The present invention provides various thermoplastic tubes, thermoplastic melting plates, thermoplastic tube connecting apparatus, and methods for using the same. Devices and methods of the present invention are particularly useful, although not necessary, in aseptic thermoplastic tube connection.
Some of the problems associated with conventional thermoplastic tube connecting methods are that the thermoplastic tube connection joints sometimes leak thus requiring carefully inspection and sometimes requiring the resulting products associated with the connection be discarded. Some of the methods and devices of the invention eliminate or greatly reduce the failure rate (i.e., leakage) of thermoplastic tube connection. Accordingly, methods and devices of the invention provide huge benefit to various medical procedures. For example, it is believed that in blood-banking applications in France, all thermoplastic tube connections made with currently available technology must be inspected, e.g., by pressurizing with air and holding the connected joint under water to check for leaks. Such inspection is time consuming. In addition, a significant amount of connected joints fail and have to be redone or the resulting products must be discarded, thereby adding to the overall cost and time, and loss of valuable blood materials. By eliminating or significantly reducing the failure rate, methods and devices of the invention significantly reduce the time and cost of connecting tubes.
The present invention will now be described with regard to the accompanying drawings which assist in illustrating various features of the invention. In this regard, the present invention generally relates to various devices and methods for connecting thermoplastic tube ends.
In some embodiments, the inner diameter 164 of thermoplastic cap 150 is slightly smaller than the outer diameter 110 of thermoplastic tube 100 but is sufficiently large enough to allow insertion of thermoplastic tube 100 into thermoplastic cap 150, for example, by slightly expanding the inner diameter 164 with heat or by lubricating the outer surface of thermoplastic tube 100, for example, with a solvent thus forming a cohesive joint between thermoplastic components. Such configuration typically provides hermetically sealed connection between thermoplastic tube 100 and thermoplastic cap 150 without the need for any adhesive. Alternatively, when the inner diameter 164 is slightly larger than the outer diameter 110, an adhesive can be used to connect and/or hermetically seal thermoplastic tube 100 with thermoplastic cap 150. When an adhesive is used, such adhesive should be compatible with the desired application. Suitable adhesives include, but are not limited to, urethane adhesives, and solvent mediated adhesives.
Referring again to
Typically, thermoplastic tube 100 is flexible. However, it should be appreciated that the scope of the invention does not limit the thermoplastic tube 100 to be flexible. The material of thermoplastic tube 100, particularly the portion that is proximal to the sealed end 180, should be capable of becoming molten when heated. Conventional medical tubing materials, such as, but not limited to, thermoplastics, thermoplastic elastomers and PVC. Furthermore, the tubing can be co-extruded with a PVC core of higher melt temperature and an outer sleeve with similar melt temperature as compared to the cap component 150. The higher melt temperature core can allow a different melt flow characteristic to positively influence self-opening feature. In addition, the tubing can be co-extruded with a thermoplastic polyolefin core and thermoplastic outer sleeve allowing solvent bonding to the thermoplastic cap component 150. The polyolefin core can then allow a different melt flow characteristic to influence self opening. Moreover, the same property can be achieved using other thermoplastic resins co-extruded in a similar manner. Alternatively, the inverse can also be used where the co-extruded core can be a lower melt temperature thermoplastic ensuring a seal is formed in the center of the tubing that can be later opened if desired.
In some embodiments of the invention, thermoplastic cap 150 is used. Within such embodiments, in some instances both thermoplastic 100 and thermoplastic cap 150 have the same melting temperature. In other instances, thermoplastic cap 150 has a different melting temperature than thermoplastic tube 100. Within these instances, in some cases thermoplastic cap 150 has a higher melting temperature than thermoplastic tube 100. Still in other cases, thermoplastic cap 150 has a lower melting temperature than thermoplastic tube 100.
While the inner diameter of orifice 204 is typically larger than the inner diameter of channel 208, as illustrated in
Optionally, thermoplastic cap 200 can also include a flange 216. Flange 216 can encompass the entire circumference of thermoplastic cap 200 or it can encompass only a portion of the circumference of thermoplastic cap 200. Flange 216 is useful for various purposes. For example, it can be used as a stopping point during melting of the sealed end 280 to form molten thermoplastic. That is, flange 216 can be used to allow formation of molten thermoplastic up to where flange 216 is located. Since the cross-section area of the thermoplastic is greater where flange 216 is located, joining of molten thermoplastic at flange 216 allows stronger joint connection as well as ease of joint formation due to its greater surface area for forming a joint connection. Furthermore, flange 216 can be used to aid in opening of the lumen after the thermoplastic tubes are connected. For example, one can use flange 216 to pull apart the lumen of connected thermoplastic tubes or the elasticity modulus associated with this flange could restore the lumen to the open condition following the joining of the tube ends.
