Hemorrhagic enteritis virus DNA sequences, proteins encoded thereby and various uses thereof

Abstract
The present invention relates to a DNA sequence comprising a nucleotide sequence encoding Hemorrhagic Enteritis virus. It is well known to the man of the art that determining the complete sequence of a virus enables the isolation and identification of the different genes contained therein, and their utilisation for different purposes such as for vaccination purposes, as potential vectors for gene delivery to be used in recombinant vaccination or for gene therapy. In addition, the sequence may be employed for diagnostic purposes wherein the disclosed sequence of any part thereof be used for the development of specific primers for Polymerase Chain Reaction processes (PCR) or as probes. The invention thus also concerns with HEV proteins encoded by the sequence of the invention or functional fragments thereof and to some of the uses of said sequences and proteins.
Description




FIELD OF THE INVENTION




The present invention relates to a DNA sequence which comprises a nucleotide sequence encoding the


Hemorrhagic Enteritis


Virus, to proteins encoded thereby, to vectors and DNA constructs comprising the said DNA sequence or essential fragments thereof, and to various uses of the DNA sequence and the proteins encoded thereby.




BACKGROUND OF THE INVENTION




One of the principal diseases which suppress the immune system in turkeys is caused by infection with


Hemorrhagic Enteritis


Virus (HEV). HEV belongs to the Adenoviridae family. This family consists of serotypes that infect mammals (Mastadenoviridae) and avian (Aviadenoviridae) [Shenk T. Virology, pp. 2111-2148 (1996), B. N. Fields, D. M. Knipe and P. M. Howley (Eds) Lippincott-Raven New York]. HEV, together with marble spleen disease of pheasant and splenomegaly virus of chickens, are classified as type II avian adenovirus (Ad) [Domermuth C. H. and Gross W. B., Diseases of Poultry 8th ed. Pp.511-516, H. J. Barnes, B. W. Calnck, W. B. Reid and Yoder H. W. (Eds) Iowa State University Press (1984)] which is serologically distinct from type I and type III isolated from chickens infected by fowl Ad (FAV) 1-12 and egg drop syndrome (EDS) virus, respectively.




The HEV, as other type II Ad's, is a non-enveloped DNA virus, with a diameter of about 70-90 nm and an icosahedral symmetry. The genome is linear, double-stranded DNA and with a size estimated to be approximately 25.5 kb [Jucker et al J. Gen. Virol. 77:469-479 (1996)]. Partial sequence (about 4 kb) of the HEV genome has been recently published [Jucker et al. (1996) ibid.], while full sequences of several human Ad's (types 2, 5, 12 and 40), avian Ad's (CELO and egg drop syndrome (EDS)) and ovine Ad were published and may be found in EMBL and GenBank data bases. The e organization of all human Ad's is very similar [Shenk T. (1996) ibid.]. However, in some non-human Adenovirus (Ad) sequences (CELO, Ova and EDS) no similarity was found for various regions of human Ad [Chiocca, S., et. al. J. Virol. 70:2939-3949 (1996); Vrati, S., et. al Virology 220:186-199 (1996); Hess, M. et. al., Virology 238:145-156 (1997), respectively].




HEV replicates in the host cell nucleus and consists of 11 proteins, encoded by its DNA segment. The molecular weights of the HEV proteins range from 14 kD to 97 kD [Nazerian K. L., et al. Avian Dis. 35:572-578 (1991)]. The 97 kD polypeptide is the structural hexon protein, a monomer of the major outer capsid. Other structural proteins are the penton base protein, having a predicted size of about 50 kD and the fiber protein which anchors the penton base protein. This fiber protein consists of a tail and a globular head, which plays an important role in the first attachment of the virus to the cell receptor.




The virus infects turkeys and causes a disease which is characterized by depression, splenomegaly, intestinal hemorrhages and immuno-suppression [Domermuth C. H., & Gross W. B. (1991) Diseases of Poultry, 9th Edition, M. S. Hofstad et al. Eds. Iowa State University Press, Ames, Iowa]. The virus replicates in B cells and macrophages [Suresh M. & Sharma J. M. J. Virol. 70:30-36 (1996)] and is concentrated in large amounts in the spleen. Since B cells play an important role in the primary immune response, afflicted birds suffer mostly from weight loss.




Infection of birds by the HEV is especially prevalent during the ages of 7 to 9 weeks [Domermuth C. H. & Gross W. B., Diseases of Poultry, Iowa State University Press, 8th Edition pp. 511-516 (1984)]. Younger birds are protected by maternal antibodies [Van den Hurk, J. V. Avian Dis. 30:662-671 (1986); Harris J. R. & Domermuth C. H., Avian Dis. 21:120-122 (1977); Fadly, A. M. & Nazerian K. Avian Dis. 33:778-786 (1989)]. The rate of mortality of infected birds is high and, since the immune response is damaged, the surviving birds exhibit high vulnerability to other diseases. Moreover, infection with HEV reduces the effectiveness of response to various vaccines. As a result of lowered resistance, an outbreak of a HEV infection may further lead to outbreaks of other diseases. Naturally, such events result in heavy financial loss to the breeders.




Infectious diseases in animals, and in particular in farm animals, are one of the most important economic factors in agriculture, for example, in the poultry industry. The minimalization of losses from diseases, by means of effective vaccines, plays a major part in achieving profit in today's intensive agricultural industry. The health of domesticated animals depends on management, on a proper vaccination system and on the availability of effective vaccines.




Since the price of a single farm animal is relatively low, the cost of production and delivery of the vaccine becomes critical. Naturally, if cost of the production of the vaccine is too high, its use will not be economically worthwhile.




In the last decade recombinant adenoviral vectors have become a subject for research as vectors in gene therapy [Kozarsky K. F. & Wilson J. M., Current Options in Genetics and Development 3:499-503 (1993)]. The complete sequence of the viral DNA is essential for enabling successful manipulation of the virus, for use in gene delivery. To date, recombinant Ad's have been employed in a variety of gene therapy applications as carriers of foreign genes, as obtained with vaccinia and fowlpox [Yamanouchi K. K., et al. The Veterinary Record 13:152-156 (1993); Boursnell M. E. G. et al Virology 265:18634-18642 (1990), respectively] and in sub-unit vaccination [Israel Patent Application No.122626].




One aim of the present invention is to construct a recombinant HEV. There are a number of advantages in utilizing an adenoviridae type transfection and expression system such as the HEV derived vector of the present invention. These viruses are easy to grow giving high titers, and both the virions and the viral genome are very stable. Very high levels of expression are possible since most of the macromolecular biosynthesis in adenovirus-infected cells is virus directed at late time points post infection. Proteins made in Ad-derived expression systems would be expected to have all the post-translational modifications that might be important in determining their functional and antigenic properties, and may thus be useful for therapeutic, diagnostic or vaccination purposes.




In addition, the Ad genome is relatively easy to manipulate by recombinant DNA techniques, allowing incorporation of foreign genes as large a 7.5 kb. The ability or recombinant Ad's to terminally transduce differentiated cells in vivo has made these vectors important candidates for many gene therapy applications [S. I., Michael et al. Gene Therapy 2:660-668 (1995)]. Evidently, knowledge of the complete sequence of the viral DNA is needed in order to perform the required manipulations in the sequence.




Although permissive infections are ultimately lytic, infected cells remain intact until relatively late in infection, making the collection of concentrated virus and virus specified intracellular proteins fairly visible.




SUMMARY OF THE INVENTION




The present invention relates to a DNA sequence which comprises (a) a nucleotide sequence substantially as shown in SEQ ID NO:1; or (b) a nucleotide sequence which corresponds to the sequence substantially as shown in SEQ ID NO:1 within the scope of the degeneracy of the genetic code; or (c) a nucleotide sequence which hybridizes, under conditions that allow such hybridization to occur, with the sequences according to (a) or (b) or with a fragment thereof.




The DNA sequence of the invention encodes a


Hemorrhagic Enteritis


Virus (HEV) and biologically functional homologues and fragments thereof, or a non-virulent HEV which is capable of infecting a host cell upon exposure thereto.




