Heat stable hyaluronic acid compositions for dermatological use

Information

  • Patent Grant
  • 10220113
  • Patent Number
    10,220,113
  • Date Filed
    Wednesday, November 29, 2017
    6 years ago
  • Date Issued
    Tuesday, March 5, 2019
    5 years ago
Abstract
The disclosure provides hyaluronic acid (HA) gel formulations and methods for treating the appearance of the skin. The formulations contain hyaluronic acid and at least one additional ingredient. Methods for treating lines, wrinkles, fibroblast depletions, and scars with the disclosed composition are provided as well.
Description
BACKGROUND

Skin aging is a progressive phenomenon, occurs over time and can be affected by lifestyle factors, such as alcohol consumption, tobacco and sun exposure. Aging of the facial skin can be characterized by atrophy, slackening, and fattening. Atrophy corresponds to a massive reduction of the thickness of skin tissue. Slackening of the subcutaneous tissues leads to an excess of skin and ptosis and leads to the appearance of drooping cheeks and eye lids. Fattening refers to an increase in excess weight by swelling of the bottom of the face and neck. These changes are typically associated with dryness, loss of elasticity, and rough texture.


A variety of compounds can have an effect on the skin such as wrinkle reduction, antioxidant, haemostatic, vasoconstriction, anti-itching, anti-inflammatory and anti-irritant effects. For example, various vitamins as well and hyaluronic acid (HA) are known to have an effect on skin. Vitamin C is the L-enantiomer of ascorbate and has a well-described role in collagen development. Vitamin C is involved in the hydroxylation of collagen, which allows it to assume its triple-helix structure. Vitamin C is also known for its antioxidant effects and is well tolerated. HA is a natural polysaccharide. It is a polymer of disaccharides that are themselves composed of D-glucuronic acid and N-acetylglucosamine, linked to one another by alternating beta-1,4 and beta-1,3 glycosidic linkages. The polymers of this recurring unit may be from 102 and 104 kilo Daltons (kDa) in size, in vivo. Hyaluronic acid represents a natural constituent of the dermis, where it plays an important role in the hydration and elasticity of skin. There is a strong correlation between the water content in the skin and levels of HA in the dermal tissue. As skin ages, the amount and quality of HA in the skin is reduced. These changes lead to drying and wrinkling of the skin.


The use of HA in cosmetic and dermatological applications is known. HA is tolerated well and there is no immunogenicity associated with its use. The low incidence of side effects has lead to the use of HA for the treatment of wrinkles, fine lines, and scars. HA is subject to degradation through different pathways (e.g. enzymatic, temperature, free radicals), and therefore, its longevity in vivo is limited.


Disclosures of HA, vitamin C, and C-glycosides include U.S. patent application Ser. No. 12/393,884; U.S. Pat. No. 6,921,819 (a process for cross-linking solid hyaluronic acid (HA) by reacting it with a polyfunctional linker during hydration of the HA); U.S. Pat. No. 6,685,963 (acrylic particles of HA); U.S. publication 2006/0194758 (a method for making a hydrogel by cross linking high and low molecular weight sodium HAs); U.S. publication 2009/0036403 (cross-linking HA with a tetra functional PEG epoxide to provide “tunably” cross-linked HA); U.S. publication 2009/0143331 (a HA dermal filler with a degradation inhibitor, such as chondroitin sulphate, in order to provide a longer lasting filler); U.S. publication 2009/0143348 (HA combined with a steroid); and U.S. publication 2009/0155314 (HA combined with a botulinum toxin). Additionally, U.S. publications 2009/0148527, 2009/0093755, and 2009/0022808 disclose HA in microspheres, cross-linked with collagen, and coated with a protein, respectively. Further disclosures of HA include: WO 2009/034559 (a process for aesthetic and/or reparative treatment of the skin with compositions that contain at least one C-glycoside derivative); WO 2009/024719 (cosmetic and pharmaceutical compositions that contain HA and a C-glycoside derivative useful for filling recesses/depressions in the skin, restore volume of the body or the face, and to reduce the sign of aging); WO 2007/128923 (a method for preparing a biocompatible gel with controlled release of one or more active lipophilic and/or amphiphilic ingredients); U.S. publication 2009/0018102 (compositions containing HA and at least one retinoid or salt/derivative thereof in combination with an oligosaccharide and a HA degradation inhibitor, to treat wrinkles, lines fibroblast depletions and scars); U.S. Pat. No. 3,763,009 (a process for improving the oxidation resistance of ascorbic acid by subjecting a mixture of ascorbic acid, maltose and/or oligosaccharides to an enzyme derived from genera Aspergillus, Penicillium or others to enzymatically convert the mixture into ascorbic acid glucoside); U.S. Pat. No. 5,616,611 (a α-Glycosyl-L-ascorbic acid that exhibits no direct reducing activity, is stable, and is useful as a stabilizer, quality-improving agent, antioxidant, physiologically active agent, a UV-absorbant in pharmaceutical and cosmetic industries); U.S. Pat. No. 5,843,907 (the production and use of a crystalline 2-O-α-D-glucopyranosyl-L-ascorbic acid suitable for vitamin C enriching agents, food stuffs, pharmaceuticals, and cosmetics); and EP 0539196 (an industrial scale preparation of high purity 2-O-α-D-glucopyranosyl-L-ascorbic acid) and US publication 2002/0151711. Commercial products incorporating HA and/or vitamin C agents include: MESOGLOW® products, REVITACARE®, and NCTF® 135/135HA Mesotherapy products. Each of the above-cited references and printed publications are individually incorporated herein by reference in their entirety.


SUMMARY

Our invention includes a stable dermal filler formulation comprising a hyaluronic acid (HA) and at least one additional ingredient selected from the group consisting of a wrinkle reduction, antioxidant, haemostatic, vasoconstriction, anti-itching, anti-inflammatory and anti-irritant ingredient. Stability of the dermal filler formulation can be determined by subjecting the dermal filler formulation to a heat treatment selected from the group consisting of (a) steam sterilization (equivalently “autoclaving”) and (b) about 32 days at about 45° C., with substantial retention after the heat treatment of one or more of the dermal filler characteristics of being clear, homogenous, and cohesive, and without substantial degradation of the dermal filler formulation after the heat treatment. Preferably the steam sterilization is carried out at a temperature of at least about 120° C., as we have found that a high temperature steam sterilization reduces the sterilization time required while still providing all sterility requirements, without degradation of the dermal filler formulation occurring when the additional ingredients set forth herein are present in the formulation. More preferably, the steam sterilization is carried out at a temperature between about 130° C. and 135° C., because we found that such a particular high temperature steam sterilization not only further reduces the sterilization time required while still providing all sterility requirements but as well can be carried out with little or no degradation of the dermal filler formulation occurring. Preferably, the steam sterilization is carried out for between about one minute and about 10 minutes and more preferably for between about 1 minute and about 5 minutes.


Our invention also includes a steam sterilization stable dermal filler formulation comprising a hyaluronic acid (HA) and at least one additional ingredient selected from the group consisting of wrinkle reduction, antioxidant, haemostatic, vasoconstriction, anti-itching, anti-inflammatory and anti-irritant ingredients, wherein the formulation is substantially clear (i.e. little or no modification of the pre-heat [i.e. steam] treatment dermal filler formulation color occurs as compared to the color of the post heat treatment dermal filler formulation), homogenous, cohesive stable and not substantially degraded after steam sterilization. Degradation can be shown after steam sterilization by, for example, discoloration of the steam sterilized dermal filler formation and/or by a decrease in the homogeneity of the formulation or in other formulation rheological properties. Substantially clear means that on visual inspection the dermal filler formulation both before and after steam sterilization is not opaque. Substantially homogenous means the dermal filler formulation both before and after steam sterilization has the same consistency (eg well mixed throughout). Substantially monophasic means the dermal filler formulation both before and after steam sterilization comprises only one phase, meaning it is a gel with no particles. Substantially cohesive means the ability of the dermal filler formulation both before and after steam sterilization to retain its shape and resist deformation. Cohesiveness is affected by, among other factors, the molecular weight ratio of the initial free HA, the degree of crosslinking, the amount of residual free HA following crosslinking, and the pH of the dermal filler formulation. Moreover, a cohesive dermal filler formulation resists phase separation when tested according to the method disclosed by Example 1A herein.


Our dermal filler formulations are stable after steam sterilization (i.e. at a temperature between about 120° C. to 135° C. or greater). Additionally our dermal filler formulations have long term storage or shelf life stability as shown for example by maintenance of stability of the dermal filler formulations in an environment at about 45° C. for about 32 days (accelerated heat testing), which can be considered to show that stability will be maintained for about 1 to 3 years at room temperature; stability can be determined by substantial retention at room temperature of one or more of the dermal filler characteristics of being clear, homogenous, and cohesive, and without substantial degradation of the dermal filler formulation. Stability of our dermal filler formulations can be determined over a period of or about 25 days to about 35 days at a temperature of about 35° to 50° C. Preferably, as set forth above, the accelerated heat stability testing is carried out for about 32 days at about 45° C. Substantially stable after the accelerated heat (stability) testing carried out as set forth above, or substantially stable after autoclaving or after steam sterilization of the dermal filler formulation, means the dermal filler formulation retains (as being resistant to degradation) at least 80% and preferably at least 90% and most preferably at least about 95% of at least one of its measured characteristics of transparency, pH, extrusion force, rheological characteristics, hyaluronic acid (HA) concentration, sterility, osmolarity, and same additional ingredient concentration. In our dermal filler formulation the HA is preferably cross-linked and the HA can be present in an amount of about 1 to about 40 mg/mL.


An additional ingredient in our dermal filler formulation can be a vitamin B, C or E and the additional ingredient can be present in an amount of about 0.001% to about 10% w/w, and preferably be present in an amount of from about 0.1% to about 3% w/w. Important, the additional ingredient can provide the dermal filler formulation with improved rheological properties resulting in less extrusion force required for administration compared to an HA gel formulation without the additional constituent.


Our invention also includes a method for treating a dermal condition such as fine lines, wrinkles, fibroblast depletions, and/or scars of a patient by administering to the patient an effective amount of a steam sterilization stable dermal filler formulation comprising a hyaluronic acid (HA) and at least one additional ingredient selected from the group consisting of wrinkle reduction, antioxidant, haemostatic, vasoconstriction, anti-itching, anti-inflammatory and anti-irritant ingredients, wherein the formulation is clear, homogenous, cohesive, stable and not degraded after steam sterilization and wherein the appearance of the fine lines, wrinkles, fibroblast depletions, or scars is diminished. The administration can be by sub dermal, intra-dermal or subcutaneous injected (i.e. local injection administration) into a facial skin of the subject.


Our invention also includes a steam sterilization stable dermal filler formulation comprising a hyaluronic acid and at least one additional ingredient selected from the group consisting of AA2G and dexpanthenol, wherein the stability of the dermal filler formulation is significantly increased by the additional ingredient—as shown by the dermal filler formulation having a Δ Tan δ 1 Hz←0.05.





DRAWINGS


FIG. 1 is a representation of the structure of an ascorbyl-2-glucoside, also known as AA2G™ (Hayashibara Co., Japan).



FIG. 2 is a graph showing the synthesis of pro-collagen (% control) for control, gel+lidocaine 0.3%, AA2G™ 0.6% in phosphate buffer, and gel+AA2G™ 0.6%+lidocaine 0.3%.



FIG. 3 is a graph showing the extrusion force over time (3 yr equivalent at 25° C.) in compositions: control, AA2G™ plus lidocaine, and AA2G™ plus lidocaine and TPGS.



FIG. 4 is a graph showing the pH over time (3 yr equivalent at 25° C.) in compositions: control, AA2G™ plus lidocaine, and AA2G™ plus lidocaine and TPGS.



