The present invention generally relates to heat pipes for removing heat from electrical components, and, more particularly, to a flexible heat pipe which allows axial and lateral movement between evaporator and condenser components engaged to opposite ends of the heat pipe.
It has been suggested that a computer is a thermodynamic engine that sucks entropy out of data, turns that entropy into heat, and dumps the heat into the environment. The ability of prior art thermal management technology to get that waste heat out of semiconductor circuits and into the environment, at a reasonable cost, limits the density and clock speed of electronic systems.
A typical characteristic of heat transfer devices for electronic systems is that the atmosphere is the final heat sink of choice. Air cooling gives manufacturers access to the broadest market of applications. Another typical characteristic of heat transfer devices for electronics today is that the semiconductor chip thermally contacts a passive aluminum spreader plate, which conducts the heat from the chip to one of several types of fins; these fins convect heat to the atmosphere with natural or forced convection.
As the power to be dissipated by semiconductor devices increases with time, a problem arises: over time the thermal conductivity of the available materials becomes too low to conduct the heat from the semiconductor device to the fins with an acceptably low temperature drop. The thermal power density emerging from the semiconductor devices will be so high that even copper or silver spreader plates will not be adequate.
One technology that has proven beneficial is the heat pipe. A heat pipe includes a sealed envelope that defines an internal chamber containing a capillary wick and a working fluid capable of having both a liquid phase and a vapor phase within a desired range of operating temperatures. When one portion of the chamber is exposed to relatively high temperature it functions as an evaporator section. The working fluid is vaporized in the evaporator section causing a slight pressure increase which forces the vapor to a relatively lower temperature section of the chamber, defined as a condenser section. The vapor is condensed in the condenser section and returns through the capillary wick to the evaporator section by capillary pumping action. Because a heat pipe operates on the principle of phase changes rather than on the principles of conduction or convection, a heat pipe is theoretically capable of transferring heat at a much higher rate than conventional heat transfer systems. Consequently, heat pipes have been utilized to cool various types of high heat-producing apparatus, such as electronic equipment (see, e.g., U.S. Pat. Nos. 5,884,693, 5,890,371, and 6,076,595).
In some cases it is desirable for the heat pipe to be flexible, either to allow for thermal expansion (e.g. where the heat pipe has one or more bends to move around system components), or to provide vibration damping or insulation for the heat source. Often it is desirable to place the condenser in a remote location, either to provide access to forced cooling elements or to route the condenser to a space having a relatively low ambient temperature compared to that in which the evaporator is located. In some cases, the condenser is located near vibrating system components, and the condenser can pick up some of this vibration. With rigid heat pipes, this vibration can be transmitted back to the evaporator and thus to the component that is being cooled, such as a computer CPU.
One example of a flexible heat pipe is provided in U.S. Pat. No. 5,413,167 to Hara et al., in which one or more flexible heat pipes are used to provide heat transmission between a heat source and a heat exchanger. The Hara patent discloses a flexible heat pipe having a corrugated form to provide a desired flexibility. The wick is adhered to the interior surface of the bellows.
It would be advantageous to combine a bellows arrangement with a cable artery-type wick, rather than simply applying the wick to the interior surface of the bellows. This is because applying the wick material to the interior surface of the bellows corrugations limits the amount the bellows can be compressed. Thus, for very small size heat pipes there will be insufficient room for wick material between the corrugations while still allowing the desired compression. There are also issues of fragility of the bellows, change in stiffness (perhaps exceeding vibration transmissibility), and the extended length of travel for the condensate being wicked along the bellows surface (thus degrading wick maximum power capacity), all of which make application of wick material to the interior surface of the bellows undesirable. A cable artery-type wick, however, may not have the desired degree of axial flexibility due to the nature of its construction, and therefore when its ends are fixed to the evaporator and the condenser, it can form an undesirable rigid link between the two. Thus, there is a need for a flexible heat pipe system that combines the advantages of a bellows type heat pipe with a cable artery-type wick and also provides a desired degree of axial and lateral flexibility.
A flexible heat pipe is disclosed for conveying heat from a vibration isolated heat source to a vibrating cold plate. In particular, the heat pipe can flex axially and laterally (i.e., it can stretch as well as bend).
In one embodiment the heat pipe comprises a cable artery having a sliding connection to the condenser that provides freedom of movement between the condenser and the heat pipe (and the evaporator), in both the axial as well as lateral directions. A polytetrafluoroethylene (PTFE or Teflon®) sleeve can be provided over the cable artery to protect the bellows from abrasion due to contact with the cable artery.