The invention also concerns with a DNA sequence comprising (a) at least one nucleotide sequence selected from the nucleotide sequences substantially as shown in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28 and SEQ ID NO:30 and functional fragments thereof, said fragment being other than the nucleotide sequences substantially as shown in SEQ ID NO's:6 and 14 and other than the nucleotide sequence comprising nucleotide bases 187 to 1358 of the nucleotide sequence substantially as shown in SEQ ID NO:22;or (b) at least one nucleotide sequence selected from the nucleotide sequence which corresponds to the above sequences, within the scope of the degeneracy of the genetic code; or (c) a nucleotide sequence which hybridizes, under conditions that allow such hybridization to occur, with the sequence according to (a) or (b) or with a fragment thereof.




In a second aspect, the invention relates to a vector comprising the DNA sequence of the invention or deletions, insertions, mutations, replacements or modifications thereof.




In addition, the invention relates to a DNA construct comprising the DNA sequence of the invention or deletions, insertions, mutations, replacements or modifications thereof and at least one therapeutic exogenous nucleotide sequence operably linked thereto, the DNA construct being capable of transfecting a host cell, upon exposure thereto, with the exogenous nucleotide sequence, the exogenous nucleotide sequence being a sequence which is not made or contained in the cell or is made or contained in the cell in defective form.




In yet a further aspect, the invention relates to a DNA construct for the expression of a therapeutic protein or peptide product in a host cell, comprising a vector of the invention and at least one exogenous nucleotide sequence operably linked thereto which encodes the protein or peptide product.




In another aspect, the invention concerns host cells transformed with a nucleotide sequence of the invention and with host cells transfected with the DNA constructs of the invention.




In yet an additional aspect, the invention relates to a protein or peptide expressed by the host cells of the invention, wherein the protein or peptide product is a therapeutic protein or peptide product which is not made or contained in the cell, or is a therapeutic protein or peptide product which is made or contained in the cell in abnormally low amount, or is a therapeutic protein or peptide product which is made or contained in the cell in defective form or is a therapeutic protein or peptide product which is made or contained in the cell in physiologically abnormal amounts.




Alternatively, the invention relates to a protein or peptide product comprising a sequence substantially as shown in SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31 or functional equivalents and fragments thereof, said fragment being other than the amino acid sequences substantially as shown in SEQ ID NO's 6 and 14 and other than the amino acid sequence comprising amino acids 63 to amino acid 454 of the amino acid sequence substantially as shown in SEQ ID NO 23.




The invention also relates to a vaccine for immunizing a domesticated animal against at least one specific antigen comprising the DNA construct of the invention or the protein of the invention, optionally further comprising pharmaceutically acceptable carriers, diluents and additives.




Pharmaceutical compositions comprising as active ingredient a therapeutically effective amount of the DNA construct of the or of the cells of the invention or of the therapeutic protein or peptide product of the invention are also within the scope of the invention.




Finally, the different uses of the nucleotide sequence of the invention or the DNA constructs of the invention or the proteins of the invention in the preparation of a vaccine or a pharmaceutical composition also constitute part of the invention.











DESCRIPTION OF THE FIGURES





FIG. 1

A schematic representation of the genome organization of HEV and a comparison to EDS and Ad2 genomes




Genes of the HEV are referred to by the nomenclature of the corresponding sites in other Ad's. Locations of predicted sequences are indicated by full boxes. ORF's starting with the codon for methionine (Met) and which encode an amino acid sequence having more than 100 residues, and with no homology to any known Ad ORF, are designated ‘ORF1’ to ‘ORF8’ and indicated by empty boxes. EDS and Ad2 sequences were pooled from GenBank (Accession Nos. Y09598 and J01917, respectively). The upper boxes designate genes found on the upper strand. Abbreviations: POL: DNA polymerase; pTP: precursor terminal protein; CBP: DNA binding protein; EP: endoproteinase.





FIG. 2

Alignment of the last 11 amino acid at the C-terminal of pVI of HEV with other Ad's




The alignment was obtained by the Pileup program which is part of the GCG software package (see Example 4). Amino acids identical in all five viruses are boxed in black. Amino acids which are identical or similar among some of the viruses are indicated by gray boxes.





FIG. 3

Amino acid sequence alignment of endoproteinase of five Ad's




The alignment was obtained by the ClustalX software (see Example 4). The pairwise and multiple alignment parameters were 6 for gap opening penalty and 0.1 for gap extension penalty. The sequences are ordered according to their similarity. The conserved residues of the active site are shaded gray. Asterisks designate identical residues in all sequences and a colon designates conserved substitutions. A dot indicates a position in which more than 50% of the residues are identical.





FIG. 4

Invert terminal repeats (ITR) of HEV




The ITR of HEV was compared with the ITR's of Ova (

FIG. 4



a


) and EDS (

FIG. 4



b


). The alignment was obtained by Bestfit program which is part of the GCG software package (see Example 4). The gap opening parameter of the program was set to 15 and the gap extenuation parameter to 1.





FIGS. 5A-1

,


5


A-


2


and


5


A-


3


HEV fiber amino acid organization





FIG. 6

HEV genes.




The 3′ end of HEV genes with the following 20 nucleotides wherein the stop codons are underlined.











DETAILED DESCRIPTION OF THE INVENTION




The present invention relates to a DNA sequence which comprises (a) a nucleotide sequence substantially as shown in SEQ ID NO:1; or (b) a nucleotide sequence which corresponds to the sequence substantially as shown in SEQ ID NO:1 within the scope of the degeneracy of the genetic code; or (c) a nucleotide sequence which hybridizes, under conditions that allow for such hybridization to occur, with the sequences according to (a) or (b) or with a fragment thereof The DNA sequence of the invention encodes for


Hemorrhagic Enteritis


Virus (EV). The genome of HEV, which consists of this sequence is a linear, double-stranded DNA in the size of approximately 25.5 kb (SEQ ID NO:1). Evidently, the complete sequence of the virus enables the isolation and identification of the different genes contained therein, and their utilization for different purposes such as for vaccination purposes, as potential vectors for gene delivery to be used in recombinant vaccination or for gene therapy. In addition, the sequence may be employed for diagnostic purposes wherein the disclosed sequence of any part thereof be used for the development of specific primers for Polymerase Chain Reaction processes (PCR) or as probes.




Any sequence which, at the nucleotide level, has a homology of about 95% or at least 95% to the sequence of the invention or any biologically functional homologues and fragments of the sequence may also constitute part of the invention. Such sequences preferably encode a non-virulent HEV which is capable of infecting a host cell upon exposure thereto. Thus, the invention also concerned with a non-virulent HEV encoded by the DNA sequence of the invention.




In the same aspect the invention relates to a DNA sequence comprising (a) at least one nucleotide sequence selected from the nucleotide sequences substantially as shown in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28 and SEQ ID NO:30; or (b) at least one nucleotide sequence selected from the nucleotide sequence which corresponds to the sequences substantially as shown in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28 and SEQ ID NO:30, within the scope of the degeneracy of the genetic code; or (c) a nucleotide sequence which hybridizes, under conditions that allow such hybridization to occur, with the sequence according to (a) or (b) or with a fragment thereof. further, the invention relates to functional fragments of the above sequences, being other than the sequences shown in SEQ ID NO:6 and 14 or other than the nucleic acid sequence comprising nucleotides 187 to 1358 of the nucleic acid sequence substantially as shown in SEQ ID NO:22, corresponding to SEQ ID NO:3 described in PCT/IL98/00609, incorporated herein by reference, or to derivatives thereof. The said sequence described in PCT/IL98/00609 corresponds to the sequence form nucleic acid 187 to nucleic acid 1358 within SEQ ID NO:22 of the present invention.




All of the said sequences are derived from the DNA sequence substantially as shown in SEQ ID NO:1 and encode, respectively, the proteins designated hereinafter as 52K, IIIa, core protein I (CPI), core protein II (CPII), pVI, endoproteinase (EP), 100K, pVIII, the complete fiber, IVa2, DNA polymerase (POL), pTP and the DNA binding protein (DBP). The therapeutic merits of these proteins and of the nucleotide sequences encoding them are well recognized by the man of the art. For example, identification of nucleotide and amino acid sequences of the HEV structural proteins (hexon (SEQ ID NO:14), penton base (SEQ ID NO:6) and fiber proteins) may be utilized in the preparation of a sub-unit vaccine against the virus. In addition, since the fiber protein (

FIGS. 5A-1

,


5


A-


2


and


5


A-


3


) is responsible for the first attachment of the virus to the cell receptor, modifications thereof may be utilized in altering its specificity to different host cells.