FIG. 5 is a graph of tan delta 1 Hz over time (3 yr equivalent at 25° C.) in compositions: control, AA2G™ plus lidocaine, and AA2G™ plus lidocaine and TPGS.



FIG. 6 is an HPLC analysis (C18 column, eluent: sodium phosphate buffer (pH=2.2)/2-propanol 10%, 0.7 ml/min; detection at 260 nm) of AA2G™, lidocaine, and IPA (coeluent) after autoclaving (3 yr equivalent at 25° C.).



FIG. 7 is a graph comparing antioxidant properties in compositions: control versus JUVEDERM® Ultra with lidocaine AA2G™, and JUVEDERM® Ultra with lidocaine.





DESCRIPTION

Our invention is based on the discovery that a steam sterilization stable HA based dermal filler can be prepared with an additional ingredient (that is besides the HA present in the formation) which is a wrinkle reduction, antioxidant, haemostatic, vasoconstriction, anti-itching, anti-inflammatory and/or anti-irritant ingredient. An HA dermal filler within the scope of our invention (“the dermal filler formulation”) is (autoclaving) steam sterilization stable and as demonstrated stability after about 32 days at about 45° C. The formulation does not exhibit any degradation as shown by the pre and post autoclaved formulations both being clear, homogenous, and cohesive.


The dermal filler formulation can also exhibit greater stability than an HA gel formulation without the additional constituent. Without wishing to be bound by theory it may be that the matrix of the cross-linked HA used in our formulation sequesters, renders non-reactive and thereby prevents the additional ingredient (as set forth for example in Examples 4-6, 10-11, 13, 15-16, 20, 24, and 25-29, supra) from degrading and causes degradation of the dermal filler formulation during steam sterilization. Additionally, the additional ingredient can be hydrophilic and provides protection to the HA from degradation during steam sterilization and/or after administration of the dermal filler formulation to a patient. Without wishing to be bound by theory, the incorporation of an additional ingredient in the dermal filler formulation may inhibit free-radical scavenging at the injection/implant site, thereby prolonging dermal filler duration after patient administration. After steam sterilization the additional ingredient can upon administration (as by subdermal injection) be released from the dermal filler formulation for cosmetic or therapeutic effect.


Autoclave stable or steam sterilization stable as used herein means a dermal filler formulation that is resistant to degradation such that the formulation retains at least one, and preferably all, of the following aspects after steam sterilization: transparent or clear appearance pH, extrusion force and/or rheological characteristics, hyaluronic acid (HA) concentration, osmolarity, and same additional ingredient concentration.


High molecular weight HA as used herein describes a HA material having a molecular weight of at least about 1.0 million Daltons (mw≥106 Da or 1 MDa) to about 4.0 MDa. For example, the high molecular weight HA in the present compositions may have a molecular weight of about 2.0 MDa. In another example, the high molecular weight HA may have a molecular weight of about 2.8 MDa.


Low molecular weight HA as used herein describes a HA material having a molecular weight of less than about 1.0 MDa. Low molecular weight HA can have a molecular weight of between about 200,000 Da (0.2 MDa) to less than about 1.0 MDa, for example, between about 300,000 Da (0.3 M Da) to about 750,000 Da. (0.75 MDa).


Degree of crosslinking as used herein refers to the intermolecular junctions joining the individual HA polymer molecules, or monomer chains, into a permanent structure, or as disclosed herein the soft tissue filler composition. Moreover, degree of crosslinking for purposes of the present disclosure is further defined as the percent weight ratio of the crosslinking agent to HA-monomeric units within the crosslinked portion of the HA based composition. It is measured by the weight ratio of HA monomers to crosslinker (HA monomers:crosslinker).


Free HA as used herein refers to individual HA polymer molecules that are not crosslinked to, or very lightly crosslinked to (very low degree of crosslinking) the highly crosslinked (higher degree of crosslinking) macromolecular structure making up the soft tissue filler composition. Free HA generally remains water soluble. Free HA can alternatively be defined as the “uncrosslinked,” or lightly crosslinked component of the macromolecular structure making up the soft tissue filler composition disclosed herein.


The presence of an additional ingredient in the dermal filler formulation can provide a stability and longevity that is not exhibited in a dermal filler formulation containing HA without the additional ingredient. The disclosed formulations after steam sterilization are homogenous, uncolored, clear, cohesive gel. Our invention includes methods for treating dermatological conditions, such as fine lines, wrinkles, fibroblast depletions, and/or scars afflicting a subject by administering to a patient an effective amount of the dermal filler formulation. The patient can be any mammal, preferably a human of any age, gender or race. Although typically a subject experiencing the signs of aging skin is an adult, subjects experiencing premature aging or other skin conditions suitable for treatment (for example, a scar) with the HA gel formulation can be treated as well.


Our dermal filler formulation comprise HA which is preferably at least partly cross-linked and can contain some not cross-linked HA. Although any pharmaceutically or cosmetically acceptable HA can be used in the disclosed compositions and formulations, in certain embodiments, the preferred HA utilized includes those sold as JUVEDERM®, JUVEDERM® 30, JUVEDERM® Ultra Plus, JUVEDERM® Ultra injectable gel (Allergan Inc, Irvine, Calif.). In certain embodiments, the formulation comprises a HA gel matrix and an additional constituent. HA is a known hydrogel. The gel can be injectable, bioresorbable, monophasic, or biphasic. In some embodiments, the additional constituent can be directly incorporated into the HA gel. In other embodiments, in order to increase affinity with the medium or increase stability, modification of the molecule by derivatization or encapsulation of the constituent can be performed, as described above. For instance, certain oily molecules cannot be introduced directly into a hydrophilic matrix, and lead to a heterogeneous product. Derivatization of the molecule by grafting hydrophilic moieties is required to increase homogeneity of the gel. In some embodiments, the gel composition can include a biocompatible or biodegradable vessel.


The HA gel can be made by any known, suitable methods. Cross-linked HA gels typically have high viscosity and require considerable force to extrude through a fine needle. Uncross-linked HA is often used as a lubricant to facilitate the extrusion process. However, especially in HA dermal fillers and implants, uncross-linked HA does not contribute to the persistence of the final product in vivo. The formulations exhibit increased stability compared to formulations containing HA without the additional constituent. Stability is determined by assessing the homogeneity, color, and clarity, pH, and rheological properties of the gel formulation. The formulations disclosed herein are considered stable if they remain homogenous, colorless, and/or clear, and exhibit stable pH and rheology. The disclosed formulations remain stable for at least about 6 months, at least about 1 year, at least about 2 years or at least about 3 years.


A cross-linking agent can be used to cross-link the HA according to the present disclosure. The cross-linking agent may be any agent known to be suitable for cross-linking HA and its derivatives via hydroxyl groups. Suitable cross-linking agents include but are not limited to, 1,4-butanediol diglycidyl ether, 1,4-bis(2,3-epoxypropoxy)butane, and/or 1,4-bisglycidyloxybutane (commonly known as BDDE), 1,2-bis(2,3-epoxypropoxy)ethylene, and 1-(2,3-epoxypropyl)-2,3-epoxycyclohexane. The use of more than one cross-linking agent or a different cross-linking agent is included from the scope of the present disclosure.


Dermal fillers can be used to treat moderate to severe facial wrinkles and folds such as nasolabial folds (those lines that extend from the nose to the corners of the mouth). In one embodiment, a dermal filler can be a gel implant formulation that includes HA and an additional constituent. The formulations disclosed herein can further include additional cosmetic agents that supplement and improve the appearance of skin. The cosmetic active ingredients may include, but are not limited to, antioxidants, vitamins, tension agents, and moisturizers.


The formulations disclosed herein can be injected with a syringe into the mid to deep dermis of the face. The dermis is the subsurface skin layer that contains connective tissue, nerve endings, and blood vessels. The formulations, when administered as dermal fillers can improve skin appearance by lifting and adding volume to the wrinkles and folds in the treatment area. Further, in certain embodiments, improvement can be seen due to increased collagen production that results from administration of the formulation.


As used herein, “cosmetic” is an adjective referring to improving the appearance of a surface or covering defects. Typically, cosmetic compositions can be used to improve aesthetic rather than functional aspects of a surface. Most commonly, cosmetic compositions are formulated for application as a health and beauty treatment or for affecting personal appearance of the body, for example, keratinous surfaces such as skin, hair, nails, and the like.


As used herein, “formulation” and “composition” may be used interchangeably and refer to a combination of elements that is presented together for a given purpose. Such terms are well known to those of ordinary skill in the art.


Examples of additional ingredients (agents) which can be included in the present dermal filler formulations are anti-itch, anti-cellulite, anti-scarring, and anti-inflammatory agents, anesthetics, anti-irritants, vasoconstrictors, vasodilators, as well as agents to prevent/stop bleeding, and improve/remove pigmentation, moisturizers, desquamating agents, tensioning agents, anti-acne agents. Anti-itch agents can include methyl sulphonyl methane, sodium bicarbonate, calamine, allantoin, kaolin, peppermint, tea tree oil, camphor, menthol, hydrocortisone and combinations thereof. Anti-cellulite agents can include forskolin, xanthine compounds such as, but not limited to, caffeine, theophylline, theobromine, and aminophylline, and combinations thereof. Anesthetic agents can include lidocaine, benzocaine, butamben, dibucaine, oxybuprocaine, pramoxine, proparacaine, proxymetacaine, tetracaine, and combinations thereof. Anti-scarring agents can include IFN-.gamma., fluorouracil, poly(lactic-co-glycolic acid), methylated polyethylene glycol, polylactic acid, polyethylene glycol and combinations thereof. Anti-inflammatory agents can include dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, mesalamine, cetirizine, diphenhydramine, antipyrine, methyl salicylate, loratadine, and derivatives and combinations thereof. Additionally, active agents such as epinephrine, thymidine, cytidine, uridine, antiypyrin, aminocaproic acid, tranexamic acid, eucalyptol, allantoin, glycerin, and sodium selenite, can be included. The disclosed dermal filler formulations can further comprise degradation inhibitors. Degradation inhibitors, include but are not limited to, glycosaminoglycans (e.g., heparin, heparin sulfate, dermatan sulfate, chondroitin sulfate, o-sulfated HA, linamarin, glucosamine, and amygdalin), antioxidants (e.g. ascorbic acid, melatonin, vitamin C, vitamin E, sodium selenite, glutathion, retinoic acid, coenzyme, beta-carotene, allopurinol, mannitol, caffeic acid, caffeine, polyphenol, theobromine, catechin), proteins (e.g., serum hyaluronidase inhibitor), and fatty acids (e.g. saturated C10 to C22 fatty acids), vitamin B and complex, and combinations thereof as noted, in certain embodiments, the additional ingredient can be an antioxidant. In certain embodiments, the antioxidant comprises a vitamin C such as ascorbyl-2-glucoside (available as AA2G™, Hayashibara Co., Japan) (FIG. 1), and/or a vitamin E such as d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Anti-irritants can include thymol, bisabolol. Healing agents can include allantoin, eucalyptol, chitosane, cytidine, thimidine, uridine, lanoline. Anti-bleeding: epinephrine, norepinephrine, phenylephrine, synephrine, naphazoline, aminocaproic acid, tranexamic acid, ethamsylate, vitamin K. Collagen promoters can include retinol, peptide sequences. Additionally, active ingredients (agents) such as epinephrine, thymidine, cytidine, uridine, antipyrine, aminocaproic acid, eucalyptol, sodium selenite, can be included.


In some embodiments, the HA is present at a concentration of about 1 to about 40 mg/mL, or about 10 to about 40 mg/mL, or about 20 to about 30 mg/mL. In certain embodiments, the HA is present in a concentration of about 20 to about 25 mg/mL. In certain embodiments, the HA is present at a concentration of 24 mg/mL. The additional constituent can be present in an amount of about 0.001 to about 10% w/w, or from about 0.001 to about 5% w/w, or from 0.3 to about 3% w/w.


