactured in the same way, to include fluid passages. In a Stirling engine, the charge gas may be arranged to flow through the inner fluid passage of two fluid passages, and the combustion gases through an axially finned annulus between the inner passage and the main body of the heat exchanger.
Preferably a Stirling engine may consist of two cylinders with their pistons, on the same longitudinal axis, with the heater, regenerator and cooler aligned between them. Preferably, in such an arrangement, the heater consists of a bundle of a large number of short straight fine bore tubes. A suitable combustor may provide cross flow or counterflow heat transfer. Cross flow may be arranged by an annular duct, which directs the combustion gases on different paths between the tubes, the stays and fins being formed and arranged so as to allocate the passage of the combustion gases between different tubes or groups of tubes so as to equalize the temperature across a plane of the cylindrical array, perpendicular of the axis of the cylinder. The distribution of the tubes across that plane may vary, to assist this equalization of temperature distribution, and there may be variations in tube diameter and in the number and form of protuberances to achieve this. The duct may be divided into segments that might be unequal in order to direct the appropriate amount of the combustion gases between specific tubes or groups of tubes.
Counterflow may be provided by an inlet and an outlet manifold, each of which is formed from energy beam remelting, and one of which forms the pressure closure for the hot cylinder. Each manifold may itself divide into a series of ducts whose dimensions and shape are designed to direct specific proportions of the total combustion gases between specific tubes or groups of tubes, in order to equalize the heat transfer into each tube. It will be clear that each tube must pass through the manifold in order to be accessible from the cylinder itself.
In the case of a gas turbine, a recuperator and the combustor can be integrated. In the case of carburetted gas turbines, a recuperator, an internal combustion heat exchanger and the combustion space can be integrated into one monolithic block.
Conduits may also be provided to recycle exhaust gases back to the combustor. Further conduits may be provided to enable steam to be injected into the heat exchanger either to promote reaction or to clean out the conduits within the heat exchanger when using contaminated fuels, such as those from biomass gasifiers.
An embodiment of the invention provides a monolithic heat exchanger formed by a laser remelting process in accordance with the above methods.
Another aspect of the invention provides a heat exchanger formed by a laser remelting process, comprising:
a monolithic heat exchanger body having a plurality of conduits passing through it and having substantially continuously curved outer cross-sections.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:
Referring to
Discussion of this type of manufacturing process can be found in the books Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling by D. T. Pham, S. S. Dimov, Springer-Verlag UK, May 2001 and Laser-Induced Materials and Processes for Rapid Prototyping by L. Lu, J. Fuh and Y.-S. Wong, Kluwer Academic Publishers (2001).
In
Referring to
Referring now to
Referring to
Preferably, the powder and remelted structure within the remelting chamber 30 are heated to a temperature just below the remelting point of the powder prior to the application of the laser beam. This reduces the incidence of temperature differential stresses within the remelted structure. The remelting chamber 30 may also be filled with inert gas (e.g. nitrogen) to prohibit the oxidation of the powder material at the elevated temperature.
Other laser remelting methods are envisaged. For instance, a different powder delivery mechanism may be provided, such as laying down the powder layers as “sheets” of material or delivering a layer of powder directly into the remelting chamber 30 via a dispenser. Also, the powder delivery process and the remelting process could be performed substantially simultaneously if a powder delivery mechanism were to provide the powder to a predetermined region of the remelting chamber 30 at the same time that the laser beam is applied to the predetermined region. The term “laser remelting” can be taken to mean any method of forming a solid structure from raw materials by selectively remelting or re-remelting the raw materials using a laser beam.
It will be appreciated that the selective laser remelting process described above is only one example of possible energy beam remelting processes which may be used. As an example, electron beam remelting could be used instead of or in combination with laser remelting.
The laser remelting process described above enables the realization of complex three-dimensional designs. In the case of a heat exchanger, this enables intricate relationships and interactions between conduits running through the body of the heat exchanger.
An example of the effects of varying the material characteristics of the structure can be illustrated with reference to
The manufacture of a heat exchanger by laser remelting advantageously allows conduits to be constructed within other conduits. This is illustrated schematically in
The inner conduit 720 may extend substantially the entire length of the outer conduit 710. This arrangement can be seen in
In
In
The conduits can be formed with protuberances from their walls extending into the fluid flow and serving a variety of functions, such as providing increased heat transfer area, structural support, stays, triping laminar flow in turbulent flow (for better heat transfer) and forming aerodynamic valves to direct fluid flow through the heat exchanger (by providing more fluid flow resistance in one direction).
