Claims
- 1. A heat-resistant polyimide blend comprising:
- (a) a thermoplastic polyimide represented by formula (VI), ##STR12## where Z is a tetravalent organic radical selected from the group consisting of a carbocyclic aromatic containing radical and a heterocyclic aromatic containing radical where each anhydride group is located on an aromatic ring with the carbonyl units in an ortho orientation relative to one another, and where R.sup.1 and R.sup.2 each represent a substituent group selected from the group consisting of hydrogen, aliphatic and aromatic groups from about 1 to 18 carbons, and halogenated aliphatics and aromatics from 1 to 18 carbons, the groups R.sup.1 and R.sup.2 being the same or different, and Ar.sup.1 a divalent organic aromatic group where the ether linkage and amine linkage are in a para arrangement; and
- (b) a thermosetting imide oligomer represented by formula (II), ##STR13## wherein Z is as previously defined, the groups Z being either the same or different, and where Q is divalent organic radical selected independently from the group consisting of a carbocyclic aliphatic radical, a carbocyclic aromatic containing radical, and a heterocyclic containing radical, wherein the term carbocyclic aromatic containing radical and heterocyclic aromatic containing radical used to define Z, is meant to include any radical which has the anhydride groups attached to one or more aromatic ring(s) and when describing Q has the amine groups attached to one or more aromatic ring(s), n being a positive integer of from 1 to 30, and X is a form of trivalent bond shown attached to group Z, which occupies two of the bonds, thereby leaving one additional bond for subsequent bonding to other components of the oligomer, and selected from the chemical formula group consisting of ##STR14##
- 2. A method of manufacturing a heat-resistant polyimide blend solution comprising the steps of:
- (a) preparing a precursor of a thermoplastic polyimide represented by formula (VI), ##STR15## where Z is a tetravalent organic radical selected from the group consisting of a carbocyclic aromatic containing radical and a heterocyclic aromatic containing radical where each anhydride group is located on an aromatic ring with the carbonyl units in an ortho orientation relative to one another, and where R.sup.1 and R.sup.2 each represent a substituent group selected from the group consisting of hydrogen, aliphatic and aromatic groups from about 1 to 18 carbons, and halogenated aliphatics and aromatics from 1 to 18 carbons, the groups R.sup.1 and R.sup.2 being the same or different, and Ar.sup.1 a divalent organic aromatic group where the ether linkage and amine linkage are in a para arrangement, the precursor having been prepared by the steps of dissolving a tetracarboxylic acid dianhydride ester and a diamine of represented by formula (VIII) ##STR16## in an aprotic polar solvent at a temperature from 50.degree. C. to 150.degree. C. for 1 to 10 hours; and
- (b) dissolving a thermosetting imide oligomer represented by formula (II), ##STR17## in the aprotic polar solvent with stirring to form the blend solution, wherein Z is as previously defined, the groups Z being either the same or different, and where Q is divalent organic radical selected independently from the group consisting of a carbocyclic aliphatic radical, a carbocyclic aromatic containing radical, and a heterocyclic containing radical, wherein the term carbocyclic aromatic containing radical and heterocyclic aromatic containing radical used to define Z, is meant to include any radical which has the anhydride groups attached to one or more aromatic ring(s) and when describing Q has the amine groups attached to one or more aromatic ring(s), n being a positive integer of from 1 to 30, and X is a form of trivalent bond shown attached to group Z, which occupies two of the bonds, thereby leaving one additional bond for subsequent bonding to other components of the oligomer, and selected from the chemical formula group consisting of ##STR18##
- 3. The polyimide blend of claim 1, wherein a weight ratio of the thermoplastic polyimide represented by formula (VI) to the thermosetting imide oligomer represented by formula (II) is selected in a range of 99/1 to 5/95.
- 4. The polyimide blend of claim 1, wherein the thermoplastic polyimide represented by formula (VI) has a number-average molecular weight of 10,000 or above.
- 5. The method of claim 2 wherein the aprotic polar solvent is selected from the group consisting of ether solvents, sulfoxide solvents, formamide solvents, acetamide solvents, N-methylpyrrolidinone and mixtures thereof.
- 6. The method of claim 5 wherein the ether solvent is selected from the group consisting of tetrahydrofuran and dioxane, and wherein the sulfoxide solvent is selected from the group consisting of dimethyl sulfoxide and diethyl sulfoxide, and wherein the formamide solvent is selected from the group consisting of N,N'-dimethylformamide and N,N'-diethylformamide, and wherein the acetamide solvent is selected from the group consisting of N,N'-dimethylacetamide and N,N'-diethylacetamide.
- 7. The method of claim 5 wherein the aprotic solvent is combined with a non-solvent of a polyamic acid.
- 8. The method of claim 7 wherein the non-solvent is selected from the group consisting of an alcohol, aralkyl cellosolve and mixtures thereof.
Parent Case Info
This application is a continuation-in-part of Ser. No. 07/963,844, filed 10120192, now abandoned.
US Referenced Citations (21)
Foreign Referenced Citations (1)
Number |
Date |
Country |
209546 |
Mar 1990 |
EPX |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
963844 |
Oct 1992 |
|