In certain embodiments, the disclosure provides a dermal filler comprising (a) about 90 wt %, or about 95 wt %, or about 100 wt % of a high molecular weight (about 1 million to about 3 million Daltons) HA; and (b) 0 wt %, or about 5 wt %, or about 10 wt % of a low molecular weight (less than 1 million Daltons) HA. In certain embodiments, the HA is present in the dermal filler at a concentration of about 10 to about 24 mg HA/mL dermal filler and the HA is about 4% to about 11% cross-linked. In certain embodiments, the cross linker is 4-butane diol diglycidyl ether (BDDE). The dermal filler can further comprise about 0.1 wt % or 0.6 wt %, or 1.0 wt % of an ascorbyl-2-glucoside, such as AA2G™ (Hayashibara, Japan). In a preferred embodiment, 0.6 wt % AA2G™ (i.e., 6 mg AA2G™/g HA) is utilized and renders a concentration of 2.1012 mM AA2G™.


Topical formulations of AA2G™ are known. However, there are no subdermally administered formulations of AA2G™ available, which is likely due to the fact that a topical AA2G™ is not thought to lend itself to an injectable formulation. The disclosure provides the first injectable formulation of AA2G™ that is efficacious, compatible, and stable over time.


The disclosed compositions are also well suited for mesotherapy. Mesotherapy is a non-surgical cosmetic treatment technique involving intra-epidermal, intra-dermal, and/or subcutaneous injection of an agent (micronutrients, vitamins, mineral salts, etc). The compositions are administered in the form of small multiple droplets into the epidermis, dermo-epidermal junction, and/or the dermis.


The formulations of the disclosure can be injected utilizing needles with a diameter of about 0.26 to about 0.4 mm and a length ranging from about 4 to about 14 mm. Alternately, the needles can be 21 to 32 G and have a length of about 4 mm to about 70 mm. Preferably, the needle is a single-use needle. The needle can be combined with a syringe, catheter, and/or a pistol (for example, a hydropneumatic-compression pistol).


The formulations can be administered once or over several sessions with the subject spaced apart by a few days, or weeks. For instance, the subject can be administered a formulation every 1, 2, 3, 4, 5, 6, 7, days or every 1, 2, 3, or 4, weeks. The administration can be on a monthly or bi-monthly basis. Further, the formulation can be administered every 3, 6, 9, or 12 months.


Our dermal filler formulation can optionally include one or more agents such as, without limitation, emulsifying agents, wetting agents, sweetening or flavoring agents, tonicity adjusters, preservatives, buffers antioxidants and flavonoids. Tonicity adjustors useful in a pharmaceutical composition of the present disclosure include, but are not limited to, salts such as sodium acetate, sodium chloride, potassium chloride, mannitol or glycerin and other pharmaceutically acceptable tonicity adjusters. Preservatives useful in the dermal filler formulation described herein include, without limitation, benzalkonium chloride, chlorobutanol, thimerosal, phenyl mercuric acetate, and phenyl mercuric nitrate. Various buffers and means for adjusting pH can be used to prepare the dermal filler formulation, including but not limited to, acetate buffers, citrate buffers, phosphate buffers and borate buffers. Similarly, antioxidants useful in the dermal filler formulation include for example, sodium metabisulfite, sodium thiosulfate, acetylcysteine, butylated hydroxyanisole and butylated hydroxytoluene. Flavonoids are compounds found in plants that are well known to have diverse beneficial biochemical and antioxidant effects. Subcategories of flavonoids include: flavones, flavonols, flavanones and flavanonols. Examples of flavonoids include: luteolin, apigenin, tangeritin, quercetin, kaempferol, myricetin, fisetin, isorhamnetin, pachypodol, rhamnazin, hesperetin, naringenin, eriodictyol, homoeriodictyol, taxifolin, dihydroquercetin, dihydrokaempferol, tannic acid, tannins, condensed tannins, and hydrolysable tannins. It is understood that these and other substances known in the art can be included in the dermal filler formulations disclosed herein. The pH of the disclosed dermal filler formulations can be about 5.0 to about 8.0, or about 6.5 to about 7.5. In certain embodiments, the pH of the formulation is about 7.0 to about 7.4 or about 7.1 to about 7.3.


A dermal filler formulation must be capable of withstanding sterilization which is a strict requirement before the product can be sold (the product must be sterile). Sterilization can be carried out by steam sterilization, filtration, microfiltration, gamma radiation, ETO light or by a combination of these methods. It is known that a dermal filler can be steam sterilized (autoclaved) without degradation of physical properties, but when a dermal filler formulation contains an additional labile ingredient (such as an anti-oxidant, wrinkle reduction, haemostatic, vasoconstriction, anti-itching, anti-inflammatory, and/or anti-irritant ingredient, such as a vitamin, vitamin derivative or analgesic compound) the entire dermal filler formulation or at least the additional (heat labile) ingredient is sterilized by a non-heat treatment such as by a filtration sterilization method. Thus, the known dermal filler product (“Revitacare”) is sold in two separate vials or containers, one vial containing the HA (which is autoclave sterilized)) and the second vial containing any additional ingredients (the second vial contents are sterilized by filtration). Another known dermal filler product NCTF®135 HA is sold in a single container holding both HA and any additional ingredients, all having been sterilized by microfiltration. It is an important aspect of our invention that we mix the HA and the additional ingredients and then autoclave the completed dermal filler formulation with maintenance of gel properties (i.e. non-degraded and storage stable formulation). Additionally we have discovered dermal filler formulations that exhibit retention of stability after being treated (accelerated heat test environment) to about 45° C. for about 30 days, or at least about 60 days, or at least about 90 days with no degradation of physical properties.


To reiterate an important aspect of our invention and a significant distinction over known dermal fillers is that our dermal filler formulations are prepared by: (1) mixing the HA and the additional ingredient(s), and then; (2) autoclaving (no filtration sterilization of any component) the complete dermal filler formulation with; (3) maintenance of the desired gel properties (no degradation of any dermal filler constituent or ingredient, and stable).


EXAMPLES

In the Examples below autoclaving means steam sterilization carried out at a temperature between about 130° C. to about 135° C. for between about one minute and about 10 minutes.


Example 1A
Method for Determining Gel Cohesivity

For purposes of example only and not to be considered as limiting the present invention in any way, the following tests may be performed in order to evidence or quantify cohesivity of a HA-based gel composition.


First, 0.2 g or 0.4 g of a gel composition to be tested is placed in a glass syringe. Next, 0.2 g or more of phosphate buffer is added to the syringe and the mixture is thoroughly mixed for about 1 hour to obtain a homogenous mixture. Then, the homogenized mixture is centrifuged for 5 min at 2000 tr/min to remove the air bubbles and to allow the decantation of any particles. The syringe is then held in a vertical position and one drop of eosin colorant is deposited at the surface of the gel by means of a syringe and an 18G needle. After 10 min, the dye has slowly diffused through the gel.


After dilution of the gel, homogenization and decantation, a relatively low cohesivity gel shows a phase separation (an upper diluted less viscous phase without particles and a lower one composed of decanted particles that are visible with the naked eye or under microscope). Under the same conditions, a highly cohesive gel shows substantially no phase separation, and the dye is prevented from diffusing into the cohesive formulation. A relatively less cohesive gel, on the other hand, shows a clear phase separation.


Example 1
Properties of Formulations of NaHA and Water Soluble Molecules are Tested

The active ingredient was incorporated into a NaHA matrix and autoclaved. The properties of the gel, aspect (i.e., color/clarity/homogeneity) and extrusion force were analyzed after sterilization at 3 years equivalent at room temperature. Table 1 shows that all formulations were clear, homogenous, and uncolored at the 3-year mark. The extrusion forces after autoclaving and at 3 years equivalent at room temperature are shown as well. In conclusion, the incorporation of the molecules has no impact on gel properties and ingredient structure.













TABLE 1









Extrusion force (N)



Content

Extrusion force (N)
3 years~room


Ingredient
(%)
Aspect
after autoclaving
T° C.



















Allantoin
0.3
Clear
PASSED
PASSED



0.5
Homogeneous
PASSED
PASSED


Cytidine
0.5
Uncolored
PASSED
PASSED



1

PASSED
PASSED


Thymidine
0.5

PASSED
PASSED



1

PASSED
PASSED


Uridine
0.5

PASSED
PASSED



1

PASSED
PASSED


Antipyrin
0.5

PASSED
PASSED



1

PASSED
PASSED


Aminocaproic acid
0.5

PASSED
PASSED



1

PASSED
PASSED


Tranexamic acid
0.5

PASSED
PASSED


Eucalyptol
0.5

PASSED
PASSED


Sodium selenite
0.1

PASSED
PASSED


Glycerin
0.5

PASSED
PASSED









Acceptance criteria: “Passed” means that the change of extrusion force (ΔF) was less than two Newtons (<2 N). In other words the measured ΔF of the extrusion force of the HA gel with the specified ingredients minus the extrusion force of the HA gel without the added ingredients was <2 N.


Example 2
Preparation of NaHA Gel Containing Vitamin C

Ascorbic acid (1% w/w) was incorporated into a NaHA matrix. (JUVEDERM® FORMA). The pH was adjusted to about 7 and composition was autoclaved. The gel obtained was clear, yellow and degraded.


Example 3
Alternative Preparation of NAHA Gel Containing Vitamin C

Magnesium Ascorbyl Phosphate (MAP) (0.6%, 1 or 2% w/w) was incorporated in a NaHA matrix (JUVEDERM® Ultra). The pH was adjusted to about 7 and the compositions were autoclaved. All gels obtained were uncolored and clear. The gel properties after autoclaving are shown in Table 2. Extrusion force acceptance criteria: Conform with NaHA matrix specifications.












TABLE 2








After autoclaving



Formulation
Extrusion force (N)









JUVEDERM ® Ultra + 0.6% MAP
PASSED



JUVEDERM ® Ultra + 1% MAP
PASSED



JUVEDERM ® Ultra + 2% MAP
PASSED










Rheology data of the gel containing 2% MAP after autoclaving is shown in Table 3. Rheological properties are followed as a function of time using a controlled stress rheometer according to the following method: frequency sweep from 0.05 to 10 Hz with 0.8% controlled strain. A degradation of the gel was observed by rheology. TAN δ×HZ is a rheological characterisation which shows the ratio of viscous modulus to elastic modulus. It shows the degradation of the gel.

Δ Tan δ1 Hz=(Tan δ1 Hz formulation)−(Tan δ1 Hz NaHA matrix)

Acceptance criterion: Δ Tan δ 1 Hz<0.1












TABLE 3







Formulation
Δ Tan δ 1 Hz









JUVEDERM ® Ultra + 2% MAP
0.344










Example 4
Alternative Preparation of NAHA Gel Containing Vitamin C

Sodium Ascorbyl Phosphate (SAP) (0.6%, 1% and 2% w/w) was incorporated in an NaHA matrix (JUVEDERM® Ultra). The pH was adjusted to about 7 and the composition was autoclaved. All gels obtained were uncolored and clear. The gel properties after autoclaving are shown in Table 4.












TABLE 4








After autoclaving



Formulation
Extrusion force (N)









JUVEDERM ® Ultra + 0.6% SAP
PASSED



JUVEDERM ® Ultra + 1% SAP
PASSED



JUVEDERM ® Ultra + 2% SAP
PASSED










Rheology data of the gel containing 2% SAP after autoclaving is shown in Table 5. No degradation of the gel was observed by rheology.