Fusion proteins encoded by recombinant vectors comprising the nucleotide sequences of the invention or other sequences, preferably, other therapeutic sequences, are also within the scope on the invention. Thus, a DNA sequence comprising at least one first nucleotide sequence selected from the nucleotide sequences substantially as shown in SEQ ID NO:6, SEQ ID NO:14, SEQ ID NO:22 (corresponding, receptively, to the structural proteins PB, hexon and fiber proteins) and at least one second nucleotide sequence operably linked thereto and selected from the nucleotide sequences shown in SEQ ID NO:4, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12 and SEQ ID NO:20 which function as structural stabilizers, may be constructed.




In any case, the DNA sequences of the invention are genomic DNA or cDNA.




In a second aspect, the invention relates to vectors capable of delivering into a host cell an exogenous nucleotide sequence of interest which is operably linked to the vector. The vector comprises the nucleotide sequence of the invention or deletions, insertions, mutations, replacements or modifications thereof or functional fragments thereof. Such delivery means any infection or transfection of the exogenous nucleotide sequence into a specific host cell, preferably resulting in recombinant integration of the foreign DNA into the DNA genome of the host cell.




In addition, the invention relates to DNA constructs comprising a vector of the invention, which, as defined, contains the DNA sequence of the invention or deletions, insertions, mutations, replacements or modifications thereof, and further comprising at least one therapeutic exogenous nucleotide sequence operably linked thereto. The exogenous nucleotide sequence preferably is inserted into the vector in a reading frame, to enable the expression thereof, in a host. The exogenous sequence may be present in only one copy. However, several copies of the exogenous sequence, or its combination with other therapeutic foreign sequences may be inserted. Such sequences may be separated by initiation and termination sequences or they may form a single reading frame, thus producing a single “fusion protein”.




The DNA construct of the invention is a viral construct capable of infecting a host cell, upon exposure thereto, with the therapeutic exogenous nucleotide sequence which, under normal conditions, is not made or contained in the host cell or is made or contained in said cell in a defective form. Delivery into cells of linear DNA, by infecting the cells with constructs of the invention comprising such linear DNA, may be advantageous for recombination, i.e. integration into the cellular genome for stable expression.




The viral constructs of the invention which are in fact recombinant viruses, will comprise the essential features for infecting the desired host cell, and nevertheless be non-virulent.




Obviously, the viral constructs can also be modified with specific receptors or ligands to alter target specificity through receptor mediated events. Alternatively, a modified, selective targeting of the constructs is possible by producing a DNA construct according to the invention containing a modified fiber protein. It is known that alterations at the nucleotide level, i.e. mutations, insertions, or deletions or modifications at the protein level, may alter the specificity of the protein. For example, it has been shown [Stevenson S. C. et al. Virology 71(6):4782-4790 (1997)] that exchanging the head domain for other serotypes which recognize a different receptor, changes the specificity of the expressed Ad fiber protein. Furthermore, Michael S. I. [Michael S. I. et al. Gene Therapy 2:660-668 (1995)] described a new cell specificity in the Ad's binding obtained by genetic fusion of a peptide ligand to the carboxyl terminal of the Ad fiber protein. At the 3′ end of the coding region of the Ad5 fiber gene, a coding region of a physiological ligand, the terminal decapeptide of the gastrin releasing peptide (GRP), was introduced, resulting in the expression a fusion fiber-GRP protein product with a different specificity.




Other additional features which can be added to the vectors may ensure its safety and/or enhance its therapeutic efficacy. Such features include, for example, markers that can be used for selection, features that limit expression to particular cell types, such as promoters and regulatory elements that are specific for the desired cell type.




According to one embodiment of the invention, the therapeutic exogenous nucleotide sequence within the DNA construct of the invention is a sequence which either encodes a therapeutic exogenous protein or peptide product or is itself a therapeutic product or encodes a therapeutic RNA, or comprises a vector comprising exogenous DNA encoding a therapeutic exogenous protein or peptide product or a therapeutic RNA.




More specifically, the exogenous nucleotide sequence within the DNA construct of the invention is a sequence which encodes a therapeutic protein or peptide product which is not made or contained in said cell, or is a nucleotide sequence which encodes a therapeutic protein or peptide product which is made or contained in said cell in abnormally low amount, or is a nucleotide sequence which encodes a therapeutic protein or peptide product which is made or contained in said cell in defective form or is a nucleotide sequence which encodes a therapeutic protein or peptide product which is made or contained in said cell in physiologically abnormal or normal amount, or encodes a therapeutic RNA.




Preferably, the therapeutic protein or peptide product encoded by the exogenous nucleotide sequence is an enzyme, a receptor, a structural protein, a regulatory protein or a hormone which may be a naturally occurring or recombinant protein or peptide product or a modified protein or peptide.




Alternatively, the DNA constructs may comprise exogenous nucleotide sequences which are themselves therapeutic sequences. Such sequences do net necessarily encode a protein or peptide product, but act, for example, as regulatory elements which are not contained in the cell, are contained in the cell in defective form.




It is understood, that the constructs of the invention may be utilized in gene therapy in a manner known to those skilled in the art.




The host cell transfected with the DNA construct of the invention may be a mammalian cell.




In a second embodiment of the invention, the peptide or protein product encoded by the exogenous nucleotide sequence is a protein or peptide product capable of eliciting in an animal protective immunity against a specific antigen. The animal may be a human or a domesticated animal, preferably a bird.




When the domesticated animal is a bird, the antigen will preferably be a pathogen selected from Infectious Bursal Disease virus (IBDV), Newcastle Disease virus (NDV), Egg Drop Syndrome adenovirus (EDS), Infectious Bronchitis (IB), Marek Disease virus (MDV), Avian Influenza virus, fowl pox virus, chicken anemia virus (CAV), laryngo tracheitis virus, salmonella, coccidia or bacteria causing fowl cholera such as pasteurella or any other pathogen.




In a third aspect, the invention relates to a DNA construct for the expression of a protein or peptide product in a host cell, comprising an expression vector and at least one nucleotide sequence of the invention or functional equivalents and fragments thereof operably linked to the expression vector, the protein or peptide product being capable of eliciting in an animal protective immunity against HEV.




While with the DNA constructs described hereinbefore the transfection and/or expression vectors are comprised of the nucleotide sequence of the invention and the nucleotide sequence to be transferred into the host cell's genome is foreign, in the present DNA construct the vector, being an expression vector, is comprised of a foreign DNA sequence and the nucleotide sequence to be transfected is of HEV origin. Thus, the DNA construct disclosed in the third aspect of the invention is employed to transfect or infect a host cell with sequences encoded for antigens against HEV.




Within the same aspect, the preferred animal is a domesticated bird and the expression system is selected from the group consisting of fowlpox virus, vaccinia virus, Marek disease virus, baculovirus, bacteria, yeast and plant cells.




In a fourth aspect, the invention relates to a host cell transformed with a nucleotide sequence of the invention or transfected with any one of the DNA constructs of the invention. In one embodiment, the host cell is capable of expressing the therapeutic protein or peptide product encoded by the exogenous nucleotide sequence within the DNA construct, the protein or peptide product being capable of eliciting protective immunity against a specific antigen.




In a second embodiment, the host cell, transfected with the DNA construct of the invention, is capable of expressing a protein or peptide encoded by the exogenous nucleotide sequence within the DNA construct, which protein or peptide is capable of eliciting protective immunity against HEV.




The host cell may be a eukaryotic host cell, wherein said eukaryotic host cell is an insect cell, a plant cell, a mammalian cell, a bird cell, or a yeast cell, or a prokaryotic host cell such as a bacterial cell.




In yet a fifth aspect, the invention relates to a protein or peptide product expressed by the host cell of the invention, or by any other host cell transformed with the DNA sequence of the invention or transfected with the DNA construct of the invention.




The protein or peptide product may be a therapeutic protein or peptide product which is not made or contained in said cell, or is a therapeutic protein or peptide product which is made or contained in said cell in abnormally low amount, or is a therapeutic protein or peptide product which is made or contained in said cell in defective form or is a therapeutic protein or peptide product which is made or contained in said cell in physiologically abnormal amounts. Preferably, the protein or peptide product being an enzyme, a receptor, a structural protein, a regulatory protein or a hormone and may be a naturally occurring or recombinant protein or peptide product or a modified protein or peptide.




