This application is a national stage entry of International Application No. PCT/KR2018/014905, filed on Nov. 29, 2018, which claims the benefit of Korean Application No. 10-2018-0055375, filed on May 15, 2018, both of which of are incorporated by reference herein.
The present invention relates to a heat transferring device having a pumping structure, and more specifically, to a heat transferring device having a pumping structure, in which a working fluid of a cooling part is movable in an upward direction without a separate power source, and which can use gravity while recovering the working fluid and apply various heat sources to a heating part.
Generally, various heat transferring devices are used to transfer heat in a high temperature part to a low temperature part, a heat pipe, which is one of the heat transferring devices, accommodates a working fluid in a pipe made of a conductive material, the working fluid is evaporated in a gas state when heat introduced from the outside is supplied to one side of the pipe, and the evaporated working fluid is cooled to be condensed into a liquid state and then moves in a downward direction along gravity while the supplied heat is discharged to the outside after moving to the other side of the pipe. As described above, the working fluid in the heat pipe is repeatedly evaporated and condensed to transfer the heat in the high temperature part to the low temperature part, and since the heat pipe is basically influenced by the gravity, the liquid working fluid is always located at a lower part of the heat pipe, and the gaseous working fluid is always located at an upper part of the heat pipe. Accordingly, since an apparatus should be configured according to arrangement of the high temperature part and the low temperature part to use a conventional heat pipe, a configuration of an apparatus to which the heat pipe is applied is limited. Also known is Korean Laid-Open Patent No. 2002-0004319 (Jan. 16, 2002).
The present invention is directed to providing a heat transferring device having a pumping structure configured so that a gaseous working fluid supplied through a heating part may pressurize a liquid working fluid in a cooling part. Further, the present invention is directed to providing a heat transferring device having a pumping structure configured so that a liquid working fluid in a cooling part may be located at a higher level than a heating part. In addition, the present invention is directed to providing a heat transferring device having a pumping structure configured so that a liquid working fluid in a cooling part may be recovered to a heating part while moving in a downward direction.
In addition, the present invention is directed to providing a heat transferring device having a pumping structure in which a cooling part is provided with a phase changing path configured to change a gaseous working fluid to a liquid state before the working fluid moves to a cooling path. In addition, the present invention is directed to providing a heat transferring device having a pumping structure capable of applying various heat sources to a heating part. In addition, the present invention is directed to providing a heat transferring device having a pumping structure to which a plurality of heat dissipation structures are applied.
One aspect of the present invention provides a heat transferring device having a pumping structure including a heating part configured to heat a liquid working fluid and change the liquid working fluid to a gas state, a cooling part configured to cool the gaseous working fluid supplied from the heating part and change the gaseous working fluid to a liquid state, a pressurizing part configured to allow the heating part and the cooling part to communicate with each other so that the gaseous working fluid pressurizes the liquid working fluid, and a recovery part configured to move the liquid working fluid supplied from the cooling part to the heating part.
Since a heat transferring device having a pumping structure of the present invention is configured so that a gaseous working fluid supplied through a heating part without a separate power source can pressurize a liquid working fluid of a cooling part, a configuration can be simplified, manufacturing costs of the heat transferring device are reduced, and further maintenance becomes easy. Further, since the liquid working fluid of the cooling part moves in an upward direction, an upper part can be used as a heat sink, and since the liquid working fluid is recovered while moving in a downward direction along gravity, circulation of the working fluid becomes smooth. In addition, since various heat sources can be applied to the heating part, usability of the heat transferring device is improved. In addition, a plurality of heat dissipation structures can be applied to increase a heat transfer amount, and an additional heat transferring part can be provided between the cooling part and a recovery part to additionally transfer heat using a lower temperature and low pressure working fluid, and accordingly, the heat transfer amount can efficiently increase.
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings which may allow one of ordinary skill in the art to easily perform the present invention. The present invention may be implemented in various forms and is not limited to the following embodiments. Components not related to the description are omitted in the drawings to clearly describe the present invention, and the same reference symbols are used for the same or similar components in the description.