TABLE 5







Formulation
Δ Tan δ 1 Hz









JUVEDERM ® Ultra + 2% SAP
0.089










Example 5
Alternative Preparation of NaHA Gel Containing Vitamin C

Ascorbic acid 2-Glucoside (AA2G™) at a concentration of 0.6%, 1% and 2% w/w was incorporated in an NaHA matrix (JUVEDERM® Ultra Plus). The pH was adjusted to about 7 and the composition was autoclaved. All gels obtained were uncolored and clear. The gel properties after autoclaving are shown in Table 6.












TABLE 6








After autoclaving



Formulation
Extrusion force (N)









JUVEDERM ® Ultra Plus + 0.6% AA-2G
PASSED



JUVEDERM ® Ultra Plus + 1% AA-2G
PASSED



JUVEDERM ® Ultra Plus + 2% AA-2G
PASSED










The gels containing 0.6%, 1% and 2% were stable (pH, injection force) after autoclaving. Rheology data of the gels containing 0.6%, 1% and 2% w/w AA2G™ after autoclaving is shown in Table 7. No degradation of the gel was observed by rheology at each AA2G™ concentration.












TABLE 7







Formulation
Δ Tan δ 1 Hz









JUVEDERM ® Ultra Plus + 0.6% AA2G ™
−0.010



JUVEDERM ® Ultra Plus + 1% AA2G ™
−0.014



JUVEDERM ® Ultra Plus + 2% AA2G ™
−0.016










Rheological studies showed an slightly increase of the stability of the gel in the presence of the additive.


Example 6
Effect of Vitamin C on Aspect and Stability of the Gel

The shelf-life at 45° C. during 32 days was tested for the formulations prepared in example 5 and the NaHA matrix JUVEDERM® Ultra Plus. Rheology data of the gels containing 0.6%, 1% and 2% of AA2G™ are shown in Table 8.












TABLE 8







Formulation
Δ Tan δ 1 Hz









JUVEDERM ® Ultra Plus + 0.6% AA2G ™
−0.050



JUVEDERM ® Ultra Plus + 1% AA2G ™
−0.045



JUVEDERM ® Ultra Plus + 2% AA2G ™
−0.059










The gels containing ascorbyl glucoside maintained their properties after autoclaving and over a period of 32 days at 45° C. Surprising Rheological studies showed an increase of the stability of the gel in the presence of the additive.


Example 7
Preparation of NaHA Gel Containing Vitamin E

Tocopheryl Acetate (0.5% w/w) was incorporated into a NaHA matrix. (JUVEDERM® 30) and autoclaved. The gel obtained was unclear, white.


Example 8
Alternative Preparation of NaHA Gel Containing Vitamin E

Sodium Tocopheryl Phosphate (STP), at 0.4%, 1.2% w/w, was incorporated in a NaHA matrix (JUVEDERM® FORMA) and autoclaved. The gel obtained was not clear (white).


Example 9
Alternative Preparation of NaHA Gel Containing Vitamin E

Polyoxyethanyl-α-tocopheryl sebacate (0.7% w/w) was incorporated in a NaHA matrix (JUVEDERM® Ultra Plus) and autoclaved. The gel obtained was clear, but heterogenous.


Example 10
Alternative Preparation of NaHA Gel Containing Vitamin E

Tocopherol polyethylene glycol 1000 succinate (TPGS) was incorporated in varying concentrations (1%, 3.5% and 7% w/w) in a NAHA matrix (JUVEDERM® FORMA) and autoclaved. “JUVEDERM® FORMA” means the Juvederm formulation was used. All gels obtained were uncolored and clear. The gel properties after autoclaving are shown in Table 9.










TABLE 9





Formulation
Extrusion force (N)







JUVEDERM ® FORMA + 1% TPGS
PASSED


JUVEDERM ® FORMA + 3.5% TPGS
PASSED


JUVEDERM ® FORMA + 7% TPGS
PASSED









Rheology data of the gels containing 1%, 3.5% and 7% TPGS after autoclaving is shown in Table 10. No degradation of the gel was observed by rheology at each TPGS concentration.












TABLE 10







Formulation
Δ Tan δ 1 Hz



















JUVEDERM ® FORMA + 1% TPGS
0.008



JUVEDERM ® FORMA + 3.5% TPGS
−0.007



JUVEDERM ® FORMA + 7% TPGS
−0.011










These rheological studies showed the stability of the dermal filler formulation with a particular additional ingredient.


Example 11
Stability of Formulations Containing Additional Ingredients

The stability of various formulations was tested. The ingredients shown in Table 11 were incorporated into a NaHA matrix, and autoclaved. The degradation of the formulations after autoclaving is shows in Table 11 and after 48 days at 45° C. in Table 12. The stability of extrusion force, pH, and degradation are shown over time in FIGS. 3, 4, and 5, respectively. HPLC analysis (C18 column; eluent: sodium phosphate buffer (pH 2.2), 2-propanol 10%, 0.7 ml/min; detection at 260 nm) confirmed the ingredients after autoclaving and 3-year shelf-life are shown in FIG. 6.










TABLE 11








Δ Tan δ 1 Hz










After autoclaving
45° C., 48 days












JUVEDERM ® Ultra Plus +
0.059
0.020


AA2G ™ 0.6% + Lidocaine 0.3%




JUVEDERM ® Ultra Plus +
0.016
0.007


AA2G ™ 0.6% + TPGS 1.5% +




lidocaine 0.3%









Example 12
AA2G™ Promotes Collagen Synthesis

Human skin fibroblasts were cultured in a 12 wells plate. At confluence, 100 μL of each compound (Juvederm® FORMA with 0.3% lidocaine, Juvederm® FORMA+AA2G™ 0.6%+Lidocaine 0.3% and Phosphate Buffer with 0.6% AA2G) was deposited in a culture insert (porosity of 0.4 μm), which was itself laid on the fibroblast monolayers. In parallel, a control without treatment was performed. Cultures were incubated for 72 hours and each experimental condition was conducted done in triplicate. At the end of incubation, cell viability was verified by microscopic observation and MTT reduction assay. Pro-collagen I secretion was measured using ELISA kit. The presence of 0.6% AA2G™ in a hyaluronic acid gel containing 0.3% lidocaine increased pro-collagen synthesis by a factor 3 (+292%), whereas JUVEDERM® gel with 0.3% lidocaïne showed an increase of 40% of the pro-collagen secretion (see FIG. 2).


Example 13
AA2G™ Protects NaHA from Oxidative Degradation

The effect of AA2G™ on NaHA oxidative degradation was studied. Oxidation testing was used as it allows testing of the resistance of a NaHA matrix to free radicals. Degradation by free radicals was simulated on a rheometer (Haake Rheostress 600) by addition of 1/7 ratio of H2O2 30% on the surface of a spread gel measured with a controlled stress rheometer according to the following method: frequency of 1 Hz with 0.8% controlled strain, during 3600 s at 35° C. The time value is taken at 5 Pa/s.


Further, a comparison of antioxidant properties for JUVEDERM® Ultra with AA2G™ 0.6%/Lidocaine 0.3% formulation (15 800 s) versus NaHA matrix JUVEDERM® Ultra with Lidocaine (4 942 s) showed that the gel containing AA2G™ and lidocaine is more stable with respect to free radical activity (see FIG. 7). AA2G™ protected against oxidative degradation by a factor of 3.


Example 14
Implantation Study

A gel containing AA2G™ at 0.6% (=6 mg/g=2.10−2 mM) was implanted in the deep dermis and subcutaneous tissues in rats. Histological evaluation at 1 week showed some mononuclear cells (lymphocytes and plasmocytes) around the implants in all implantation sites (test and control). They were also associated with macrophages. The gel containing AA2G™ appeared to be less inflammatory. The irritation index in test samples (AA2G™+NaHA) was 9.9 compared to 12.3 in controls (NaHA only). Table 12 shows the histological results at 1 week, 1 month, and 3 months. The irritation score of AA2G™ gel are (for each implantation time) lower than control (gel without AA2G™)












TABLE 12








NAHA + AA2G + Lido









Biocompatibility ISO 10993




Cytotoxicity
✓ (non cytotoxic)



Irritation
✓ (non irritant)



Sensitization
✓ (non sensitizing)



Implantation Test




1 week
✓ (no skin reaction)



3 weeks
✓ (no skin reaction)



3 months
✓ (no skin reaction)










Example 15
Incorporation of Dexpanthenol in NaHA Gel Formulations

Dexpanthenol was incorporated into a NaHA matrix JUVEDERM® Ultra Plus with Lidocaine (with 0.3% w/w lidocaine) with a content of 1% w/w. The gel was autoclaved. The gel obtained was clear and uncolored before and after autoclaving. The gel properties after autoclaving are shown in Table 13.










TABLE 13








After autoclaving










Extrusion force



Formulation
(N)
Δ Tan δ 1 Hz





JUVEDERM ® Ultra Plus with
PASSED
0.026


Lidocaine (0.3%) +




Dexpanthenol 1%









Example 16
Effect of the Incorporation of Dexpanthenol in NAHA Gel Formulations

The shelf-life at 45° C. during 30 days was tested of the formulations prepared in example 15 and the NaHA matrix JUVEDERM® Ultra Plus XC. The gel was clear, uncolored. Rheology data of the gels containing dexpanthenol 1% w/w and lidocaine 0.3% w/w are shown in Table 14.












TABLE 14








After 30 days at 45° C.



Formulation
Δ Tan δ 1 Hz









JUVEDERM ® Ultra Plus with
−0.071



Lidocaine (0.3%) +




Dexpanthenol 1%











Rheological studies showed an increase of the stability of the gel in the presence of the additive.


Example 17
Incorporation of Epinephrine in NaHA Gel Formulations

Epinephrine was incorporated into a NaHA matrix (JUVEDERM® Ultra Plus) with a 10 ppm epinephrine bitartrate. The gel was autoclaved. The gel obtained was clear and uncolored before and after autoclaving. The gel (dermal filler formulation) properties after autoclaving are shown in Table 15.










TABLE 15








After autoclaving










Extrusion



Formulation
force (N)
Δ Tan δ 1 Hz





JUVEDERM ® Ultra Plus +
PASSED
0.165


epinephrine bitartrate 10 ppm











Degradation of the gel was observed by rheological analysis.


Example 18
Incorporation of Epinephrine in NaHA Gel Formulations

Epinephrine was incorporated into a NaHA matrix (JUVEDERM® Ultra Plus) with 0.3% lidocaine and 10 ppm epinephrine bitartrate. The gel was autoclaved. The gel obtained was clear and colored after autoclaving. The gel properties after autoclaving are shown in Table 16.










TABLE 16








After autoclaving










Extrusion



Formulation
force (N)
Δ Tan δ 1 Hz





JUVEDERM ® Ultra Plus +
PASSED
0.092


Lidocaine 0.3% +




epinephrine bitartrate 10 ppm











A slight degradation of the gel was observed by rheological analysis.


Example 19
Effect of Additional Ingredient on the Stability of Gel Containing Epinephrine and Lidocaine

The shelf-life at 45° C. during 60 days was tested of the formulations prepared in Example 18 and the NaHA matrix JUVEDERM® Ultra Plus. The gel was clear, slightly colored. Rheology data of the gels containing epinephrine bitartrate (10 ppm), lidocaine (0.3% w/w) is shown in Table 17.












TABLE 17








After 60 days at 45° C.



Formulation
Δ Tan δ 1 Hz









JUVEDERM ® Ultra Plus +
0.185



Lidocaine 0.3% +




epinephrine bitartrate 10 ppm











After a stability of 60 days at 45° C., the gel containing epinephrine and lidocaine was unstable.


Example 20
Incorporation of Epinephrine in NaHA Gel Formulations Containing an Antioxidant

Epinephrine was incorporated into a NaHA matrix (JUVEDERM® Ultra Plus) with epinephrine bitartrate (10 ppm) and mannitol (0.9 or 4.5% w/w). The gels were autoclaved. The gel with 4.5% mannitol was clear and uncolored before and after autoclaving whereas with 0.9% mannitol was slightly colored. The gel properties after autoclaving is shown in Table 18.