Alternatively, the protein or peptide product expressed by the host cell of the invention, or any other host cell as detailed above, may be such that is capable of eliciting in an animal protective immunity against a specific antigen, the animal being a human or a domesticated animal. Such peptides may also be employed as antigens in specific immunoassay tests (e.g. ELISA) or may be injected to produce antibodies for diagnostic purposes.




Further, the protein or peptide product may be a product encoded by the DNA sequence of the invention. In particular, the protein or peptide product may comprise a sequence substantially as shown in SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31 or functional equivalents and fragments thereof provided that when said fragment is comprised within said SEQ ID NO:23, it does not correspond to the segment corresponding to SEQ ID NO:6 described in PCT/IL98/00609, incorporated herein by reference, or to derivatives thereof This sequence corresponds to the segment within SEQ ID NO:22, starting from amino acid 63 to amino acid 454.




The above sequences encode the following HEV proteins: 52K, IIIa, CPI, CPII, pVI, EP, 100K, pVIII, the complete fiber, Iva2, POL, pTP and DBP, respectively. In this case, the protein or peptide will be capable of eliciting in an animal protective immunity against HEV and the animal is a domesticated bird. Such peptides may be employed as antigens in specific immunoassay tests (e.g. ELISA) or may be injected to produce antibodies for diagnostic purposes (e.g. for the specific identification of HEV or anti-HEV antibodies).




Yet, in another aspect of the invention, a process for the production of transformed or transfected host cells of the invention is disclosed. The process comprising the steps of (a) transforming a host cell with the DNA sequence of the invention or transfecting a host cell with a DNA construct of the invention; (b) isolating the transformed or transfected cells obtained by step (a); and (c) culturing the host cell isolated in step (b) under conditions in which propagation of said cells takes place. Such steps may be conducted by any suitable method known to the man of the art The process itself may be used for ex vivo transfection in gene therapy.




A process for the production of a protein or peptide, is also within the scope of the invention. The process comprises the steps of (a) transforming a host cell with the nucleotide sequence of the invention or transfecting a host cell with a DNA construct of the invention; (b) culturing the cells obtained in (a) under conditions in which an expression of the protein takes place; and (b) isolating the expressed protein or peptide from the cell culture or/and the culture supernatant. Evidently, the suitable means to performs such steps are well know to the man of ordinary skill in the art [ThioFusion Expression Systems Version 1.1 Invitrogen Corporation San Diego, Calif. (1995); Pichia Expression Kit, Version 1.8, Invitrogen Corporation San Diego, Calif. (1995); and Pitcovski J. et. al. Avian Disease 40:75-761 (1996)].




The invention further relates to a vaccine for immunizing a domesticated animal against at least one specific antigen (hereinafter referred to as the first vaccine) which vaccine comprises an effective amount of the DNA construct of the invention or the protein or peptide of the invention, optionally further comprising pharmaceutically acceptable carriers, diluents and additives.




The term ‘effective amount’ for purposes herein is that determined by such considerations as are known in the art. The amount must be sufficient to alter the transformed cell's function or sufficient to stimulate the immune system and confer immunity against the specific antigen and preferably to confer immunity to progeny of the treated animal, via maternal antibodies.




By the terms carriers, diluents, adjuvants and vehicles it is meant any inert, non-toxic solid or liquid filler, diluent, or encapsulating material, not reacting with the active ingredient of the invention.




Up to date, different vaccines employing Ad origin vectors have been described [Karen F., et al., Current Opinion in Genetics and Development 3:499-503 (1993); Mason B. B. et al. Virol. 177:462-461 (1990); Fields Virology Vol 2. Fileds B. N. et al Eds. Lippincott-Raven publication; Prevec L. et al. The J. of Infectious Diseases 161:27-30 (1990); Xiang Z. Q. Virol. 219:220-227 (1996); Callebaut P. et al. J. of General Virol. 77:309-313 (1996)].




In yet another embodiment, the invention relates to a vaccine for immunizing an animal against HEV (hereinafter referred to as the second vaccine) comprising an immunologically effective amount of any one of the nucleotide sequences of the invention or any of the DNA constructs of the invention or any protein of the invention encoded by the DNA sequences of the invention, and optionally further comprising pharmaceutically acceptable carriers, diluents and other suitable additives. The DNA constructs according to this embodiment are (as elaborated hereinbefore) those constructed from a HEV nucleotide sequence to be expressed, operably linked to a foreign expression vector being capable of expressing the HEV sequence. The encoded protein or peptide product will then act as HEV antigen against which an immune system may be elicited.




Both types of vaccines according to the invention may be provided in various forms such as lysates of the cells of the invention, as partially or completely purified proteins of the invention, as the DNA constructs of the invention and is preferably a sub-unit type vaccine, nevertheless, not limited thereto.




The present invention also concerns with pharmaceutical compositions comprising as active ingredient a therapeutically effective amount of a DNA construct according to the invention, or of a cell according to the invention, or of a therapeutic protein or peptide product according to the invention. The pharmaceutical composition of the invention may also further comprise any suitable additive such as pharmaceutically acceptable carriers, diluents, adjuvants and vehicles.




The vaccines or compositions of the invention are administered and dosed in accordance with good veterinary practice, taking into account the clinical condition of the individual animal, the site and method of administration, scheduling of administration, the animal's age, body weight, diet and other factors, well know to the veterinary practitioner. The doses may be single doses or multiple doses and the treatment may be effected at any age from day one.




In addition, the invention relates to a method of providing a therapeutic exogenous nucleotide sequence to an animal in need of such sequence by administering to the animal a therapeutically effective amount of the DNA construct of the invention.




Furthermore, the invention relates to a method of providing a therapeutic protein or peptide product, to a patient in need of such product, by administering to the patient therapeutically effective amount of the DNA construct of the invention or a therapeutically effective amount of the transfected cells of the invention [for example, as described in a Clinical Protocol in Human Gene Therapy 5:501-519 (1994)].




Any conventional method for as administering the products of the invention (e.g. the DNA sequences, the DNA constructs, or the protein or peptide product of the invention), such as tablets, suspensions, solutions, emulsions, capsules, powders, syrups, and the like may be used, as long as the biological activity of the therapeutic ingredient thereof is retained.




Administration may be oral, subcutaneous or parenteral, including intravenous, intramuscular, intraperitoneal and intranassal administration as well as intrathecal and infusion techniques. Nevertheless, most preferred methods are oral administration and injection. Following injection the DNA construct of the invention will circulate until it recognizes the host cell with the appropriate target specificity for infection.




In addition, the invention relates to a method of immunizing an animal against a specific antigen by administering to said animal an effective immunizing amount of the first vaccine according to the invention, wherein the animal is preferably a human or a domesticated animal.




Alternatively, the invention relates to a method of immunizing a domesticated animal against HEV by administering to the animal an effective immunizing amount of the second vaccine according to the invention, which case, the animal is preferably a bird.




The invention also relates to the use of the nucleotide sequences of the invention, or the DNA constructs of the invention or the protein and peptide products of the invention in the preparation of a vaccine or of a pharmaceutical composition.




Finally, the invention relates to an antibody, either monoclonal, polyclonal or recombinant antibodies, directed against any one of the DNA sequences or the protein or peptide products of the invention. The antibodies may be produced by standard antibody production technology well known to those skilled in the are, as described generally [Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor N.Y. (1988); Borrebaeck et al. Antibody Engineering-A Practical Guide, W.H Freeman and Co. (1992)]. In addition, antibody fragments may be prepared from the antibodies by methods known in the art and will include the Fab, F(ab′)


2


and Fv fragments. Evidently, such antibodies may be used in detecting the presence, in a biological sample, of the specific antigen against which they have been produced. Such methods are known to those skilled in the art and may include the ImmunoComb technology (to Orgenics).




The invention will now be described in an illustrative manner and it is to be understood that the terminology which will be used is intended to be in the nature of is the words of description rather than of limitation.




Obviously, many modifications and variations of the present invention are possible in light of the above teaching, it is therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.