The heat pipe preferably will allow relative motion between the evaporator and condenser in all directions. In one embodiment, for use in small-sized electronics applications, the heat pipe may allow relative motion between the evaporator and condenser of ±0.150 inches in all directions, which provides a maximum geometric cumulative motion of ±0.260 inches. To allow this relative motion, a sliding joint is provided between the end of the cable artery and inner diameter of the condenser tube. The end of the braided cable artery is splayed out and folded back upon itself. The splayed portion is sufficiently larger than the original diameter, and is inherently springy so that it ensures contact with the inner surface of the condenser. Thus, condensate from the heat pipe can be wicked into the cable artery for transport back to the evaporator.
A bellows may be used to provide flexibility in the heat pipe envelope. Due to the small size of the overall envelope associated with modern electronic devices, a very small bellows may be required. Such a bellows may have a very thin wall, which in one embodiment may be less than 0.001-inch thick. To protect the bellows from abrasion damage from the cable artery during flexing, a PTFE sleeve may be used. The sleeve may be slid over the cable artery and fixed between cable and bellows. The sleeve may be perforated to allow vapor to escape, so that the cable artery wick can prime.
A flexible heat pipe system is disclosed, comprising a condenser having an inner surface, an evaporator, a bellows having a condenser engaging end and an evaporator engaging end, and a flexible braid element disposed within the bellows portion. The braid element may have a condenser engaging end and an evaporator engaging end, the condenser engaging end being sized to engage the inner surface of the condenser to allow the condenser and the evaporator to move with respect to each other. The flexible braid element may be capable of transporting condensed working fluid from the condenser to the evaporator by capillary action.
A heat removal system is further disclosed, comprising a flexible braided member having first and second ends, a condenser having an inner surface engaged with the first end of the braided member, and an evaporator engaged with the second end of the braided member. A bellows member may be provided having a first end connected to the condenser and a second end connected to the evaporator, the bellows further may encompass the flexible braided member. The first end of the flexible braided member may be turned inside out and folded back over onto itself to provide an increased diameter portion, the increased diameter portion having an outer dimension that is at least equal to an inner dimension of the inner surface of the condenser. The flexible braided member further may be capable of transporting condensed working fluid from the condenser to the evaporator by capillary action.
A flexible heat pipe assembly is additionally disclosed, comprising a metal cable artery having first and second ends, the first end being turned inside out and folded back over onto itself to form an increased-diameter portion. A condenser may be provided having an inner surface dimensioned to engage the increased-diameter portion of the cable artery. An evaporator may be connected to the second end of the tubular member; and a bellows member may surround the cable artery. The bellows may have a first end connected to the condenser and a second end connected to the evaporator. Thusly arranged, the engagement between the tubular member and the condenser may allow relative axial movement between the artery and condenser pieces during operation. Additionally, the cable artery may be laterally flexible to allow the condenser and evaporator to move laterally with respect to each other during operation. Further, the cable artery may be capable of transporting condensed working fluid from the condenser to the evaporator by capillary action.
It is to be understood that the present invention is by no means limited only to the particular constructions herein disclosed and shown in the drawings, but also comprises any modifications or equivalents within the scope of the claims.
These and other features and advantages of the present invention will be more fully disclosed in, or rendered obvious by, the following detailed description of the preferred embodiment of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts and further wherein:
a and 3b are cross-sectional views of a first embodiment of a connection between the condenser and braided wick of
a and 4b are cross-sectional views of a second embodiment of a connection between the condenser and braided wick of
This description of preferred embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description of this invention. The drawing figures are not necessarily to scale and certain features of the invention may be shown exaggerated in scale or in somewhat schematic form in the interest of clarity and conciseness. In the description, relative terms such as “horizontal,” “vertical,” “up,” “down,” “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing figure under discussion. These relative terms are for convenience of description and normally are not intended to require a particular orientation. Terms including “inwardly” versus “outwardly,” “longitudinal” versus “lateral” and the like are to be interpreted relative to one another or relative to an axis of elongation, or an axis or center of rotation, as appropriate. Terms concerning attachments, coupling and the like, such as “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. The term “operatively connected” is such an attachment, coupling or connection that allows the pertinent structures to operate as intended by virtue of that relationship. In the claims, means-plus-function clauses are intended to cover the structures described, suggested, or rendered obvious by the written description or drawings for performing the recited function, including not only structural equivalents but also equivalent structures.
Referring to
During operation, heat from a heat source (not shown) is applied to the evaporator. Working fluid in vapor form is thus generated in the evaporator 30 and is transported to the condenser 20 via the space 45 between the bellows member and the cable artery 10. The fluid is condensed in the condenser 20 and is then wicked back to the evaporator 30 via capillary action in the cable artery 10.