TABLE 18








After autoclaving










Extrusion



Formulation
force (N)
Δ Tan δ 1 Hz





JUVEDERM ® Ultra Plus +
PASSED
0.047


epinephrine bitartrate 10




ppm +




mannitol 0.9%




JUVEDERM ® Ultra Plus +
PASSED
0.015


epinephrine bitartrate 10




ppm +




mannitol 4.5%









No degradation was observed for either of the dermal filler formulations tested.


Example 21
Effect of Additional Ingredient on the Stability of Gel Containing Epinephrine and an Antioxidant

The shelf-life at 45° C. during 60 days was tested of the formulations prepared in example 20 and the NaHA matrix JUVEDERM® Ultra Plus. The gels were clear, slightly colored. Rheology data of the gels containing epinephrine bitartrate (10 ppm) and mannitol (0.9 or 4.5% w/w) is shown in Table 19.












TABLE 19








After 60 days at 45° C.



Formulation
Δ Tan δ 1 Hz









JUVEDERM ® Ultra Plus +
0.061



epinephrine bitartrate 10 ppm +




mannitol 0.9%




JUVEDERM ® Ultra Plus +
0.006



epinephrine bitartrate 10 ppm +




mannitol 4.5%











After a stability of days at 45° C., both gels containing epinephrine, lidocaine and mannitol were stable. The composition containing 4.5% mannitol was more stable.


Example 22
Incorporation of Epinephrine in NaHA Gel Formulations Containing Lidocaine and Antioxidant

Epinephrine was incorporated into a NaHA matrix (JUVEDERM® Forma) with epinephrine bitartrate (20 ppm), lidocaine (0.3% w/w) and mannitol (4.5% w/w). The gel was autoclaved. The gel obtained was clear slightly colored after autoclaving. The gel properties after autoclaving are shown in Table 20.










TABLE 20








After autoclaving









Formulation
Extrusion force (N)
Δ Tan δ 1 Hz





JUVEDERM ® Forma +
PASSED
0.026


Lidocaine 0.3% +




epinephrine bitartrate 20 ppm +




mannitol 4.5%









No degradation was observed.


Example 23
Effect of Additional Ingredient on the Stability of Gel Containing Epinephrine, Lidocaine and an Antioxidant

The shelf-life at 45° C. during 60 days was tested of the formulations prepared in example 22 and the NaHA matrix JUVEDERM® Forma. The gel was clear, slightly colored. Rheology data of the gel containing epinephrine bitartrate (20 ppm), lidocaine (0.3% w/w) and mannitol (4.5% w/w) is shown in Table 21.












TABLE 21








After 60 days at 45° C.



Formulation
Δ Tan δ 1 Hz









JUVEDERM ® Forma +
−0.030



epinephrine bitartrate 20 ppm +




mannitol 4.5%











The gel (dermal filler formulation) was stable after 60 days at 45° C.


Example 24
Incorporation of Synephrine in NaHA Gel Formulations Containing Lidocaine and Antioxidant

Synephrine was incorporated into a NaHA matrix Juvederm Ultra Plus with Lidocaine (with 0.3% w/w lidocaine) with a content of 100 ppm of synephrine. The gel was autoclaved. The gel obtained was clear and uncolored before and after autoclaving. The gel properties after autoclaving is shown in Table 22.










TABLE 22








After autoclaving










Extrusion



Formulation
force (N)
Δ Tan δ 1 Hz





JUVEDERM ® with lidocaine (0.3%) +
PASSED
−0.006


synephrine 100 ppm











Example 25
Effect of Additional Ingredient on the Stability of Gel Containing Synephrine and Lidocaine

The shelf-life at 45° C. during 60 days was tested of the formulations prepared in example 24 and the NaHA matrix JUVEDERM® Ultra Plus with Lidocaine. The gels was clear, uncolored. Rheology data of the gel containing synephrine 100 ppm and lidocaine 0.3% w/w is shown in Table 23.










TABLE 23






After 60 days at 45° C.


Formulation
Δ Tan δ 1 Hz







JUVEDERM ® Ultra Plus with lidocaine
−0.028


(0.3%) +



synephrine 100 ppm









This rheological study showed maintenance of the stability of the gel (dermal filler formulation) in the presence of the particular additional ingredient (additive) shown.


Example 26
Incorporation of Phenylephrine in NaHA Gel Formulations Containing Lidocaine

Phenylephrine was incorporated into a matrix JUVEDERM® Ultra Plus with Lidocaine (with 0.3% w/w lidocaine) with a content of 100 ppm phenylephrine. The gel was autoclaved. The gel obtained was clear and uncolored before and after autoclaving. The gel properties after autoclaving are shown in Table 24.












TABLE 24










After autoclaving












Extrusion




Formulation
force (N)
Δ Tan δ 1 Hz







JUVEDERM ® Ultra Plus with
PASSED
−0.002



Lidocaine 0.3% +





Phenylephrine 100 ppm










Example 27
Effect of Additional Ingredient on the Stability of Gel Containing Phenylephrine and Lidocaine

The shelf-life at 45° C. during 60 days was tested of the formulations prepared in example 26 and the NaHA matrix JUVEDERM® Ultra Plus with Lidocaine. The gel was clear, uncolored. Rheology data of the gel containing phenylephrine 100 ppm and lidocaine 0.3% w/w are shown in Table 25.












TABLE 25








After 60 days at 45° C.



Formulation
Δ Tan δ 1 Hz









JUVEDERM ® Ultra Plus with
−0.017



Lidocaine (0.3%) +




Phenylephrine 100 ppm










This rheological study showed maintenance of the stability of the gel (dermal filler formulation) in the presence of the particular additional ingredient (additive) shown.


Example 28
Incorporation of Naphazoline in NaHA Gel Formulations Containing Lidocaine and Antioxidant

Naphazoline was incorporated into a matrix Juvederm Ultra Plus with Lidocaine (with 0.3% w/w lidocaine) with a content of 100 ppm. The gel was autoclaved. The gel obtained was clear and uncolored before and after autoclaving. The gel properties after autoclaving are shown in Table 26.












TABLE 26










After autoclaving












Extrusion




Formulation
force (N)
Δ Tan δ 1 Hz







JUVEDERM ® Ultra Plus with
PASSED
−0.003



Lidocaine (0.3%) +





Naphazoline 100 ppm










Example 29
Effect of Additional Ingredient on the Stability of Gel Containing Naphazoline and Lidocaine

The shelf-life at 45° C. over 60 days was tested of the formulations prepared in example 28 and the NaHA matrix JUVEDERM® Ultra Plus with Lidocaine. The gel was clear, uncolored. Rheology data of the gel containing naphazoline 100 ppm and lidocaine 0.3% w/w is shown in Table 27.












TABLE 27








After 60 days at 45° C.



Formulation
Δ Tan δ 1 Hz









JUVEDERM ® Ultra Plus with
−0.008



Lidocaine 0.3% +




Naphazoline 100 ppm










Example 30
Treatment Example

A woman, age 37, presents with fine lines around her eyes and deeper wrinkles on the sides of her mouth. She receives injections of a formulation of Example 10. She receives the injections in the fine lines and in the wrinkles once a week for 3 weeks and notices a visible improvement in the appearance of her skin.


Example 31
Alternate Treatment Example

A 59 year old man presents with wrinkles between his eyebrows and in the nasolabial folds. He receives injections of the dermal filler formulation of Example 11, every 3 months. A visible improvement in the wrinkles is seen.


Example 32
Alternate Treatment Example

A 35 year old woman presents with fine lines across her forehead. She receives injections of the dermal filler formulation of Example 15, once a week for two weeks, and notices an improvement in the appearance of the skin on her forehead.


Example 33
Alternate Treatment Example

A woman, age 44, presents with uneven texture on her right cheek resulting from a loss of collagen due to aging. She receives injections of the dermal formulation of Example 20 (using the 4.5% mannitol dermal filler formulation), in her cheek to build up the areas where the collagen has been lost. A visible improvement is seen in the texture of the skin on her cheek after 3 series of injections over a 2 week period of time.


Example 34
Alternate Treatment Example

A 35 year old man presents with a deep wrinkle across his chin and fine lines on the sides of his eyes. He receives the dermal filler formulation of Example 26 along the sides of his eyes. He receives 2 series of injections in his chin, spaced 1 week apart. The fine lines and wrinkle are visibly diminished after treatment.


Example 35
Alternate Treatment Example

A woman, age 62, presents with wrinkles across her forehead, on the sides of her eyes, in the nasolabial folds, and a scar on her chin. She receives injections of the dermal filler formulation of Example 29 each week for one month. After the injections, the appearance of the wrinkles and the scar is visibly diminished.


Our results above show that at least each of the two additional ingredients AA2G and dexpanthenol significantly increased the stability of the dermal filler formulation (HA gel), as shown by the dermal filler formulation having a Δ Tan δ 1 Hz←0.05.


With regard to dexpanthenol: panthenol is the alcohol analog of pantothenic acid (vitamin B5), and is thus the provitamin of B5 which in vivo is oxidized to pantothenate. Panthenol is a highly viscous transparent liquid at room temperature, but salts of pantothenic acid (for example sodium pantothenate) are powders (typically white). Panthenol is soluble in water, alcohol and propylene glycol, soluble in ether and chloroform, and slightly soluble in glycerin. Panthenol has two D and L enantiomers with only the D enantiomer (D-panthenol, also called dexpanthenol) being biologically active, however both the D and L forms have moisturizing properties. For topical cosmetic use panthenol has been used in the D form and as a racemic mixture of D and L (DL-panthenol). Thus topical dexpanthenol cream (sold under the generic name “panthoderm”) is made by mixing with an emollient and has been used for relieving dry skin, preventing and treating sore nipples during breast-feeding, and promoting healing of burns and poorly-healing wounds.


Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.


The terms “a,” “an,” “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.


Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.


Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.


Specific embodiments disclosed herein may be further limited in the claims using consisting of or consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein. Furthermore, numerous references have been made to patents and printed publications throughout this specification. Each of the above-cited references and printed publications are individually incorporated herein by reference in their entirety.


In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described. Specific embodiments disclosed herein may be further limited in the claims using consisting of or consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.

