The invention relates to a metallic heat transfer tube, in particular for the evaporation of liquids from pure substances or mixtures on the outside of the tube.
Evaporation occurs in many areas of air conditioning and refrigeration engineering and in process and energy engineering. Shell and tube heat exchangers are often used in this type of engineering, in which exchangers liquids from pure substances or mixtures evaporate on the outside of the tube, and thereby cool off a brine or water on the inside of the tube. Such devices are identified as flooded evaporators.
By intensifying the heat transfer on the outside and the inside of the tube, it is possible to significantly reduce the size of the evaporator. This reduces the manufacturing costs of such devices. Furthermore the required filling capacity of refrigerant is reduced which, in the case of the current predominantly used HFCs, can amount to a significant portion of the entire cost of the system. Furthermore, the potential of danger can be reduced, in the case of toxic or flammable refrigerants, by a reduction of the filling capacity. The current common double enhanced tubes are more efficient by approximately a factor of three than plain tubes with the same diameter.
The present invention relates to structured tubes in which the heat transfer coefficient is intensified on the outside of the tube. Since the main portion of the heat transfer resistance is in this manner often shifted to the inside, the heat transfer coefficient must as a rule also be intensified on the inside. An increase of the heat transfer on the inside of the tube results usually in an increase of the tubeside pressure drop.
Heat transfer tubes for shell and tube heat exchangers have usually at least one structured area A and one plain end B and possibly plain center lands C as shown in FIG. 10. The plain ends or center lands provide the limits of the structured areas. In order for the tube to be able to be installed without any problems into the shell and tube heat exchanger, the outer diameter of the structured areas may not be greater than the outer diameter of the plain ends and center lands.
In order to increase the heat transfer during the evaporation, the process of the nucleate boiling is intensified. It is known that the formation of bubbles starts at the nucleation sites. These nucleation sites are mostly small gas or vapor inclusions. Such nucleation sites can be produced already by roughening the surface. When the growing bubble has reached a certain size, it becomes detached from the surface. When the bubble becomes detached, the nucleation site is flooded with liquid and any included gas or vapor may also be displaced by the flooding liquid. The nucleation site is in this case inactivated. This can be avoided by a suitable design of the nucleation sites. It is here necessary to make the opening of the nucleation site smaller than the cavity lying below the opening.
It is known in the art to produce such structures on the base of integrally formed finned tubes. Integrally finned tubes are where the fins are formed out of the wall material of a plain tube. Various methods are known whereby the channels between adjacent fins are closed off in such a manner that connections between channel and surrounding area remain in the form of pores or slots. Since the opening of the pores or slots is less than the width of the channels, the channels represent suitably formed cavities, which favor the formation and stabilization of nucleation sites. Such essentially closed channels are created in particular by bending or tilting the fin (U.S. Pat. No. 3,696,861, U.S. Pat. No. 5,054,548), by splitting and flattening the fin (DE 2 758 526, U.S. Pat. No. 4,577,381), and by notching and flattening the fin (U.S. Pat. No. 4,660,630, EP 0 713 072, U.S. Pat. No. 4,216,826).
The strongest commercially available performance enhanced fin tubes for flooded evaporators have a fin structure with a fin density of 55 to 60 fins per inch on the outside of the tube (U.S. Pat. No. 5,669,441, U.S. Pat. No. 5,697,430, DE 197 57 526). This corresponds to a fin pitch of approximately 0.45 to 0.40 mm. It is principally possible to improve the performance of such tubes with a yet higher fin density or smaller fin pitch since this increases the nucleation site density. A smaller fin pitch requires automatically more delicate tools. However, more delicate tools are subjected to an increased danger of breakage and quicker wear. The presently available tools enable a safe manufacture of finned tubes with fin densities of 60 fins per inch at a maximum. Furthermore a decreasing fin pitch reduces the production speed of the tubes and consequently the manufacturing costs are increased.
It is known that performance-enhanced evaporation structures without changing the fin density can be produced on the outside of the tube by structuring the base of the groove between the fins. It is suggested in EP 0 222 100 to provide the base of the groove with indentations by means of a notching disk. The indentations at the base of the groove can have a V, trapezoidal or semicircular cross section and represent additional nucleation sites. However, the performance increases achievable by such structures in particular in the range of small heat fluxes no longer meet the demands of the market. The indentations represent furthermore a weakening of the core wall of the tube and result in a reduction of the mechanical stability of the tube.