In one embodiment, the cable artery 10 comprises a braided metal element formed over a mandrel, and it is this braid structure that provides the desired capillary action for directing condensed working fluid from the condenser 20 to the evaporator 30. As a result of the mandrel forming process (and once the mandrel is removed) the cable artery 10 may have a longitudinal central opening 11 (
Referring to
It is also noted that the described splay arrangement, in which the tip portion 12 is turned inside out and folded back onto itself, it expected to provide excellent long term engagement between the tip 12 and the condenser 20. This is contrasted with an arrangement in which the tip of the cable artery is merely expanded to contact the inner surface 22 of the condenser. Such an “expanded” arrangement may be expected to relax over time, and may compromise engagement between the artery tip and the condenser.
Like the first end 14, the second end 16 of the cable artery can have a splayed portion 18 for enhancing transfer of fluid from the cable artery 10 to the evaporator 30. Unlike the first end, however, the second end 16 can be fixed both laterally and axially to the evaporator 30. In the embodiment of
Providing a fixed connection between the artery and evaporator can be advantageous because the majority of the thermal resistance of the system is expected to occur at the evaporator, and thus optimal thermal contact is desired at this location. In one embodiment, the artery/evaporator connection is achieved by sintering the second end 16 of the artery into a powder wick matrix (wick element 32) in the evaporator 30.
Referring again to
It is noted that providing a corrugated cylindrical bellows member 40 is not critical, and other types and shapes of sealed flexible closures could also be used. In one exemplary embodiment, an appropriately-sized stainless steel tube, coiled like a spring, could be used to provide the desired flexible, vapor-tight, connection between the condenser and evaporator.
As previously noted, a protective sleeve 50 can be provided over at least a portion of the length of the cable artery 10 in order to protect the bellows member 40 from damage due to contact with the artery. Thus, the protective sleeve 50 need only be disposed over the portion of the cable artery that resides within the bellows 40, as is illustrated in
Since the sleeve 50 is merely an abrasion protector, its dimensional tolerances are not critical, and a size may be chosen that allows the sleeve to be easily slipped on over the cable artery 10. In one exemplary embodiment, the protective sleeve 50 comprises polytetrafluorethylene (PTFE, a well known example of which is Teflon®), although other appropriate flexible protective materials could also be used.
As will be apparent,
Referring to
Referring to
Thus, the artery 10 has the ability to turn inside out (i.e. splay) by a greater or lesser amount, depending on the amount of movement of the artery 10 within the condenser 20. This is best shown by reference to
The cable artery 10 in all cases is configured to accommodate rapid and/or cyclical changes in length L corresponding to anticipated vibrational motion of the condenser 20 at any of a variety of frequencies. It is noted that the heat pipe 10 of
Preferred materials of construction for all elements of the device are nickel and nickel alloys, although other materials, such as bronze, can also be used as desired (i.e., for larger-sized heat pipes) without detracting from the principles of the invention.
It is noted that although the invention has been described in relation to a heat pipe arrangement having a single connection between the condenser and evaporator, the principles of the invention could be also be applied to a loop heat pipe. Additionally, the dimensions provided are merely exemplary, and it is expected that the principles of the invention can be applied to a wide range of sizes of heat pipes and their associated components.
Accordingly, it should be understood that the embodiments disclosed herein are merely illustrative of the principles of the invention. Various other modifications may be made by those skilled in the art which will embody the principles of the invention and fall within the spirit and the scope thereof.
This is a non-provisional application of prior U.S. provisional patent application Ser. No. 60/621,748, filed Oct. 25, 2004, by J. Thayer et al., titled “Heat Pipe with Axial and Lateral Flexibility,” the entire contents of which application is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3604504 | Kessler et al. | Sep 1971 | A |
3844342 | Eninger et al. | Oct 1974 | A |
3913665 | Franklin et al. | Oct 1975 | A |
4003427 | Leinoff et al. | Jan 1977 | A |
4018269 | Honda et al. | Apr 1977 | A |
4019571 | Kosson et al. | Apr 1977 | A |
4116266 | Sawata et al. | Sep 1978 | A |
4402358 | Wolf | Sep 1983 | A |
4463798 | Pogson et al. | Aug 1984 | A |
4951740 | Peterson et al. | Aug 1990 | A |
5413167 | Hara et al. | May 1995 | A |
5771967 | Hyman | Jun 1998 | A |
5884693 | Austin et al. | Mar 1999 | A |
5890371 | Rajasubramanian et al. | Apr 1999 | A |
5946187 | Cipolla | Aug 1999 | A |
6076595 | Austin et al. | Jun 2000 | A |
6766817 | Silva | Jul 2004 | B2 |
6896040 | Hul-Chun | May 2005 | B2 |
7168480 | Jankowski et al. | Jan 2007 | B2 |
7647961 | Thayer et al. | Jan 2010 | B2 |
20070267179 | Hou et al. | Nov 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20100170661 A1 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
60621748 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11256708 | Oct 2005 | US |
Child | 12689135 | US |