Another aspect of the invention provides a method and devices for joining thermoplastic tubes in a sterile condition. In this aspect of the invention, thermoplastic tube configuration having a greater cross-sectional surface area proximal to the sealed end is provided. The present inventors have found that thermoplastics having a larger cross-sectional thermoplastic surface area allow stronger and/or easier connection between the thermoplastic tubes. Without being bound by any theory, it is believed that the ease, and/or reliability, of forming an airtight connection between thermoplastic tube ends is proportional to the cross-sectional thermoplastic surface area, i.e., thermoplastic tube ends having a larger cross-sectional thermoplastic surface area are easier to form reliable, strong and/or airtight connection. Accordingly, it is believed that the margin of error and/or the failure rate is inversely proportional to the cross-sectional thermoplastic surface area. Hence, some aspects of the invention reduce the margin of error for connecting thermoplastic tube ends by providing thermoplastic tube ends having a larger cross-sectional thermoplastic surface area relative to the conventional thermoplastic tubes that are typically used in forming a sterile connection. For example, conventional thermoplastic tubes that are used in medical procedures have inner diameter of about 0.16 inches with the cross-sectional thermoplastic area of about 6.2 mm2 (0.6 mm wall thickness). By increasing the cross-sectional thermoplastic area to about 16 mm2 (1.2 mm wall thickness) or to about 27 mm2 (1.8 mm wall thickness), or to about 75 mm2 (3.6 mm wall thickness), it has been found that a significantly stronger connection between thermoplastic tube ends can be formed. In addition, increasing the cross-sectional thermoplastic thickness also significantly reduces the rate of joint failure.
In one embodiment, a thermoplastic cap, such as those shown in
One exemplary method for connecting a first and a second thermoplastic tubes together transversely of the axis of each tube is schematically illustrated in
For connecting first thermoplastic tube 300 with second thermoplastic tube 350, the sealed ends 308 and 358 are optionally, and preferably, compressed as shown in
The sealed ends 308 and 358 are then heated, either by a direct contact with a heated plate 380 or by other heating means known to one skilled in the art (not shown), including non-direct contact means such as those discussed above. As shown in
After joining the molten thermoplastic ends together, the external force (e.g., clamp) is removed allowing the lumen to regain its original shape. See, for example,
Suitable thermoplastic tube connecting apparatuses are well known to one skilled in the art and include, but are not limited to, those discussed in the Background of the Invention section as well as U.S. Pat. Nos. 6,341,637; 6,026,882; 6,679,529; 6,913,056; 4,443,215; 4,412,835; 4,507,119; 5,345,070; and PCT Publication Nos. WO 82/02528; and WO 02/087491, all of which are incorporated herein by reference in their entirety.
In conventional thermoplastic tube connecting apparatuses that use a thermoplastic melting plate, the surface area of the thermoplastic melting plate that is heated during operation is significantly larger than the area needed to produce molten thermoplastic from the thermoplastic tube. This results in a significantly higher energy requirement than necessary since the excess heat dissipates from the heated surface area of the thermoplastic melting plate without being used.
Accordingly, another aspect of the present invention provides a thermoplastic melting plate that is designed to significantly reduce or eliminate unnecessary heat consumption during its operation. In some embodiments, a thermoplastic melting plate that is adapted to be used with a heat weld thermoplastic tube connecting apparatus is provided.
The thermoplastic melting plate can be made of any material that can conduct heat. Exemplary materials that are suitable for thermoplastic melting plates include metals, heat transferring ceramics, metal alloys, as well as other materials that are known heat conductors, such as a flash heater available from Watlow Electric Manufacturing Company (St. Louis, Mo.). In one specific embodiment, the thermoplastic melting plate is adapted for use with tube connecting apparatuses such as the Terumo Sterile Tubing Welder, Model SC-201A (available from Terumo Medical Corp. Somerset, N.J., U.S.A.). In one embodiment, the thermoplastic melting plate is a thin plate that can optionally be used to both heat and cut thermoplastic tubes.
In other embodiments, the thermoplastic melting plate can be a thin plate that is sized to correspond to the area to be sealed. Such a plate does not need to have any insulating material and can heat and cool very rapidly due to its thinness.
In other embodiments, thermoplastic melting plates of the invention are adapted to be useful in any thermoplastic connecting apparatus that is schematically illustrate in
The insulating material, when used, substantially covers the portion of the thermoplastic melting plate that is not used in thermoplastic tube connection operation. In one embodiment, the insulating material comprises aluminum silicate, a heat insulating ceramic, or a combination thereof.
In some embodiments, the thermoplastic melting plate can also be used to cut the thermoplastic tube. In such embodiments, the thermoplastic melting plate comprises an edge 424 (see
Another aspect of the invention provides a thermoplastic tube connecting apparatus comprising the thermoplastic melting plate disclosed herein.
One of the problems associated with a hot plate thermoplastic tube connection apparatus is the potential for degraded plastic and/or molten plastic to build up on the hot plate. In some cases, such problem is eliminated by using a disposable hot plate. However, this solution adds to the overall cost and time for connecting thermoplastic tubes by requiring the hot plate to be replaced after each operation.