A performance-enhanced heat transfer tube for the evaporation of liquids on the outside of the tube is to be provided during a uniform tubeside heat transfer and pressure drop and with the same manufacturing costs.
The purpose of the invention is met by providing in a heat transfer tube of the mentioned type, recesses which are arranged in the area of the base of the primary grooves helically extending between the fins, in such a manner that the recesses are designed in the form of re-entrant secondary grooves.
A re-entrant groove (see
A re-entrant secondary groove offers for the formation and stabilization of nucleation sites clearly more favorable conditions than the simple indentations suggested in EP 0 222 100. The position of the re-entrant secondary grooves near the primary base of the groove is particularly advantageous for the evaporation process since the wall superheat is the greatest at the base of the groove and therefore the highest driving temperature difference for the bubble formation is available thereat.
After the forming of the fins material is according to the invention removed by suitable additional tools, from the area of the fin flanks toward the base of the groove so that not completely closed off cavities are created at the base of the groove, which cavities define the desired re-entrant secondary grooves. The cavities extend from the base of the primary groove toward the tip of the fins, whereby the cavities expand at a maximum up to 45% of the fin height H, typically up to 20% of the fin height H. The fin height H is thereby measured from the lowermost portion of the base of the groove, which was formed by the largest rolling disk, to the fin tip of the completely formed finned tube.
The invention will be discussed in greater detail hereinafter in connection with reference to the accompanying drawings, in which:
An integrally rolled finned tube 1 according to
The finned tube of the invention is manufactured through a finning process (compare U.S. Pat. No. 1,865,575, U.S. Pat. No. 3,327,512) by means of the devices illustrated in
A device is utilized, which consists of n=3 or 4 arbors 10, onto each of which a rolling tool 11 is integrated. The arbors 10 are circumferentially offset at 360°/n on the periphery of the finned tube. The arbors 10 can be moved radially. They in turn are arranged in a stationary (not illustrated) milling head.
The plain tube 2 entering the device in direction of the arrow in
After the essentially trapezoidally shaped fins 3 have been formed by the rolling tool 11, the re-entrant secondary grooves 7 of the invention are created in the area of the base 6 of the primary grooves 4. Three different tool embodiments can be used for this purpose:
Embodiment 1 (
A cylindrical disk 14 is provided immediately after the last disk 12 of the rolling tool 11. The diameter of the disk 14 is less than the diameter of the largest rolling disk 12 which completes the forming of the fin 3. The thickness D of the cylindrical disk 14 is slightly greater than the width B of the primary groove 4 formed by the rolling disks 12, the width B of the primary groove 4 being measured at the point where the fin flank 5 transfers over into the radius area of the root of the fin 13. The thickness D of the cylindrical disk is typically 50% to 80% of the fin pitch T. The cylindrical disk 14 removes material from the fin flanks 5 and effects a movement thereof toward the base 6 of the primary groove 4. The removed material is shifted by suitably selecting the tool geometry in such a manner that it forms projections 15 (
It is advantageous to provide on the radially outer surface of the disk 14 a concave profile (not shown), either continuous or in spaced arcuate segments in order to facilitate the removal of the material of the fin side 5.
Since the diameter of the cylindrical disk 14 is less than the diameter of the largest rolling disk 12 of the rolling tool 11, the lowermost portion of the base 6 of the primary groove 4 is not worked by the cylindrical disk 14. The tube wall 18 is thus not weakened during the forming of the re-entrant secondary grooves 7.
Embodiment 2 (
This embodiment represents an expansion of Embodiment 1. That is, a gear-like notching disk 16 is provided immediately after the cylindrical disk 14. The diameter of the notching disk 16 is greater than the diameter of the cylindrical disk 14, however, at most as great as the diameter of the largest rolling disk 12 of the rolling tool 11. The cavity 7 formed by the cylindrical disk 14 and extending in circumferential direction and having a uniform cross section is partitioned by indentations 17 (
Since the diameter of the gear-like notching disk 16 is not greater than the diameter of the largest rolling disk 12 of the rolling tool 11, the lowermost portion of the base 6 of the primary groove 4 is not farther recessed by the gear-like notching disk 16. The tube wall 18 is thus not weakened during the forming of the re-entrant secondary grooves 7 according to Embodiment 2.