It should be further understood that the terms “include,” “including,” “have,” and/or “having” specify the presence of stated features, integers, steps, operations, elements, components, and/or groups thereof, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Further, a case in which a part such as a layer, a film, an area, a plate, or the like is “on” another part includes not only a case in which the part is directly on another part but also a case in which another part is present between the part and the other part. Conversely, a case in which a part such as a layer, a film, an area, a plate, or the like is “under” another part includes not only a case in which the part is directly under another part but also a case in which still another part is present between the part and the other part.
As shown in
A pressurizing part 300 configured to allow the heating part 100 and cooling part 200 to communicate with each other is provided, and the pressurizing part 300 is configured so that the working fluid in the gas state g directly pressurizes the working fluid in the liquid state l. Accordingly, since the pressurizing part 300 is configured so that the working fluid in the gas state g supplied through the heating part 100 without a separate power source may pressurize the working fluid in the liquid state l of the cooling part 200, a configuration may be simplified, manufacturing costs of the heat transferring device are reduced, and further maintenance becomes easy.
Further, a recovery part 400 is provided to move the working fluid in the liquid state l supplied from the cooling part 200 to the heating part 100. The pressurizing part 300 and the recovery part 400 will be described below in detail.
The above-described pressurizing part 300 is provided with a pressurizing path 310 so that the working fluid in the gas state g pressurizes the working fluid in the liquid state l, and as shown in
Further, the cooling part 200 is provided with a cooling path 210 through which the working fluid in the liquid state l moves, and since the cooling path 210 extends in an upward direction, the working fluid in the liquid state l is pressurized by the working fluid in the gas state g and may move in an upward direction. Specifically, when the heating part 100 is constantly operated, the working fluid in the gas state g moves to the pressurizing path 310 after filling the heating part 100, and the working fluid in the gas state g moves in a downward direction along the pressurizing path 310 configured to extend in a downward direction. Further, the phase of the working fluid is changed to the liquid state l in the cooling part 200, and the working fluid whose phase has been changed to the liquid state l as described above is pressurized by the working fluid in the gas state g continuously supplied through the pressurizing path 310 and moves in the upward direction through the cooling path 210 configured to extend in the upward direction. Accordingly, since the working fluid in the liquid state l may be pushed in the upward direction using a pressure of the working fluid in the gas state g, the working fluid in the liquid state l may be pumped without the separate power source, and accordingly, an upper part of the heat transferring device may be used as a heat sink.
The above-described recovery part 400 is provided with a recovery path 410 so that the working fluid in the liquid state l moves to the heating part 100, and since the recovery path 410 is formed to extend in a downward direction, the working fluid in the liquid state l is influenced by gravity while moving in a downward direction through the recovery path 410, and circulation of the working fluid becomes smooth due to the influence of gravity. That is, the working fluid in the liquid state l may be pumped to move in the upward direction using the pressure of the working fluid in the gas state g supplied through the heating part 100, and the working fluid in the liquid state l which moves upward may be influenced by gravity and move in the downward direction to be recovered in the heating part 100, and since the pressure of the working fluid and gravity are used as a driving force, the working fluid may smoothly circulate without a separate power source such as a pump. In this case, a check valve cv may be provided at a front end of the heating part 100. The check valve cv controls a flow of the working fluid to prevent a backflow of the working fluid in the liquid state l which moves to the heating part 100 through the recovery path 410 to the recovery path 410, and a general check valve cv configured to control the flow of the working fluid may also be used.