An example of a heat exchanger and combustor combination made in accordance with embodiments of the present invention will now be described with reference to
The heat exchanger body 800 comprises a number of different regions in addition to the burner chamber 804 and the burner block 802. Starting from the bottom portion of
Above the base portion 812 is a main portion 814 which comprises 29 rows of charge gas conduits 813. A cross section through the line C-C of
Above the main portion 814 of the heat exchanger body 800 is a roof portion 816 which comprises 5 rows of charge gas conduits 813. In a similar way to the main portion 814, the rows of charge gas conduits 813 are alternated in the vertical direction with rows of exhaust conduits 815 running perpendicular to the charge gas conduits 813 from the face 841 to the face 843 of the heat exchanger body 800. However, in contrast with the main portion 814 there are no substantial interruptions to the rows of charge gas conduits 813, although the spaces between the entry points to the charge gas conduits are larger within the central region of each row (except for the top-most row). A cross section through the line A-A of
During operation, while combustion is taking place within the burner block 802 and hot exhaust gases are entering the burner chamber 804, a charge gas is arranged to pass into the entry points of the charge gas conduits 813, to flow through the charge gas conduits 813 within the heat exchanger body 800, and to exit the heat exchanger body 800 via exits points corresponding to the entry points. The charge gas will be supplied to the entry points of the heat exchanger body 800 via a duct, and the charge gas exiting from the heat exchanger body 800 will be collected via another duct. The duct arrangements will be described later with reference to
The hot exhaust gases are at a higher temperature than the charge gases passing through the heat exchanger body 800. The purpose of a heat exchanger is to provide for the transfer of heat between two fluids passing through the heat exchanger body 800. In the present arrangement the charge gas conduits 813 are disposed close to the exhaust gas conduits 815 enabling fast and efficient heat transfer from the hot exhaust gases to the charge gases through the walls separating the charge gas conduits 813 and the exhaust gas conduits 815.
Referring to
Referring to
Referring to
Charge gas conduits 813 are shown extending horizontally across
In the present case, the face of the heat exchanger 800 which is opposite to the face illustrated in
Although the above arrangements have been described with reference to both the exhaust gas and charge gas being “gases”, in practice one or both of these could be in liquid form and mixed phase embodiment may be particularly suitable for some uses.
Although illustrative embodiments of the invention have been described in detail herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments, and that various changes and modifications can be effected therein by one skilled in the art without departing from the scope of the invention as defined by the appended claims. In particular, the invention also relates to reformers, reactors, combustors and any combination of them, and is particularly relevant where reducing size, weight, and/or use of materials, and improving reaction and/or heat transfer efficiency is important, or where high temperatures and/or pressures apply. Applications extend beyond Stirling engines, for example, to quasi-Stirling cycle machines, Brayton cycle machines, boilers, water or other fluid heaters, fuel cells, vaporizers, cryogenics devices, cooling devices, air conditioners and refrigerators, and devices for use in chemical, pharmaceutical and related processes. In general terms the invention applies to any machine or process which requires heat exchange, reforming, reaction or combustion.
Number | Date | Country | Kind |
---|---|---|---|
0427362.9 | Dec 2004 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2005/004781 | 12/13/2005 | WO | 00 | 9/26/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/064202 | 6/22/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4818562 | Arcella et al. | Apr 1989 | A |
5205276 | Aronov et al. | Apr 1993 | A |
6397940 | Blomgren | Jun 2002 | B1 |
6695044 | Symonds | Feb 2004 | B1 |
6811744 | Keicher et al. | Nov 2004 | B2 |
6865825 | Bailey et al. | Mar 2005 | B2 |
7115336 | Revol | Oct 2006 | B2 |
20040217095 | Herzog | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
0 289 116 | Nov 1988 | EP |
0 637 727 | Feb 1995 | EP |
1069477 | May 1967 | GB |
1100445 | Jan 1968 | GB |
63-230264 | Sep 1988 | JP |
7-151478 | Jun 1995 | JP |
8-219679 | Aug 1996 | JP |
9-189490 | Jul 1997 | JP |
2003-129862 | May 2003 | JP |
03071626 | Aug 2003 | WO |
2004014637 | Feb 2004 | WO |
Entry |
---|
Machined Translation of JP 2003-129862 A (submitted as part of Applicant's IDS filed on Sep. 22, 2010). |
Notice of Reasons for Rejection mailed Aug. 17, 2010 in corresponding JP 2007-544994 & English translation. |
W.M. Kays et al, “Compact Heat Exchangers” 1998, Preface, pp. 1-10, 122-123, 148-149, Figs. 10-98 & 10-99. |
L. Lu et al, “Laser-induced Materials and Processes for Rapid Prototyping” 2001, Preface, pp. 1-6, 91-92, 104-105, 143-148, 155 & 261. |
International Search Report for PCT/GB2005/004781 mailed Apr. 21, 2006. |
UK Search Report for GB 0427362.9, date of search Mar. 14, 2005. |
Written Opinion for PCT/GB2005/004781 mailed Apr. 21, 2006. |
L. R. Arana et al, “Microfabricated Suspended-Tube Chemical Reactor for Thermally Efficient Fuel Processing” Journal of Microelectromechanical Systems, vol. 12, No. 5, Oct. 2003, pp. 600-612. |
N. Delalic et al, “Porous media compact heat exchanger unit—experiment and analysis” Experimental Thermal and Fluid Science, 28, 2004, pp. 185-192. |
R. H. Morgan et al, “High density net shape components by direct laser re-melting of single-phase powders” Journal of Materials Science, 37, 2002, pp. 3093-3100. |
D. T. Queheillalt et al, “Electron-Beam Directed Vapor Deposition of Multifunctional Structures for Electrochemical Storage” Proceedings of SPIE, vol. 4698, 2002, pp. 201-211. |
W. Meiners et al, Direct Generation of Metal Parts and Tools by Selective Laser Power Remelting (SLPR), pp. 655-661, Nov. 1998. |
Number | Date | Country | |
---|---|---|---|
20080210413 A1 | Sep 2008 | US |