Claims
  • 1. A steam sterilization-stable dermal filler formulation comprising a crosslinked hyaluronic acid (HA), ascorbyl-2-glucoside and an anesthetic agent.
  • 2. The dermal filler formulation of claim 1, wherein the hyaluronic acid is crosslinked with 1,4-butanediol diglycidyl ether.
  • 3. The dermal filler formulation of claim 1, wherein the anesthetic agent is lidocaine.
  • 4. The dermal filler formulation of claim 3, wherein the lidocaine is present in an amount of about 0.001% to about 10% w/w.
  • 5. The dermal filler formulation of claim 3, wherein the lidocaine is present in an amount of about 0.001% to about 5% w/w.
  • 6. The dermal filler formulation of claim 3, wherein the lidocaine is present in an amount of about 0.3% to about 3% w/w.
  • 7. The dermal filler formulation of claim 3, wherein the lidocaine is present in an amount of 0.3% w/w.
  • 8. The dermal filler formulation of claim 1, wherein the crosslinked HA is present in an amount of about 1 mg/mL to about 40 mg/mL.
  • 9. The dermal filler formulation of claim 8, wherein the crosslinked HA is present in an amount of about 10 mg/mL to about 40 mg/mL.
  • 10. The dermal filler formulation of claim 8, wherein the crosslinked HA is present in an amount of about 20 mg/mL to about 30 mg/mL.
  • 11. The dermal filler formulation of claim 8, wherein the crosslinked HA is present in an amount of about 20 mg/mL to about 25 mg/mL.
  • 12. The dermal filler formulation of claim 1, wherein the ascorbyl-2-glucoside is present in an amount of about 0.001% w/w to about 10% w/w.
  • 13. The dermal filler formulation of claim 12, wherein the ascorbyl-2-glucoside is present in an amount of about 0.1% w/w to about 3.0% w/w.
  • 14. The dermal filler formulation of claim 12, wherein the ascorbyl-2-glucoside is present in an amount of 1% w/w.
  • 15. The dermal filler formulation of claim 12, wherein the ascorbyl-2-glucoside is present in an amount of 2% w/w.
  • 16. The dermal filler formulation of claim 12, wherein the ascorbyl-2-glucoside is present in an amount of 0.6% w/w.
  • 17. The dermal filler formulation of claim 1, wherein the steam-sterilization stability of the dermal filler formulation is determined by subjecting the dermal filler formulation to a steam sterilization treatment at between about 120° C. and about 135° C. for between about 1 minute and about 5 minutes, with substantial retention after the treatment of one or more of the dermal filler characteristics of being clear, homogenous and cohesive.
  • 18. The dermal filler formulation of claim 17, wherein the HA is crosslinked with 1,4-butanediol diglycidyl ether, and the anesthetic agent is lidocaine.
  • 19. The dermal filler formulation of claim 18, wherein the crosslinked HA is present in an amount of about 10 mg/mL to about 40 mg/m L.
  • 20. The dermal filler formulation of claim 19, wherein the ascorbyl-2-glucoside is present in an amount of about 0.1% w/w to about 3.0% w/w, and the lidocaine is present in an amount of about 0.3% to about 3% w/w.
CROSS REFERENCE

This application is a continuation of U.S. patent application Ser. No. 15/099,016 filed on Apr. 14, 2016, which is a continuation of U.S. patent application Ser. No. 13/675,993 filed Nov. 13, 2012, which granted as U.S. Pat. No. 9,333,160 on May 10, 2016, which is a continuation of U.S. patent application Ser. No. 12/714,377 filed Feb. 26, 2010, which is abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 12/687,048 filed Jan. 13, 2010, which is abandoned, the entire content of each of which is incorporated herein by reference.