Further, the entire pressure of the working fluid supplied with the gas state g should be applied to the working fluid in the liquid state l to efficiently apply the pressure of the working fluid in the gas state g to the working fluid in the liquid state l. When the working fluid in the gas state g moves in an upward direction through the cooling path 210 without pressurizing the working fluid in the liquid state l, the pressure of the working fluid in the gas state g may not be efficiently applied. The cooling part 200 is provided with a phase changing path 220 so that the working fluid in the gas state g is completely changed to the liquid state l and moves in the upward direction through the cooling path 210 to prevent the above. The phase changing path 220 extends downward from the pressurizing path 310, and the cooling path 210 configured to extend upward is provided in an end of the phase changing path 220. That is, in the description according to a moving direction of the working fluid, the phase changing path 220 configured to extend downward is provided in an end of the pressurizing path 310 configured to extend in the downward direction, and the cooling path 210 configured to extend upward is provided in the end of the phase changing path 220. Accordingly, since the working fluid in the gas state g is phase-changed to the liquid state l in the phase changing path 220 and then fills the phase changing path 220 configured to extend downward due to gravity, upward movement of the working fluid in the gas state g through the cooling path 210 without the phase change may be prevented, and accordingly, the pressure of the working fluid in the gas state g is efficiently applied to the working fluid in the liquid state l. The cooling part 200 further includes a cooling member 230 configured to cool the working fluid in the gas state g, and the cooling member 230 is disposed in the phase changing path 220 so that the working fluid in the gas state g supplied through the pressurizing path 310 is phase-changed to the working fluid in the liquid state l.
Further, as shown in
Generally, a cooling material c is accommodated in the pressure container 10 of the atomic reactor to transfer the high temperature heat generated from the reactor core 11 to the outside, and a circulation pump 30 is provided so that the cooling material c circulates through the pressure container 10 and the outside, and as shown in
Further, as shown in
The additional heat transferring part 500 may be provided between the cooling part 200 and the recovery part 400 to use a low pressure and low temperature working fluid which moves between the cooling part 200 and the recovery part 400, and the working fluid which moves in the upward direction along the cooling part 200 becomes a low pressure state due to gradual pressure reduction, and since a low temperature and low pressure refrigerant is easily phase-changed, the heat transfer amount may efficiently increase when the heat is transferred using latent heat through the phase change. An additional heating member 112 configured to change the low pressure and lower temperature working fluid to the gas state and an additional cooling member 232 configured to change the working fluid changed to the gas state through the additional heating member 112 to the liquid state are provided in the additional heat transferring part 500. In the additional heat transferring part 500, since heat is transferred while changing the working fluid to the gas state such as steam through the additional heating member 112 (Steam Jet) and heat is transferred while changing the gaseous working fluid, which is like steam, to the liquid state through the additional cooling member 232 (water spray), the heat transfer amount efficiently increases. Further, as shown in
Although embodiments of the present invention are described above, the spirit of the present invention is not limited to the embodiments shown in the description, and although those skilled in the art may provide other embodiments due to additions, changes, or deletion of the components within the scope of the same spirit of the present invention, such embodiments and the above embodiments are also included in the scope of the spirit of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10-2018-0055375 | May 2018 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2018/014905 | 11/29/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/221351 | 11/21/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2973715 | MacCracken | Mar 1961 | A |
3258925 | Jo | Jul 1966 | A |
3554869 | Dickson | Jan 1971 | A |
4051892 | Reinsch | Oct 1977 | A |
5102617 | Gluntz | Apr 1992 | A |
20040028171 | Nicholls | Feb 2004 | A1 |
20090314472 | Kim et al. | Dec 2009 | A1 |
20100071880 | Kim et al. | Mar 2010 | A1 |
20110051877 | Ahlfeld | Mar 2011 | A1 |
20150077938 | Espersen | Mar 2015 | A1 |
20160329114 | Lin-Hendel | Nov 2016 | A1 |
20180358137 | Iino | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
3316264 | May 2018 | EP |
2004101492 | Apr 2004 | JP |
2010169283 | Aug 2010 | JP |
2014-212293 | Nov 2014 | JP |
2017067355 | Apr 2017 | JP |
101374751 | Mar 2014 | KR |
101617161 | May 2016 | KR |
10-2020-0004319 | Jan 2020 | KR |
10-2002-0004319 | Jan 2022 | KR |
WO-2013081148 | Jun 2013 | WO |
WO-2017170153 | Oct 2017 | WO |
Entry |
---|
Extended European Search Report dated Dec. 22, 2021 issued in the corresponding European Patent Application No. 18919079.6. |
Number | Date | Country | |
---|---|---|---|
20210225535 A1 | Jul 2021 | US |