EXAMPLES




Example 1 Isolation of HEV




Turkeys were exposed to the virulent field strain of HEV. Five days later, birds were sacrificed, and the spleens were removed. A TCN solution (10 mM Tris-HCl pH 7.2, 10 mM CaCl


2


, 100 mM NaCl) twice the volume of the tissue was added to the spleens which were then ground and homogenized for 5 minutes (min.). The tissue homogenate was frozen and then thawed at −70° C. and at 37° C., respectively, for three times, followed by centrifugation at 8,000×g at 4° C., for 20 min. The supernatant was mixed with trichlorotrifluoroethane (1:3) and further centrifuged at 5,000×g at 4° C., for 30 min. The resulting supernatant was then collected and added on top of the following gradient: 12 ml of 46.2% (w/v) cesium chloride (CsCl) (density of 1.35 g/ml); 12 ml of 35% (w/v) CsCl (density of 1.24 g/ml); 6 ml of 1M sucrose. The gradient was centrifuged for 24 hours (hrs) at 85,000×g at 4° C., with SW28 rotor.




The virus was isolated from a white ring, formed between the two CsCl layers obtained after centrifugation. The virus band was collected, diluted in Tris EDTA (TE), and repelleted by centrifiugation at 96,000×g for 2 hrs. The pellet was collected, resuspended in distilled water and dialyzed against TE. The virus obtained was stored at −20° C.




Example 2




Isolation and Purification of HEV DNA




The virus obtained as described in Example 1, was incubated for 3 hrs in a solution containing 0.01M Tris, 0.01M NaCl, 0.01M EDTA, 0.5% SDS, and 50 mg/ml proteinase K. Following incubation, the DNA of HEV was electrophoresed on 0.8% agarose gel and was visualized by Ethidium Bromide, at the size of 26 kb.




The plasmids obtained were transformed into


E. coli


XL1-blue cells, and white colonies, that grew on Luria Bertani medium (LB) plates containing ampicillin (100 g/ml) and X-Gal (200 g/ml), were isolated.




Example 3




DNA Sequencing




HEV DNA was digested either by EcoRI or PstI restriction enzymes and the resulting restriction fragments were separated on agarose gel, purified and cloned into plasmid pBS SK(+) (Stratagene). Cloned DNA fragments which were longer than 3 kb, were digested by exonuclease III (Promega) to create a series of nested deletions. The initial sequence information was obtained by sequencing the cloned fragments, using two commercially available primers, corresponding to the 5′ and 3′ ends of the pBS multiple cloning site (universal primers, New England Biolabs). The sequencing was carried out using the Taq Dyeseoxy Terminator system and an ABI 373 automatic sequencing apparatus. Sequences of 350-500 bp were resolved in a typical sequencing run. Once the initial sequence information was obtained, the primer walking methodology was employed to complete the sequencing of each cloned fragment. Gaps between the separate contiges were bridged by PCR amplification of the viral DNA and a subsequent sequencing of the PCR products. When needed, as in the case of the genome terminus, the HEV genome was sequenced directly (i.e. without the need to clone the same into plasmids).




Sequence Assembly




The processing of the raw sequence data, in the form of ABI trace filed, and the assembly of the separated readings, first into contiges and then into complete genome, were done employing a sequence assembly program and other programs as detailed by Bonfield et al. [Bonfield J. K. et al. Nucleic Acid Res. 24:4992-4999 (1995)].




Both strands of the entire viral genome (referred to hereinafter as the rightward and leftward strands) were sequenced and each nucleotide was determined at least three times.




Example 4




Sequence Analysis




Sequence analysis was performed by means of Wisconsin Package Version 9.1 [The Univrsity of Wisconsin Genetics Computer Group software package (GCG), Madison, Wis.].




At first stage, a search for homology with sequences of other members of the Ad family was first conducted using the BLAST program, followed by a search, to obtain a higher degree of accuracy, conducted by means of the FASTA or TFASTA programs. Multiple sequence alignments were performed either by Pileup program [GCG package] or by ClustalX [Higgins D. G. & Sharp P. M. Gene 73:237-244 (1988)].




The coding regions in the HEV genome were identified by comparison of the sequence obtained with sequences, pooled from the GenBank, of human Ad 2 (Accession No. J01917), human Ad 12 (Accession No. U40839), human Ad's 40 (Accession No. L19443), egg drop syndrome (EDS, Accession No. Y09598), CELO (Accession No. (U46933), ovine Ad (Accession Nos U18755, U40837, U31557, U40839) and canine Ad (Accession No. U55001).




Identification of the ORF of the HEV DNA Sequence




The complete sequence and genome organization of HEV was established. The genome map is presented in SEQ ID NO. 1 and in

FIG. 1

in which identified regions are indicated.




The Genome length of HEV consists of 26269 bp, thus being the smallest genome isolated and characterized among the Ad family members [Jucker M. T. et al. (1996) ibid]. The overall G+C content in the genome is 34.93%. The inverted terminal repeats (ITR) are 39 bp long. As regards to these parameters, (size of the genome, G+C content, ITR) HEV resembles ovine Ad, consisting of 29544 bp long genome, 33.6% G+C content and 46 bp in the inverted terminal repeats.




The location of HEV genes as found by the inventors is summarized in Table 1.












TABLE 1











Summary of ORF locations and features in the HEV genome






(as compared to ovine Ad)

















SEQ ID NO






No. of







Protein




(na and aa)*




ATG




Stop




residues




Mol. wt



















L1











52K




NO:2; NO:3




8569




9468




300




33800






IIIa




NO:4; NO:5




9461




10975




505




50293






L2






PB




NO:6; NO:7




11000




12343




448




50903






CP I




NO:8; NO:9




12346




12705




120




11134






CP II




NO:10; NO:11




12711




12884




58




6111






L3






pVI




NO:12; NO:13




12905




13597




231




24947






Hexon




NO:14; NO:15




13609




16326




906




101089






EP




NO:16; NO:17




16331




16972




214




25008






L4






100K




NO:18; NO:19




18184




20223




680




78283






pVIII




NO:20; NO:21




20768




21367




200




21769






E3





21213




22115




300






L5






Fiber




NO:22; NO:23




22518




23879




454




48770






IVa2




NO:24; NO:25




3436




2336




367




41802






E2B






POL




NO:26; NO:27




6767




3432




1112




129160






pTP




NO:28; NO:29




8557




6767




597




70582






E2A






DBP




NO:30; NO:31




18012




16975




346




38910











*SEQ ID NO for the nucleotide sequence (na) and the amino acid sequence (aa)













Comparison of these sequences with known and new members of the Ad family (Table 2) enables to determine the degree of homology between such members. The comparison shown in Table 2 was obtained using the Gap program for global comparison which is part of the GCG version 9 software package. The gap opening penalty parameter of Gap was set to 6 and its gap extension penalty parameter to 2. The sequences of other Ad's were pooled from the GenBank (accession Nos. as described hereinbefore). Abbreviations are POL for DNA polymerase, pTP for precursor terminal protein, DBP for DNA binding protein and EP for endoproteinase. The percent of amino acid sequence identity (%id) and similarity (%s) is presented in table which exhibit the uniqueness of the HEV genome.












TABLE 2











Comparison of the amino acid sequences of HEV proteins,






with Ad's of different species















Virus




Ad2




EDS




Ovine




CELO



















Protein




% id




% s




% id




% s




% id




% s




% id




% s









52K




23.4




35.5




27.1




34.9




25.6




34.4




28.7




40.4






IIIa




31.2




40.9




34.2




43.7




32.3




44.3




30.8




41.2






penton




48.6




58.1




52.9




61.4




52.6




61.4




49.7




59.3






PVI




29.9




38.4




37.3




45.0




37.3




45.6




41.0




49.7






hexon




52.8




59.4




53. 




62.3




55.9




63.3




54.7




62.0






EP




44.2




53.8




44.8




55.7




41.0




52.5




50.7




59.5






100K




36.1




45.3




38.4




47.5




36.6




47.4




38.6




48.8






PVIII




23.1




33.7




30.1




37.7




29.3




35.4




24.8




33.4






fiber




25.7




33.6




30.1




37.6




29.3




35.4




24.8




33.4






IVa2




33.3




44.3




35.3




46.5




36.9




46.2




36.7




46.9






POL




41.1




52.9




43.7




54.9




44.8




54.5




42.0




53.7






pTP




34.3




44.8




37.4




45.8




34.5




46.6




35.9




47.7






DBP




28.4




40.5




28.4




40.5




36.0




43.7




34.4




43.9














Characterization of the HEV Genome Regions in Comparison to Other Members of the Ad Family




In general, a genome is characterized by two major areas, the early region and the Late region, according to the stage of translation thereof. Each region comprises sequences which, inter alia, encode for different products, as detailed, for example, in Table 1.