US Referenced Citations (232)
Number Name Date Kind
2128827 Killian Aug 1938 A
3548056 Eigen et al. Dec 1970 A
3763009 Suzuki Oct 1973 A
3949073 Daniels et al. Apr 1976 A
4060081 Yannas et al. Nov 1977 A
4140537 Luck et al. Feb 1979 A
4233360 Luck et al. Nov 1980 A
4273705 Kato Jun 1981 A
4279812 Cioca Jul 1981 A
4424208 Wallace et al. Jan 1984 A
4501306 Chu et al. Feb 1985 A
4582640 Smestad et al. Apr 1986 A
4582865 Balazs et al. Apr 1986 A
4605691 Balazs et al. Apr 1986 A
4636524 Balazs Jan 1987 A
4642117 Nguyen et al. Feb 1987 A
4713448 Balazs Dec 1987 A
4716154 Malson et al. Dec 1987 A
4772419 Malson et al. Sep 1988 A
4803075 Wallace et al. Feb 1989 A
4886787 De Belder et al. Dec 1989 A
4896787 Delamour et al. Jan 1990 A
5009013 Wiklund Apr 1991 A
5087446 Suzuki et al. Feb 1992 A
5091171 Yu et al. Feb 1992 A
5137723 Yamamoto Aug 1992 A
5143724 Leshchiner et al. Sep 1992 A
5314874 Miyata et al. May 1994 A
5328955 Rhee et al. Jul 1994 A
5356883 Kuo et al. Oct 1994 A
5399351 Leshchiner et al. Mar 1995 A
5428024 Chu et al. Jun 1995 A
5531716 Luzio et al. Jul 1996 A
5565519 Rhee et al. Oct 1996 A
5571503 Mausner Nov 1996 A
5614587 Rhee et al. Mar 1997 A
5616568 Pouyani et al. Apr 1997 A
5616611 Yamamoto Apr 1997 A
5616689 Shenoy et al. Apr 1997 A
5633001 Agerup May 1997 A
5643464 Rhee et al. Jul 1997 A
5676964 della Valle Oct 1997 A
5823671 Mitchell et al. Oct 1998 A
5824333 Scopelianos et al. Oct 1998 A
5827529 Ono et al. Oct 1998 A
5843907 Sakai Dec 1998 A
5880107 Buenter Mar 1999 A
5886042 Yu et al. Mar 1999 A
5935164 Iversen Aug 1999 A
5972326 Galin et al. Oct 1999 A
5980930 Fenton et al. Nov 1999 A
5985850 Falk et al. Nov 1999 A
6013679 Kuo et al. Jan 2000 A
6066325 Wallace et al. May 2000 A
6224857 Romeo et al. May 2001 B1
6335035 Drizen et al. Jan 2002 B1
6372494 Naughton et al. Apr 2002 B1
6383218 Sourdille et al. May 2002 B1
6383219 Telandro et al. May 2002 B1
6418934 Chin Jul 2002 B1
6521223 Calias et al. Feb 2003 B1
6544503 Vanderhoff et al. Apr 2003 B1
6627620 Nielsen Sep 2003 B1
6630486 Royer Oct 2003 B1
6685963 Taupin et al. Feb 2004 B1
6716251 Asius et al. Apr 2004 B1
6734298 Barbucci May 2004 B1
6767924 Yu et al. Jul 2004 B2
6767928 Murphy et al. Jul 2004 B1
6852255 Yang Feb 2005 B2
6893466 Trieu May 2005 B2
6903199 Moon Jun 2005 B2
6921819 Piron et al. Jul 2005 B2
6924273 Pierce Aug 2005 B2
6939562 Spiro et al. Sep 2005 B2
6979440 Shefer et al. Dec 2005 B2
7119062 Alvis et al. Oct 2006 B1
7166570 Hunter et al. Jan 2007 B2
7192984 Berg Mar 2007 B2
7196180 Aeschlimann Mar 2007 B2
7314636 Caseres et al. Jan 2008 B2
7491709 Carey Feb 2009 B2
7741476 Lebreton Jun 2010 B2
7902171 Reinmuller et al. Mar 2011 B2
8052990 Hermitte et al. Nov 2011 B2
8124120 Sadozai Feb 2012 B2
8318695 Stroumpoulis et al. Nov 2012 B2
8338375 Schroeder et al. Dec 2012 B2
8338388 Lebreton Dec 2012 B2
8357795 Lebreton Jan 2013 B2
8394782 Stroumpoulis et al. Mar 2013 B2
8394783 Stroumpoulis et al. Mar 2013 B2
8394784 Stroumpoulis et al. Mar 2013 B2
8455465 Molliard Jun 2013 B2
8513216 Stroumpoulis et al. Aug 2013 B2
8524213 Leshchiner et al. Sep 2013 B2
8563532 Lebreton Oct 2013 B2
8575129 Bellini Nov 2013 B2
8586562 Lebreton Nov 2013 B2
8946192 Gousse Feb 2015 B2
9333160 Gousse May 2016 B2
9655991 Gousse May 2017 B2
9855367 Gousse Jan 2018 B2
20020102311 Gustavsson et al. Aug 2002 A1
20020160109 Yeo et al. Oct 2002 A1
20030031638 Joshi et al. Feb 2003 A1
20030093157 Casares et al. May 2003 A1
20030119985 Sehl et al. Jun 2003 A1
20030148995 Piron et al. Aug 2003 A1
20040032056 Vang et al. Feb 2004 A1
20040101959 Marko et al. May 2004 A1
20040127698 Tsai et al. Jul 2004 A1
20040127699 Zhao et al. Jul 2004 A1
20040199241 Gravett et al. Oct 2004 A1
20040265389 Yui et al. Dec 2004 A1
20050101582 Lyons et al. May 2005 A1
20050136122 Sadozal et al. Jun 2005 A1
20050142152 Leschchiner et al. Jun 2005 A1
20050181007 Hunter Aug 2005 A1
20050186261 Avelar Aug 2005 A1
20050186673 Geistlich et al. Aug 2005 A1
20050226936 Agerup Oct 2005 A1
20050271729 Wang Dec 2005 A1
20050281880 Wang Dec 2005 A1
20050287180 Chen Dec 2005 A1
20060040894 Hunter Feb 2006 A1
20060095137 Chung et al. May 2006 A1
20060122147 Wohlrab Jun 2006 A1
20060141049 Lyons et al. Jun 2006 A1
20060147483 Chaouk et al. Jul 2006 A1
20060189516 Yang Aug 2006 A1
20060194758 Lebreton Aug 2006 A1
20060246137 Hermitte et al. Nov 2006 A1
20060257488 Hubbard Nov 2006 A1
20060286769 Tsuchiya et al. Dec 2006 A1
20070026070 Vonwiller et al. Feb 2007 A1
20070066816 Tsai et al. Mar 2007 A1
20070077292 Pinsky Apr 2007 A1
20070203095 Sadozai et al. Aug 2007 A1
20070212385 David Sep 2007 A1
20070224247 Chudzik Sep 2007 A1
20070224278 Lyons et al. Sep 2007 A1
20070298005 Thibault Dec 2007 A1
20080044476 Lyons et al. Feb 2008 A1
20080057091 Abdellaoui Mar 2008 A1
20080089918 Lebreton Apr 2008 A1
20080188416 Bernstein Aug 2008 A1
20080193538 Kitazono et al. Aug 2008 A1
20080200430 Bitterman et al. Aug 2008 A1
20080207794 Wright et al. Aug 2008 A1
20080241252 Lyons Oct 2008 A1
20080268051 Lyons Oct 2008 A1
20080274946 Gimpapa Nov 2008 A1
20080279806 Cho Nov 2008 A1
20080293637 Schroeder et al. Nov 2008 A1
20090017091 Daniloff et al. Jan 2009 A1
20090018102 Moutet Jan 2009 A1
20090022808 Championn Jan 2009 A1
20090028817 Niklason et al. Jan 2009 A1
20090036403 Stroumpoulis et al. Feb 2009 A1
20090042834 Karageozian et al. Feb 2009 A1
20090093755 Schroeder et al. Apr 2009 A1
20090110671 Miyata et al. Apr 2009 A1
20090110736 Boutros Apr 2009 A1
20090143331 Stroumpoulis et al. Jun 2009 A1
20090143348 Tezel et al. Jun 2009 A1
20090148527 Robinson Jun 2009 A1
20090155314 Tezel Jun 2009 A1
20090155362 Longin Jun 2009 A1
20090169615 Pinsky Jul 2009 A1
20090263447 Asius et al. Oct 2009 A1
20090291986 Pappas et al. Nov 2009 A1
20090297632 Waugh Dec 2009 A1
20100004198 Stroumpoulis et al. Jan 2010 A1
20100028437 Lebreton Feb 2010 A1
20100035838 Herber et al. Feb 2010 A1
20100041788 Voigts et al. Feb 2010 A1
20100098764 Stroumpoulis et al. Apr 2010 A1
20100098794 Armand Apr 2010 A1
20100099623 Schroeder et al. Apr 2010 A1
20100111919 Abuzaina et al. May 2010 A1
20100136070 Dobak et al. Jun 2010 A1
20100226982 Malessa Sep 2010 A1
20100226988 Lebreton Sep 2010 A1
20100255068 Stroumpoulis et al. Oct 2010 A1
20100316683 Piron et al. Dec 2010 A1
20110034684 Yokokawa Feb 2011 A1
20110077737 Stroumpoulis et al. Mar 2011 A1
20110118206 Lebreton May 2011 A1
20110171286 Cecile et al. Jul 2011 A1
20110171311 Gousse et al. Jul 2011 A1
20110172180 Gousse et al. Jul 2011 A1
20110201571 Gavard Molliard Aug 2011 A1
20110229574 Guillen et al. Sep 2011 A1
20110263521 Moutet Oct 2011 A1
20120010146 Han et al. Jan 2012 A1
20120018959 Andersson et al. Jan 2012 A1
20120034462 Stroumpoulis et al. Feb 2012 A1
20120071437 Stroumpoulis et al. Mar 2012 A1
20120095206 Chen Apr 2012 A1
20120100217 Green Apr 2012 A1
20120164098 Schroeder et al. Jun 2012 A1
20120189589 Van Epps et al. Jul 2012 A1
20120189590 Van Epps et al. Jul 2012 A1
20120189708 Van Epps et al. Jul 2012 A1
20120190644 D'este Jul 2012 A1
20120172328 Lebreton Aug 2012 A1
20120208890 Gousse et al. Aug 2012 A1
20120225842 Cecile et al. Sep 2012 A1
20120232030 Gousse et al. Sep 2012 A1
20120283428 Lee et al. Nov 2012 A1
20130023658 Stroumpoulis et al. Jan 2013 A1
20130041038 Lebreton Feb 2013 A1
20130041039 Lebreton Feb 2013 A1
20130072453 Gousse et al. Mar 2013 A1
20130096081 Njikang Apr 2013 A1
20130116188 Pollock et al. May 2013 A1
20130116190 Pollock et al. May 2013 A1
20130116411 Pollock et al. May 2013 A1
20130123210 Liu May 2013 A1
20130131011 Lebreton May 2013 A1
20130136780 Tezel et al. May 2013 A1
20130203898 Liu Aug 2013 A1
20130209532 Stroumpoulis et al. Aug 2013 A1
20130210760 Liu Aug 2013 A1
20130237615 Meunier Sep 2013 A1
20130244943 Yu et al. Sep 2013 A1
20130244970 Lebreton Sep 2013 A1
20130274222 Horne Oct 2013 A1
20140011980 Chitre et al. Jan 2014 A1
20140011990 Lebreton Jan 2014 A1
20140039061 Wiebensjo Feb 2014 A1
Foreign Referenced Citations (88)
Number Date Country
949965 Jun 1974 CA
0273823 Jul 1988 EP
0416250 Mar 1991 EP
0416846 Mar 1991 EP
1247522 Oct 2002 EP
1419792 Apr 2003 EP
1398131 Mar 2004 EP
1532991 May 2005 EP
1726299 Nov 2006 EP
2236523 Oct 2010 EP
2 484 387 Aug 2012 EP
2 349 203 Oct 2013 EP
2 676 658 Dec 2013 EP
2 670 447 Jul 2015 EP
2733427 Oct 1996 FR
2920000 Feb 2009 FR
2924615 Jun 2009 FR
55-153711 Nov 1980 JP
2002080501 Mar 2002 JP
2006-523731 Feb 2007 JP
2007083177 Mar 2007 JP
2007-525541 Sep 2007 JP
2012-508217 Apr 2012 JP
1986000079 Jan 1986 WO
1986000912 Feb 1986 WO
1992000105 Jan 1992 WO
1992020349 Nov 1992 WO
1994001468 Jan 1994 WO
1994002517 Feb 1994 WO
1996033751 Jan 1996 WO
1997004012 Feb 1997 WO
1998035639 Aug 1998 WO
1998035640 Aug 1998 WO
2000001428 Jan 2000 WO
2001079342 Oct 2001 WO
2002005753 Jan 2002 WO
2002006350 Jan 2002 WO
2002009792 Feb 2002 WO
2002017713 Mar 2002 WO
2003007782 Jan 2003 WO
2004020473 Mar 2004 WO
2004022603 Mar 2004 WO
2004073759 Sep 2004 WO
2004092223 Oct 2004 WO
WO2004092223 Oct 2004 WO
2005040224 May 2005 WO
2005067944 Jul 2005 WO
WO2005067994 Jul 2005 WO
2005074913 Aug 2005 WO
2005112888 Dec 2005 WO
WO2006020994 Feb 2006 WO
2006023645 Mar 2006 WO
2006067608 Jun 2006 WO
2008066297 Jun 2006 WO
2007018124 Feb 2007 WO
2007070617 Jun 2007 WO
2007077399 Jul 2007 WO
2007128923 Nov 2007 WO
2007136738 Nov 2007 WO
2008015249 Feb 2008 WO
WO2008015249 Feb 2008 WO
2008034176 Mar 2008 WO
2008072230 Jun 2008 WO
WO2008068297 Jun 2008 WO
2008077172 Jul 2008 WO
2008098019 Aug 2008 WO
2008098019 Aug 2008 WO
2008139122 Nov 2008 WO
2008148967 Dec 2008 WO
2008157608 Dec 2008 WO
2009024719 Feb 2009 WO
2009026158 Feb 2009 WO
2009028764 Mar 2009 WO
2009034559 Mar 2009 WO
2009073437 Jun 2009 WO
2010003797 Jan 2010 WO
2010027471 Mar 2010 WO
2010028025 Mar 2010 WO
2010029344 Mar 2010 WO
2010038771 Apr 2010 WO
2010051641 May 2010 WO
2010052430 May 2010 WO
2010053918 May 2010 WO
2010061005 Aug 2010 WO
2010015900 Feb 2011 WO
2012077055 Jun 2012 WO
2012104419 Aug 2012 WO
2014026161 Feb 2014 WO
Non-Patent Literature Citations (98)
Entry
US 5,248,698, 09/1993, Leshchiner et al. (withdrawn)
Laeschke, “Biocompatibility of Microparticles into Soft Tissue Fillers”, 23 Semin. Cutan. Med. Surg., 214 (2004).
Lamar et al., “Antifibrosis Effect of Novel Gels in Anterior Cillary Solerotomy *ACS),” ARVO 2002 abstract.
Levy, Jaime et al., “Lidocaine hypersensitivity after subconjunctival injection”, Can J Ophthalmol 2006; 41:204-6.
Lindvall et al.; “Influence of Various Compounds on the Degradation of Hyaluronic Acid by a Myeloperoxidase System”; Chemico-Biological Interactions; vol. 90; pp. 1-12; 1994.
Lupo, MP., “Hyaluronic acid fillers in facial rejuvenation,” Semin. Cutan. Med. Surg. 25(3): 122-126 (2006).
Mackley, et al., “Delayed-Type Hypersensitivity to Lidocaine”, Arch Dermatol, vol. 139, Mar. 2003, pp. 343-346.
Mancinelli et al., “Intramuscular High-Dose Triamelnolone Acetonide in the Treatment of Severe Chronic Asthma”, West J. Med, Nov. 1997: 167(5), 322-329.
Matsumoto, Alan H, et al., “Reducing the Discomfort of Lidocaine Administration through pH Buffering,” Journal of Vascular Interventional Radiology, Jan.-Feb. 1994, pp. 171-175.
McCarty et al., “Inflammatory Reaction After Intrasynovial Injection of Microcrystalline Adrenocorticosteriod Esters”, Arthritis and Rheumatism, 7(4):359-367 (1964).
McCleland, Plastric Reconstructive Surgery, 100(6), Nov. 1997, pp. 1466-1474.
McPherson, John M., “Development and Biochemical Characterization of Injectable Collagen,” J. Dermatol Surg Oncol. 14 (Suppl1): Jul. 7, 1988, pp. 13-20.
Millay et al.; “Vasoconstrictors in Facial Plastic Surgery”; Archives of Otolaryngology—Head & Neck Surgery; vol. 117; pp. 180-183; Feb. 1991.
Orvisky, E., et al., “High-molecular-weight hyaluronan—a valuable tool in testing the antioxidative activity of amphiphillic drugs stobadine and vinpocetine,” Pharm.Biomed.Anal. 16:419-424 (1997).
Osmitrol (generic name Mannitol),Official FDA Infomation, side effects and uses, pp. 1-10 (2010) http://www.drugs.com/pro/osmitrol.html.
Park et al., “Biological Characterization of EDC-crosslinked Collagen-Hyaluronic Acid Matrix in Dermal Tissue Restoration”, Biomaterials 24 (2003) 1631-1641.
Park et al., “Characterization of Porous Collagen/Hyaluronic Acid Scaffold Modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking”, Biomaterials 23 (2002): 1205-1212.
Powell; “Stability of Lidocaine in Aqueous Solution: Effect of Temperature, pH, Buffer, and Metal Ions on Amide Hydrolysis”; Pharmaceutical Research; vol. 4, No. 1, 1987.