Accordingly, another aspect of the present invention provides a device and a method for eliminating degraded plastic and/or molten plastic from building up on the hot plate without a need for using a disposable hot plate. As illustrated in
Thin film 508 can be comprised of any material that readily conducts heat and is sufficiently strong enough to withstand tear during operation. When thin film 508 is used, thermoplastic melting plate 500 should not have any sharp edges as any sharp edge may tear thin film 508. Accordingly, in some embodiments, thermoplastic melting plate 500 has a rounded dull edge which reduces the risk of causing any tear of thin film 508. Exemplary materials that are suitable for thin film 500 include, but are not limited to, thin malleable metallic sheets (such as aluminum foil and copper foil), polytetrafluoroethylene, polyester, Q Foil (available from EGC Enterprises Inc., Chardon, Ohio), and a combination thereof.
The thermoplastic tube connecting apparatus can also include a roller, a drum, a cartridge, or other mechanical means known to one skilled in the art that allows a different portion of thin film 508 to come in contact with thermoplastic tubes during subsequent thermoplastic tube connecting operations. Such mechanism is schematically represented as item 512 in
Regardless of the mechanism used, each thermoplastic tube connection operation allows a fresh new surface area of thin film 508 to come in contact with thermoplastic tubes, thereby preventing any direct contact between thermoplastic melting plate 500 and thermoplastic tubes 504A and 504B. Such operation prevents any build up of degraded plastic and/or molten plastic on hot plate 500 and provides a clean surface for thermoplastic melting without the need for using a disposable thermoplastic meting plate.
The thermoplastic tube connecting apparatus can also include one or more guides 516 that are adapted to allow thermoplastic hot plate 500 to be properly positioned and allow thin film 508 to be operatively connected to thermoplastic hot plate 500. Guide 516 can be a separate roller, drum, or other mechanical device known to one skilled in the art. Alternatively, guide 516 can be part of a thermoplastic tube holder as discussed in detail below.
As shown in
Although
Achieving simultaneous multiple thermoplastic tube connection is advantageous in various medical procedures compared to the conventional sterile thermoplastic tube connection methods that use a single costly disposable blade for each connection. As shown in
As a brief background, in the mid-1970's, European blood centers began to remove the buffy coat from separated red blood cells. It was discovered that the buffy coat contained a high concentration of platelets, a blood component vital to blood clotting.
The majority of platelets collected during a whole blood donation are found in the buffy coat layer, which settles between red blood cells and plasma during centrifugation. To extract as many of these platelet as possible, buffy coats are pooled from many donations and re-spun in a centrifuge to separate the platelets from the rest of the buffy coat. The platelets collected contain some white blood cells even after centrifugation, so the platelets are filtered to remove white blood cells before storage and transfusion. This process is called leukoreduction.
Platelets help the blood to clot. People with certain diseases like thrombocytopenia, leukemia, and other cancers have a reduced number of platelets in their bloodstreams. Without adequate platelets, they bleed abnormally and bruise easily. Regular platelet transfusions are essential treatment for these and other patients. Typically, the process to create pooled, leukoreduced platelets from whole blood is time-consuming, labor-intensive and requires many manual steps.
Processing whole blood buffy coat platelets requires multi-step, post-donation processes: pooling, centrifugation, expression, and filtration. These manual processes are labor-intensive and time consuming. As expected, anytime a task is performed manually, there is an increased risk of processing errors. Whole blood donations are separated into components via gravitational force in a centrifuge. The force of the centrifuge causes the whole blood to separate into layers based on cell density. The upper layer captured in the centrifuge is plasma. The middle layer is the buffy coat. The bottom, heaviest layer is packed red blood cells. There are various automated apparatuses to perform the buffy coat processing steps, such as the Orbisac System. Typically, these apparatuses perform various tasks, such as pooling, centrifugation, expression, and filtration.
Some embodiments of the thermoplastic tube connecting apparatus of the invention allow simultaneous multiple thermoplastic tube connection, such as those useful in collecting platelets and processing buffy coats pooled from many blood donations. As shown in
After connecting buffy coat bags 604A-604E to tubing manifold 624, buffy coats, along with the storage solution, are pooled in the centrifuge bag 650 and the platelets are separated from the rest of the buffy coat. The collected platelets are then transferred to platelet storage bag 612 and then optionally filtered to further remove white blood cells.
Alternatively, as shown in
Additional objects, advantages, and novel features of this invention will become apparent to those skilled in the art upon examination of the following examples thereof, which are not intended to be limiting.
The foregoing discussion of the invention has been presented for purposes of illustration and description. The foregoing is not intended to limit the invention to the form or forms disclosed herein. Although the description of the invention has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the invention, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
This application claims the priority benefit of U.S. Provisional Application No. 60/819,446, filed Jul. 7, 2006, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60819446 | Jul 2006 | US |