In an attempt to identify the content of each region, the inventors deduced the following information.




Early Region (E)




E1—In general, in human Ad's (as deduced from human Ad 5), the E1 region comprises E1A and E1B. E1A encodes two major proteins whereas E1B encodes two major proteins and later in infection three smaller proteins. E1A transactivates expression of E3, E4 and partially E2 [Shenk, T. & Flint, J. Adv. Cancer Res. 57:47-85 (1991)] and induced DNA synthesis and cell transformation [Bayley, S. T. & Myniryk, J. S. J. Oncol. 5:425-444 (1994)]. In addition, this region is plays a role in the stimulation of specific human gene expression of infected cells.




No functional homologous region to this E1 was identified in the corresponding location in the HEV genome. Some ORF's were identified in sites in which E1 genes are located in other Ad's genomes, however, these sequences are not similar to any E1 sequence or to unassigned ORF's in other aviadenoviruses.




E2—E2 region encompass E2A and E2B regions and is located in the genome from 18013 to 16976 and 8557 to 3432, respectively. The E2A region consists of a gene which encodes the DNA binding protein (DBP). The DBP is divided, in Ad2, into two clusters. The C-terminal cluster is involved in binding to the viral DNA and activating replication of the major late promoter. High identity levels were found in this cluster among the C-terminus of DBP's from various Ad's. DBP is located between the EP and 100K genes, on the complementary strand. The DBP size, in HEV, is 345 amino acids long which is smaller than in other Ad's (382, 387, 441 and 539 in Ova, EDS, CELO and Ad2, respectively). The sequence VFQCCNP of HEV DBP (amino acids 255 to 261, SEQ ID NO:32) was found to be conserved in Ad2, ES and Ova. The Ova has a charged motif, KKRK (amino acids 11 to 14, SEQ ID NO:41) which is used for nuclear localization and it seems the HEV DBP has a similar motif KKNK (amino acids 35 to 38, SEQ ID NO:42) which may have the same function. A motif comprising Leu 515, Pro 516 and Pro 526, that serves in the cooperative binding of the subunits is partially conserved in HEV and correspond to residues Leu 316, Pro 317, and Pro 323. this motif was completely conserved in EDS and is missing from CELO.




The E2B region contains a sequence which encodes essentially two functional proteins, a DNA Polymerase (POL) and a pre-terminal (pTP) protein.




The pTP primes the Ad DNA replication [Salas, M. Science 149:1108 (1965); Smart, J. E. & Stillman, B. W. J. Biol. Chem. 25:13499-13506 (1982); Stillman, B. W. et al. Cell 23:497-508 (1981)]. This protein is processed at two sites by viral protease to a mature terminal protein (TP), which takes place through two cleavages by viral endoproteinase and was shown to be conserved among the different serotypes of the Ad family [Webster A. et al. J. Virol. 71:6381-6389 (1997)]. in HEV, pTP consists of 597 residues. Two cleavage sites were identified, at residues 169 and 297, which is similar to the terminal protein of EDS (consisting of 581 amino acids and is cleaved at residues 156 and 265). A sequence similar to that reported as a nuclear localization signal in Ad2 (RLPVRRRRRRVP, residues 380-391, SEQ ID NO:33) and in EDS (TLPARTRRTRRP, residues 308-319, SEQ ID NO:34) was identified in HEV (SLPLIRRIRRPP, residues 341-352, SEQ ID NO:35).




E3—An ORE of 900 bp lays between the regions coding for HEV pIIIa and the fiber protein (nucleic acids 21214 to 22113in SEQ ID NO:1). This ORF bares only little similarity to one of the gene products of the predicted E3 of Ova [Vrati S. et al. (1996) ibid.]. E3 has been mapped to this region in most Ad's. Two short additional ORF's are found near this ORF, both have no similarity to any published Ad sequence (data not shown). One of the E3 products, E3gp19K, binds to MHC class I antigens in the endoplasmic reticulum and blocks the cytolysis of viral infected cells. Such an interaction is species specific [Hermiston, T. W. et. al. Virology 238:145-156 (1993)]. The size of E3 varies from 2.5 kb in human Ad to 1.0-1.5 kb in canine Ad [Dragulev, B. P. et. al., Virology 183:298-305 (1991)] and only 0.5 kb in mouse Ad [Raviprakash, K. S. et. al. L. Virol. 63:5455-5458 (1989)].




E4—In general, E4 region modulates viral gene expression and DNA replication and inhibits host cell protein synthesis by interacting with host cell systems [Leppard, K. N. et al. J. Gen. Virol. 78:2131-2138 (1997)]. E4 in human Ad has a sequence similar to that in bovine Ad however, a lower degree of similarity to other Ad's such as ovine Ad [Vrati, S. et. al. (1996) ibid.] and murine Ad [Ball, A. O. et al., Virology 180:257-265 (1991)] and a possible similarity to E4 in CELO [Weiss, R. S. et al. J. Virol. 71:1857-1770 (1997)]. Nevertheless, no homologous sequence to E4 was found in HEV genome.




Delayed Early Genes




In general, a pIX gene, known from other members of the Ad family to be located in this region, strengthen hexon-hexon interactions [Boulanger, P. et al. J. Gen. Virol. 44:783-800 (1979); Van Oostrum, J. & Burnet, R. M. J. Virol. 56:439-446 (1985)] and has transcriptional properties, such as stimulating the major late promotor [Lutz, P. & Kedinger, C. J. Virol. 70:1396-1405 (1996)].




No sequences homologous to pIX were found in any of the avian Ad's or in ovine Ad.




The IVa2 gene, also located in this region, was recently identified as a component which contributes to the activation of the major late promoter [Lutz, P. & Kedinger, C. (1996) ibid.], is shorter in HEV compared to other Ad's.




Late Region (L) Proteins




The identification of the genes in the ORF's of the late region were deduced by comparison to the genomes of EDS and adenovirus 2 (Ad2), pooled from the GenBank (accession numbers Y09598 and J01917, respectively). The comparison is depicted in FIG.


1


.




L1—The L1 region comprises the genes which encodes the 52K protein and the IIIa protein. The IIIa protein is known to bridge between the hexon and the core proteins.




L2—The L2 region comprises the genes encoding the structural protein, penton base (PB) and core protein I and core protein II (CP I and CP II, repetitively).




The penton base is bound to hexon protein at each vertex of the icosahedral structure. It is the base for the fiber, and together they constitute the penton. In most human Ad's, a tripeptide sequence, Arg/Gly/Asp (RGD) was identified and reported ad the binding site of the virus to cellular integrin, causing thereby endocytosis of the virus by the cell [Mathias, P et al. J. Virol. 68:6811-6814 (1994)]. A corresponding sequence was not identified in HEV, as in other avian Ad's and ovine Ad. The fact that no RGD sequence was found on the penton base indicates that the penetration of this Ad differs from that described for human Ad.




The core protein I and II (CP I and CP II) genes are located between the coding genes of PB and pVI proteins. CP I was found to be rich in arginine (17%), proline (11%) and alanine (13%). The molecular weights of CPI and CPII (11 kDa and 6 kDa, respectively) are smaller than the corresponding proteins in human Ad2 (48 kDa and 18 kDa) but are similar in size to the corresponding proteins in CELO (20 kDa, 12 kDa and 9.5 kDa). The core of human Ad's are slightly different, consisting of four proteins, pV, pVII mu and teiminal protein wherein PV, pVII, seems to be the counterparts of CPI and CPII.




L3—The L3 region contains genes encoding the pVI protein, the hexon protein and the endoproteinase (EP).




The pVI nucleotide sequence of HEV is substantially of the same size as in other avian Ad's. Two cleavage sites for the viral endoporteinase wee identified on both ends of the protein. The sequence LRGGK (residues 24 to 28, SEQ ID NO:36) in the N-terminal resembles a conserved cleavage site [Freimuth, P. & Andreson, C. W. Virology 193:348-355 (1993)]. Cleavage at the C-terminal of the pVI protein, gave rise to a peptide of 11 amino acids (FIG.