Embodiment 3 (
A gear-like notching disk 19 is provided immediately after the last disk 12 of the rolling tool 11. The diameter of the notching disk 19 is at most as great as the diameter of the largest rolling disk 12. The thickness D′ of the notching disk 19 is slightly greater than the width B of the primary groove 4 formed by the rolling disks 12, the width B of the primary groove 4 being measured at the point where the fin flank 5 transfers over into the radiused portion of the root of the fin 13. The thickness D′ of the notching disk is typically 50% to 80% of the fin pitch T. The notching disk 19 can be straight or helically toothed. The notching disk 19 removes material from the area of the fin flanks 5 and from the radiused portion of the root of the fin 13 to thereby form spaced-apart indentations 20 (FIG. 7). The removed material is preferably shifted into the not worked area between the individual indentations 20 so that coined dams 21 are formed on the base 6 of the primary groove 4. The dams 21 extend transversally to the circumferentially extending primary grooves 4 and between the mutually adjacent fins 3. A next following finishing rolling disk 22 of a uniform diameter deforms the upper areas of the dams 21 to cause material movement in direction of the tube circumference so that small cavities 7 are formed between two mutually adjacent dams 21 and between the deformed upper area 23 of the dams 21 and the base 6 of the groove (FIG. 7). These cavities 7 are the heretofore mentioned re-entrant secondary grooves of the invention. The diameter of the finishing rolling disk 22 must be chosen to be less than the diameter of the notching disk 19 working the base of the grooves.
Since the diameter of the gear-like notching disk 19 is not greater than the diameter of the largest rolling disk 12 of the rolling tool 11, the lowermost portion of the base 6 of the primary groove 4 is not farther recessed by the gear-like notching disk 19. The tube wall 18 is thus not weakened during the forming of the re-entrant secondary grooves 7 according to the Embodiment 3.
After the re-entrant secondary grooves 7 have been formed at the base 6 of the groove, the fin tips 8 are notched by means of a gear-like notching disk 24. The notching disk 24 is also illustrated in
The fin height H is measured at the finished fin tube 1 from the lowermost portion of the base 6 of the groove to the tip of the fin of the completely formed fin tube.
The re-entrant secondary grooves 7 of the invention at the base 6 of the primary grooves 4 extend from the base 6 of the groove toward the fin tip. The cavities 7 have a height that is at a maximum to 45% of the fin height H, typically to 20% of the fin height H.
Structures with re-entrant secondary grooves at the base of the groove are also suggested in EP 0 522 985. However, the structure is oriented on the inside of a tube. In order to guarantee the mechanical stability of such tubes in particular when expanding the tubes, the secondary grooves must be designed as flat as possible. This is achieved by the acute-angled geometry of the secondary grooves described in EP 0 522 985. Usually a higher pressure exists inside the tube during the tubeside evaporation of refrigerants than on the outside of the tube. An increased mechanical load on the wall of the tube starts with an internal pressure load from the acute-angled edges of the secondary grooves due to the stress concentration. This must be compensated for by a thicker tube wall. This added safety in the tube wall results, however, in an increased usages of material and thus in increased costs.
However, no weakening of the tube wall 18 occurs in the heretofore suggested design of the re-entrant secondary grooves 7 in the area of the base 6 of the primary groove on the outside of the finned tubes since to form the secondary grooves 7 material is used exclusively from the area of the fin flanks 5 and possibly from the radiused portion 13 above the base 6 of the groove.
Number | Date | Country | Kind |
---|---|---|---|
101 01 589 | Jan 2001 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1865575 | Locke | Jul 1932 | A |
3327512 | Noval et al. | Jun 1967 | A |
3696861 | Webb | Oct 1972 | A |
3906605 | McLain | Sep 1975 | A |
4216826 | Fujikake | Aug 1980 | A |
4577381 | Sato et al. | Mar 1986 | A |
4660630 | Cunningham et al. | Apr 1987 | A |
5054548 | Zohler | Oct 1991 | A |
5186252 | Nishizawa et al. | Feb 1993 | A |
5333682 | Liu et al. | Aug 1994 | A |
5415225 | Randlett et al. | May 1995 | A |
5669441 | Spencer | Sep 1997 | A |
5697430 | Thors et al. | Dec 1997 | A |
6488078 | Beutler et al. | Dec 2002 | B2 |
Number | Date | Country |
---|---|---|
27 58 526 | Jul 1979 | DE |
197 57 526 | Apr 1999 | DE |
0 222 100 | May 1987 | EP |
0 522 985 | Jan 1993 | EP |
60064194 | Apr 1985 | JP |
01102295 | Apr 1989 | JP |
04039596 | Feb 1992 | JP |
Number | Date | Country | |
---|---|---|---|
20020092644 A1 | Jul 2002 | US |