Prestwich, Glenn D., “Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracelluar matrices in drug discovery,” Accounts of Chemical Research 41 (1):139-148 (2008).
Rehakova, Milena, et al., “Properties of collagen and hyaluronic acid composite materials and their modifications by chemical crosslinking,” Journal of Biomedical Research, vol. 30, 1996, pp. 36-372, XP002590342.
Remington's Pharmaceutical Science Mac Publishing Company, Easton, PA 16th Edition 1960.
Rosenblatt et al., “The Effect of Collagen Fiber Size Distribution on the Release Rate of Proteins from Collagen Matrices by Diffusion”, J. Controlled Rel., 9, pp. 195-203 (1989).
Rosenblatt et al., “Chain Rigidity and Diffusional Release in Biopolymer Gels”, Proceed. Inter. Symp. Control. Rel. Bioact. Mater., 20, pp. 264-265 (1993) Controlled Release Society, Inc.
Sannino et al., “Crosslinking of Cellulose Derivatives and Hyaluronic Acid with Water-Soluble Carbodiimide” Polymer 46 (2005)pp. 11206-11212.
SCULPTRA® Aesthetic (Injectable poly-L-lactic acid) Directions for Use, Dermik Laboratories product insert (Jul. 2009), sanoli-aventis U.S. LLC.
Segura et al. “Crosslinked hyaluronic acid hydrogels: a strategy to funtionalize and pattern,” Biomaterials 26(4): 359-371 (2005).
Selvi et al, “Arthritis Induced by Corticosteriod Crystals”, J. Rheumatology, 2004, 34:3.
Serban et al. “Modular Extracellular Matrices: Solution for the Puzzle.” Methods 45(1): 93-98 (2008).
Shu et al. “Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering,” J. Biomed. Mater. Res. A. 79(4): 902-912 (2006).
Silver et al., “Physical Properties of Hyaluronic Acid and Hydroxypropylmethylcellulose in Solution: Evaluation of Coating Ability,” Journal of Applied Biomaterials, vol. 5, 89-98 (1994).
Skardal etal “Bioprinting Vessel-Like Constructs Using Hyaluronan Hydrogels Crosslinkedwith Tetrahedral Polyethylene Glycol Tetracrylates”; BioMaterials. Elsevier Science Publishers BV; vol. 31, No. 24; pp. 6173-6181; Aug. 1, 2010.
Smith, Kevin C., et al., “Five Percent Lidocaine Cream Applied Simultaneously to Skin and Mucosa of the Lips Creates Excellent Anesthesia for Filler Injections”, Dermatol Surg 2005; 31:1635-1637.
Tezel et al. “The science of hyaluronic acid dermal fillers.” J. Cosmet. Laser Ther. 10(1): 35-42 (2008).
TRB Chemedica Ophthalmic Line, VISIOL, product info., pp. 1-2.
Visiol, Viscoelstic gel for use in ocular surgery, (2010) p. 1, htt://www.trbchemedica.com/index.php/option=com_content&tas.
Waraszkiewicz, Sigmund M., et al., “Stability-Indicating High-Performance Liquid Chromatographic Analysis of Lidocaine Hydrochloride and Lidocaine Hydrochloride with Epinephrine Injectable Solutions”, Journal of Pharmaceutical Sciences, vol. 70, No. 11, Nov. 1981, pp. 1215-1218.
Wahl, “European Evaluation of a New Hyaluronic Acid Filler Incorporating Lidocaine”, Journal of Cosmetic Dermatology; vol. 7; pp. 298-303; 2008.
Weidmann; “New Hyaluronic Acid Filler for Subdermal and Long-Lasting Volume Restoration of the Face”; European Dermatology; pp. 65-68; 2009.
Xia, Yun et al., “Comparison of Effects of Lidocaine Hydrochloride, Buffered Lidocaine, Diphenhydramine, and Normal Saline After Intradermal Injection”, Journal of Clinical Anesthesia 14:339-343, 2002.
Yeom et al. “Effect of Cross-Linking Reagents for Hyaluronic Acid Hydrogel Dermal Fillers on Tissue Augmentation and Regeneration.” Bioconjugate Chem., 21(2): 240-247 (2010).
Yui, Nobuhiko, et al., “Inflammation responsive degradation of crosslinked hyaluronic acid gels,” Journal of Controlled release, 22 (1992) pp. 105-116.
Yui, Nobuhiko, et al., “Photo-responsive degradation of heterogeneous hydrogels comprising crosslinked hyaluronic acid and lipid microspheres for temporal drug delivery,” Journal of Controlled Release, 26 (1993) pp. 141-145.
Yun, YH et al. “Hyaluronan Microspheres for Sustained Gene Delivery and Site-Specific Targeting”, Biomaterials, vol. 25, 2004, pp. 147-157.
Zheng et al. “In situ crosslinkable hyaluronan hydrogels for tissue engineering.” Biomaterials 25(7-8): 1339-1348 (2004).
Zulian et al., Triamcinolone Acetonide and Hexacetonide Intra-Articular Treatment of Symmetrical Joints in Juvenile Idiopathic Arthritis: a Double-Blind Trial, Rheum 2004.
Boulle et al., “Up Augmentation and Contour Correction With a Ribose Cross-linked Collagen Dermal Filler”, Journals of Drugs in Dermatology, Mar. 2009, vol. 8, Issue 3, pp. 1-8.
Crosslinking Technical Handbook, Thermo Scientific, pp. 1-48, published Apr. 2009.
Park et al., “In vireio evaluation of conjugated Hyalruonic acid with Ascorbic Acid”, Journal of Bone & Joint Surgery, British vol. 92-B, XP-002706399, 2010.
Aesthetic Buyers Guide, “Juvéderm Raises Standards” Jan./Feb. 2007 (5 pp.), www.mllnews.com.
Adams, “An Analysis of Clinical Studies of the Uses of Crosslinked Hyaluronan, Hylan, in the Treatment of Osteoarthritis”, J. Rheumatol Suppl., Aug. 1993; 39:16-8.
Albano, Emanuele, et al., “Hydroxyethyl Radicals in Ethanol Hepatotoxicity,” Frontiers in Bioscience 4:533-540 (1999).
Allemann et al., “Hyaluronic acid gel (JUVEDERM) preparations in the treatment of facial wrinkles and folds”, 2008, Clinical Interventions in Aging, vol. 3, No. 4, pp. 629-634.
Antunes, Alberto A., et al., “Efficacy of Intrarectal Lidocaine Hydrochloride Gel for Pain control in Patients Undergoing Transrectal Prostate Biopsy”, International Braz J Urol, vol. 30(5): 380-383, Sep.-Oct. 2004.
Atanassoff, Peter G., et al., “The Effect of Intradermal Administration of Lidocaine and Morphine on the Response to Thermal Stimulation”, Anesth Analg 1997; 84:1340-3.
Baumann et al. “JUVEDERM vs. ZYPLAST Nasolabial Fold Study Group, Comparison of smooth-gel hyaluronic acid dermal fillers with cross-linked bovine collagen: a multicenter, double-masked, randomized, within-subject study.” Dermatol. Surg. 33(Suppl 2): S128-S135 (2007).
Beasley et al. :Hyaluronic acid fillers: a comprehensive review. Facial Plast. Surg. 25(2): 86-94 (2009).
Beer “Dermal fillers and combinations of fillers for facial rejuvenation.” Dermatol. Clin. 27(4): 427-432 (2009).
Belda, Jose I., et al., “Hyaluronic acid combined with mannitol to improve protection against free-radical endothelial damage: Experimental Model,” J.Cataract Refract Surg 2005; 31:1213-1218.
Bircher, Andreas J., et al., “Delayed-type hypersensitivity to subcutaneous lidocaine with tolerance to articaine: confirmation by in vivo and in vitro tests”, Contact Dermatitis 1996, 34, 387-389.
Bluel et al., “Evaluation of Reconstituted Collagen Tape as a Model for Chemically Modified Soft Tissues”, Biomal. Med. De. Art. Org., 9(1):37-46 (1981).
Buck et al, “Injectable Fillers for our Facial Rejuvenation: a Review”, Journal of Plastic, Reconstructive and Aesthetic Surgery, (2009), 62:11-18, XP002668828.
Capozzi et al., “Distant Migration of Silicone Gel From a Ruptured Breats Implant”, Plastic and Reconstructive Surgery, 1978; 82:302-3.
Carlin, G., et al., “Effect of anti-inflammatory drugs on xanthine oxidase and xanthine oxidase induced depolymerization of hyaluronic acid,” Agents and Actions. 16 (5):377-384 (1985).
Carruthers et al. “The science and art of dermal fillers for soft-tissue augmentation.” J. Drugs Dermatol. 8(4): 335-350 (2009).
Champion, et al., “Role of Target Geometry in Phagocytosis”, S. Proc. Nat. Acad. Sci., Mar. 2008, 2006, vol. 103, No. 13, pp. 4930-4934.
Chin, Thomas M., et al., “Allergic Hypersensitivity to Lidocaine Hydrochloride”, International journal of Dermatology, vol. 19, Apr. 1980, pp. 147-148.
Chvapil, “Collagen Sponse: Theory and Practice of Medical Applications”, J. Biomed Mater. Res., II, pp. 721-741 (1977).
Clark et al., “The Influence of Triamcinolone Acetonide on Joint Stiffness in the Rat”, J Bone Joint Surg Am, 1971; 53:1409-1414.
Cohen et al., “Organization and Adhesive Properties of the Hyaluronan Pericellular Cost of Chondrocytes and Epithelial Cells”, Biophys J., 2003; 85:1996-2005.
Cui et al; “The Comparison of Physicochemical Properties of Four Cross-Linked Sodium Hyaluronate Gels with Different Cross-Linking Agents”; Advanced Material Research; vols. 396-398; pp. 1506-1512; 2012.
Deland, “Intrathecal Toxicity Studies with Benzyl Alcohol”, Toxicol Appl Pharmacol, 1973; 25(2):153.
Desal et al., J Pharm Sci Feb. 1995; 84 (2): 212-5.
Eyre et al., Top Curr. Chem., 2005, vol. 247, pp. 207-229.
Falcone et al. “Crosslinked hyaluronic acid dermal fillers: a comparison of rheological properties.” J Biomed Mater Res A. 87(1): 264-271 (2008).
Falcone et al. “Temporary polysaccharide dermal fillers: a model for persistence based on physical properties.” Dermatol Surg. 35(8): 1238-1243 (2009).
Farley, Jon S., et al., “Diluting Lidocaine and Mepivacaine in Balanced Salt Solution Reduces the Pain of Intradermal Injection”, Regional Anesthesia 19(1):48-51, 1994.
Frati, Elena, et al., “Degradation of hyaluronic acid photosensitized riboflavin in vitro. Modulation of the effect by transition metals, radical quenchers, and metal chelators,” Free Radical Biology Medicine 22 (7):1139-1144 (1997).
Fujinaga, Masahiko, et al., “Reproductive and Teratogenic Effects of Lidocaine in Sprauge-Dawley Rats”, Anesthesiology 65:826-832, 1986.
Gammaitoni, Arnold R., et al., “Pharmacokinetics and safety of continuously applied lidocaine patches 5%”, Am J Health Syst Pharm, vol. 59, Nov. 15, 2002, pp. 2215-2220.
GinShiCel MH Hydroxy Propyl methyl Cellulose, Web Page http://www.ginshicel.on/MHPC.html, Nov. 12, 2008.
Gold MH, “Use of Hyaluronic acid fillers for the treatment of the aging face.” Clin. Interventions Aging 2(3): 369-376 (2007).
Goldberg “Breakthroughs in US dermal fillers for facial soft-tissue augmentation.” J Cosmet Laser Ther. 11(4):240-247 (2009).
Graefe, Hendrik, et al., “Sensitive and specific photometric determination of mannitol in human serum,” Clin Chem Lab Med. 41 (8):1049-1055 (2003).
Grecomoro et al., “Intra-Articular Treatment with Sodium Hyaluronate in Gonarthrosis” A Controlled Clinical Trail Versus Placebo, Pharmatherapeutica, 1987; 5(2):137-41.
Grillo et al., “Thermal Reconstitution of Collagen from Solution and the Response to its Heterologous Implantation”, JSR II, No. 1, pp. 69-82 (1962).
Hassan et al., Effects of Adjuvants to local anaesthetics on their duration. III. Experimental studies of hyaluronic acid. Abstract Pub Med [Acta Anesthesiol Scand. May 1985; 29(4):384-8].
Hayashibara, “AA2G”; Sep. 23, 2007, http://web.archive.org/web/2007923072010/http://www.hayashibara-Intl.com/cosmetics/aa2g.html.
Helary et al., “Concentrated collagen hydrogels as dermal substitutes”, Biomaterials 31 (2010) 481-490.
Helliwell, “Use of an Objective Measure of Articular Stiffness to Record Changes in Finger Joints After Intra-Articular Injection of Corticosteroid”, An Theurn Dis, 1997; 58:7.
Hertzberger-Ten et al., “Intra-Articular Steroids in Pauciarticular Juvenile Chronic Arthritis”, Type I, Eur J Ped 1991; 150:170-172.
Hetherington, “Potential for Patient Harm From Intrathecal Adminsitration of Preserved Solutions”, Med J Aust. 2000, 173(3):p. 141.
Hurst, “Adhesive Arachnolditis and Vascular Blockage Caused by Detergents and Other Chemical Iritants: an Experimental Study”, J Path Bact, 1995; 70:167.
Intramed Mannitol 20% m/v Infusion, package insert, pp. 1-2 (2010) http://home.intekom.com/pharm/intramed/manitl20.html.
Jones et al., “Intra-Articular Hyaluronic Acid Compared to Intra-Articular Triamoinolone Hexacetonide in Inflammatory Knee Osteoarthritis”, Osteoarthritis Cartilage, 1995, 3:269-273.
Kublik et al. “Comparative physical properties of hyaluronic acid dermal fillers,” Dermatol. Surg. Suppl. 35(Suppl. 1): 302-312 (2009).
Klein, “Skin Filling Collagen and Other Injectables of the Skin”, Dermatologic Clinics, Jul. 2001, vol. 19, No. 3, pp. 491-588, ix, XP00919569.
Kopp et al., The Short-Term Effect of Intra-Articular Injections of Sodium Hyaluronate and Corticosteroid on Temporomandibular Joint Pain and Dysfuction, J. Oral Maxillofac.
Kulicke et al., “Visco-Elastic Properties of Sodium Hyaluronate Solutions,” American Institute of Physics (2008).
Related Publications (1)
Number Date Country
20180078674 A1 Mar 2018 US
Continuations (3)
Number Date Country
Parent 15099016 Apr 2016 US
Child 15825465 US
Parent 13675993 Nov 2012 US
Child 15099016 US
Parent 12714377 Feb 2010 US
Child 13675993 US
Continuation in Parts (1)
Number Date Country
Parent 12687048 Jan 2010 US
Child 12714377 US