2


). Sequence alignment of this peptide exhibits partial homology to C-terminals of several other pVI proteins. This 11 amino acid peptide was shown to act as a cofactor of the viral protease [Mangel, W. F. et. al. J. Virol. 68:6811-6814 (1993)] by forming a disulfide bond with the protease via a conserved cysteine residue (FIG.


2


). The conserved sequence of this peptide was proposed by Vrati et al. [Vrati, S. et. al. (1996) ibid.], and is GXXXXXRRY/RCF/Y (SEQ ID NO:37, in which Y/R and F/Y are denoted by X).




The hexon protein, being a monomer of the major outer capsid is important in the determination of the capsid diameter. The HEV hexon protein (97 kDa) was found to be similar in size to other Avian Ad's.




The gene encoding the HEV endoproteinase (EP) aligned with the amino Acid sequences of other Ad's (CELO, EDS, Ad12 and Ad2) is depicted in

FIG. 3

which shows that the HEV EP has 9 additional amino acid residues at the C-termiinal thereof When comparing with the active site of the viral EP of Ad2 which comprises amino acids His54, Glu71 and Cys122, the Glu71 residue is replaced in other Ad's by a similar amino acid, the aspartic acid (FIG.


3


). In addition, these three amino acids are surrounded by a highly conserved region which probably forms the active cavity. In the process of the viral maturation, the EP cleaves several structural proteins. The cleavage site comprising the sequence (MLI)XGXG or (MLI)XGGX (SEQ ID NOS:38 and 39, respectively) as determined in other Ad's, was also identified in HEV EP, in a similar location. Table 3 shows that EP is one of the most conserved proteins of the Ad's




L4—the L4 region comprises the genes encoding for the 100K protein and the pVIII protein. it seems the 100K protein is required for assembly of the hexon. Possibly, the 100K protein is required also for translation of the Viral RNA.




L5—the L5 region comprises the gene encoding another structural protein, the fiber protein consisting of a globular head, a shaft and a tail. The fiber protein plays an important role in the first attachment of the virus to the cell receptor, which is specific and with high affinity [Mei Y. F. & Wadell P. C. EMBO J. 11:751:760 (1992)]. All the elements described for the fiber protein of other Ad's were identified in HEV fiber (

FIGS. 5A-1

,


5


A-


2


and


5


A-


3


).




Undefined ORF's




Eight ORF's encoding for putative polypeptides consisting of more than 100 amino acids were detected in the HEV genome. The relative location of these ORF's was found to correlate with the E1A, E1B and E4 regions identified in other Ad's. However, no functional homology was detected between these polypeptides and products encoded by these early regions, in other Ad's. Additional unidentified ORF's coding for shorter polypeptides, comprising only 50-100 amino acids, were found scattered throughout the HEV genome, 16 on one strand and 21 on the other strand.




Control Regions




Major late promoter—A TATA box for the major late promoter was identified starting at nucleotide 5384 (TTATATT). The ATG codon (+1) was found 30 nucleotides upstream. The CAAT sequence is located between nucleotides −81 to −78.




Stop codons—for several genes, as additional stop codon is present within 20 nucleotides downstream from the recognized stop codon (FIG.


6


). It is possible that it is suggested that such additional stop codons ensure the accurate termination of translation.




Inverted Terminal Repeats—although relatively short, (39 bp), HEV ITR's include two conserved motifs identified in other Ad's (FIG.


4


). Within the more conserved region, between nucleotides 9 to 18, only an arginine residue, at position 12, is missing from HEV (

FIG. 4



a


). In human Ad, this Arg residue was found to be a part of a TAAT region which is involved in the initiation of DNA replication [Rawlins, D. R. et. al. Ann. Rev. Biochem. 60:39-71 (1984); Stillman, B. W. et. al. Cell 23:497-508 (1982)]. It has been suggested [Chen M. et al. J. Biol. Chem. 265: 18634-18642 (1990)] that a complex of two viral proteins (pTP and POL) bind to this sequence.




In addition, a GGGNGG region (nucleotides 26 to 31, SEQ ID NO:40), consisting part of a domain referred to in human Ad's as domain B (nucleotides 19 to 39) may correspond to the sequence reported as binding the SP1 transcription factor. An additional domain, referred to in human Ad's as domain C consists of nucleotides 40 to 51. Cellular factors bind to domains B and C to enhance the efficiency of the of the initiation of DNA replication. It seems that HEV consists of domain B however is missing domain C (

FIG. 4



b


).




Table 2 exhibits ORF's of HEV, to which, when compared to other published Ad sequences, no homologues were found.












TABLE 2











ORF to which no homologous sequences were found in comparison to any






other published adenovirus sequence
















START




STOP




No. of residues




Mol. wt



















ORF1




399




1139




246




27327






ORF2




616




918




100




11220






ORF3




1220




1951




243




26953






ORF4




1497




1871




124




14495






ORF5




4477




4974




166






ORF6




17178




17537




120




14004






ORF7




24509




24823




104






ORF8




24847




25164




106




11902














Overlap—very short overlaps appear in the major genes. Only four of the unassigned ORF's seem to overlap with identified genes.




Example 6




Identification of Non-essential Regions in the DNA of HEV and Insertion of Foreign DNA Thereto




Engineered virus vectors are developed, inter alia, for purposes of recombinant vaccination by way of expression of antigens from one or more pathogens, or for gene therapy (e.g. for the production of therapeutic proteins or peptides). In order to construct viral vectors, non-essential regions in the DNA sequence of the virus to be engineered must be identified. These sequences are then removed, to increase the capacity of the vector and enable the insertion of desired foreign DNA's.




Non-essential regions in the DNA sequence of HEV may be determined experimentally by adding foreign marker genes at particular sites and identification of viral replication and protein expression. In general, the genome of Ad's, as studied from the genome of Ad5, contains two regions frequently used for insertion of foreign DNA [Moss, B. et al. Vaccine 6:161-163 (1988)]. These are the early region 3 (E3), a lot of which can be deleted without interfering with the ability of the virus to replicate in cultured cells, and the early region 1 (E1), which is essential for viral replication in most human cell lines.




For high level expression of proteins of peptides, the most suitable vectors may be those containing substitutions in E1, with transcription driven by strong promoters. The construction of vectors of this type, in which transcription of inserts is under the control of an extra copy of the Ad major late promoter, has already been described.




Nonetheless, for use as vaccines, substitution of E3 sequences with genes encoding foreign proteins or peptide products such as specific antigens is likely to be the most promising approach since this results in vectors that can replicate both in most human cells in culture and in animals. Deletion of E3 sequences results in vectors with capacity of 4-5 kb inserts. Inserts in E3, in the left to right (E3 parallel) orientation are generally expressed as transcripts originating either from the E3 promoter, or from the major late promoter. Amounts of protein produced in cells infected with such vectors vary depending on the inserted gene but are almost invariably adequate to induce a good immune response in appropriate animals.




The construction of engineered Ad vectors, comprising a foreign gene, may be performed using standard techniques [Molecular Cloning, a laboratory manual, 2nd Eds., Sambrook, J.; Fritsch, E. F.; Maniatis, T. Cold Spring Harbor Laboratory Press (1989)]. For example, the foreign gene to be expressed is first inserted into a subgenomic viral DNA segment propagated in a suitable plasmid, for example, a bacterial plasmid. The resulting construct is ‘rescued’ into fill length infectious viral DNA by cotransfection into tissue culture cells with either a second viral DNA segment or a second plasmid, containing the rest of the viral genome plus the overlapping sequences required for homologous recombination. Identification of the desired viral recombinant is by plaque isolation and analysis of viral DNA structure by restriction and gel electrophoresis.







42




1


26270


DNA


hemorrhagic enteritis virus




misc_feature




(25290)..(25290)




N=Unknown





1
caatcaatat atataccgca tgcttgggag gggatttcgg cttgaaaagt gattttcttt 60
ttactgtact tttctttttg ttttctacat gtttcatttt ttgttttctg gttattttac 120
gtttaaattg tctaattgct tttaaaaagt tgatttgttc gttttctgtt tgaattgtgg 180
gcggttaaat tctgtgtcga tcttggtcat gtgtttcgga ttggcgctta aagcgctttc 240
atttcccgta aacggtgttg taattttcga gtcatcacaa ctgaccttgt cgtccgtgcg 300
gggtaagacc atggagtttc ccttttctgt tactcctgat agccctaagt ggccagtgaa 360
gcgaaaatgg gaagggatag aatgtggcta tataaagtat gggatacggg ctggagaata 420
ttctccggct ggtccaaggg ctgtgcgtta ccctcttcca ttttgatgaa atagatagag 480
agttggaatt tgattctcat gctttgaggt ctgttggaca aactgctgtt ttttcgcctg 540
gagatttttc gtcagcattt ttcaaaaatc cttttgttat tgaattgcaa agtggtagat 600
tgcttgctgg tggagatgtc agatatgagt ctcttaccgc agaccacagg attgacattg 660
cagttgccat cagtgacgat ggaggactta cctggccaag gaagtcgttc gtgttacagt 720
ctaagccgga tgtcgagaat ggaatgttca tggatggatg tattttggag gctccttcgg 780
gagttgtgca cttgtttgcc gtgtactttg aaagtgcaaa ttataagtcc gttgtggacc 840
ctgaatatga ctttgtgcac gtcacgtctg aggatggcgg gatcacttgg agtgatatta 900
agtctctcaa gagcttgaag acgtcaaatg aagattattt ttttcaatgt ggcggcaatg 960
gcttagtaat gtcaaatgga acactggttg ttccttgtgt ttcgtggaag gatggatttc 1020
cacaatatag cactattatt tattcaacta atggagttga ctggacaaga cctcttatac 1080
taatactatc atcaatgact gtgtggactg tcaagtgtct gaaattgatg gagatttagt 1140
tagattagga agaaggccta ttacttattc tcctacaagt cctatagata atactttacg 1200
attttttatt tcttctgata tgggcacaac ctgggaaacg cttcctgggg atagcacttt 1260
aaaagtttgg cttggcgttt catgttcttt agttaacgta cacacagttg ataatgtgaa 1320
tgtgttatta aatactgcaa tgtattatcg tgatgataat gacaaggcgt tgggtcttca 1380
aatgtttttg tatccacatg ctcagtggag gcctgttgga attgttgcta attctgtttt 1440
gactcggggt aatattgtgc aatctacgtc ttttggtaaa ttatttgttt tttctgatgt 1500
ttcagttaat cagggtagcg ctttgtcact ttatgatatt agtaggtatt tttcatgtgt 1560
atctactttg cctggatata atgttaattt gggttttcct gttactatcg aaggttctgc 1620
gaaacttcca tcaactagcc cgctcaagtt taggtatgat gggagatctt actggattgg 1680
gggatttctg gaacctagaa caggtggcac tttttctact tctcaacaag ttatgtttgc 1740
aattagaatt ggctggccaa tttttaatga tggtaatatt gttgcttttg gacaaacttc 1800
caatggtcaa ttgtatcctt ttttatttaa atatgaattt ttgtatggcg aattattttt 1860
ttcatgttta gatacgtcta agttaactcc gtcactagct gcttgtactt cattatactt 1920
tcctgagagt agaattggac tattttgtta atttctttca gaatgccttt cttctactta 1980
gttggtgctg gcagtgcata ttgtgagcgt tgtaaagaag tttgtgaaaa gagaaggaag 2040
aggtcaacaa caagaactac aagaactaaa agatctaaac cttctcacct tcaatatgtg 2100
cgttactatc ctggcacagt ggtttcctgt tggctgggat ggtactgata agcctgttac 2160
tgtcactaga attcctgact actggacgta cgacagagct gtttctagtc gtcaatctaa 2220
tactgtggtt cctgttaata cttctggaga aaatccaact gtggttgctg tgccgagact 2280
tttgcgaaaa aggaaagctt cagatatgtg aaaagtttga ataaaaattt tattaaattt 2340
catcatacat gcgtttttgt ttttctttca agtacctttt cttatttttt aatttacata 2400
agtgaatgtt acagatttta tttacagagt ctagaagtaa actttgcata tctaaacata 2460
aaggtataat acttttccct ccctcgagta ttgctgacca ttgaaatgat tcccttgttg 2520
gacaagtatt aaacattaca aaagaatatt tcggattttt ttcagataca atactgttta 2580
atagtatcgt tcgtacgtta gagtccattc ctcctgatcg attatgtaca aaattagata 2640
attgtagtgg ttggtttttt gtgcttaaaa tgtgtaattt ggcttgagtc ttcaagtcca 2700
taatattatt accgtttcct gataacggat ttacattatg taaaacaacg aacatataga 2760
atgcatgacc atatctacta gatagctttg atggtaaact acaatataat gggcttatat 2820
ttggtttctg tattaatttc tgcatacatt catctagaat tacgcatact ggcccttttt 2880
tggtatgaat attaaagata gaattttcgt tgttaacatc tagattctct ggggtaatga 2940
catcatcaaa agcacattct agaaaattaa tggtgaatac ctttgtggtt gggtaaaggg 3000
tattatcttg agcagaataa tttccttctt gtagttgagt tttccataat attacttcgt 3060
catatgaaat agttcctttt gtaggagtta tgaagatgat cgtttctggc attggttgta 3120
tttttttgaa tcccagtaaa tttctaatta attggctttt cccgcaacct gtaggtccga 3180
ttactaaact aataagtgga tcagagttca tattgataga aggcagttca gagtttttag 3240
ttagatacat cttgttaatg ttgttaattt cgttgtattt cctcatattg cttctcaagt 3300
ctatattaga gttatagctt tcaaattctt taaatggcgg caaatcacat cctggtagta 3360
tgcttgagtt aatactgtct acagcagttt tccattgtcc aactacatcg tagaattctt 3420
caacttcatt attcatcttc gaattcctgt agtaagatag gatttgttat tctggggttt 3480
gggtggtaga gatcataagg aattaaagtg tttgtcttta gaaagtaaag ggttggatca 3540
ttccacggcc gtagttcgcg tattaattgt atttcatgaa cagaaaaggg ggagaatttt 3600
ccgtaagact tacataacgt tcttttcaaa gcagttcttt ctgtttggaa gatctcacca 3660
gattttaatt ctgaagtgtg gtagttgaag cattcttcca ggatttcaaa agttatgtct 3720
gcggtacagt gaccctttgc tcgtaatttt cctgtttttg aatttttgca ggtggtacac 3780
gtgatttctt taagggcgta cagctttgga gcgagaaaaa tactttttga agaatatgca 3840
ggtgaattac acaaattaca ccaagtttca cattctactg cccaaacaat tgaaggtttt 3900
ttaggatcaa atgttagttg tgaatttttg tttttaattc tatgttgtcc atattttaac 3960
atattttgat gtcctttttc tgtgagaaat agactgtctg tgtcaccgta gattgattta 4020
atggttttga attgaactgg tatactatct tcatcactgt ataggatttc gcgccactcg 4080
ctcataaagg ctcttgtcca cgctaatacg aagcttgcta gttgagttgg atatcttttg 4140
tttgtcggat gtaaattcgt tgattttaac atgtaaatag tgaggttttc tgatgtgacg 4200
tctaagatgt tgaatggttt gtaggttccc acgtgagcag tcgaagttga agtttgtgag 4260
gctgggcttt catccataaa ttctaaactg ttaaacggac tggtaagctc atcatccagt 4320
tctaaatttc tctctgcact gtcagttcgg ttttttaagg taaatgttaa attttctata 4380
ctaacatatg gaaggttgta agttggtaga gtagtaatgc tgtcaatggt tagttgtttg 4440
ttcaataatt gatttcttat tttaggattt tcttgaatgt ggttttcgaa aattgtaatg 4500
tcattgcttt ctcttgtagc aaaactaccg tatagtgcat tacttaggag tttgctgatt 4560
gctcttttaa caggattttt ttcaacggtg gctttttctt ttgctagaat atttttagta 4620
acatattcta agcagcaagt gttccacgtt gggaatactg tgtttagctt gtggggaata 4680
atgtttactt tccatcctct attatggagt gtgataatat caattgaggt aacaatttca 4740
tttttcagta tttcgttcgt ccaacataat ttgccgcttt gtcttgaaca taatggcggt 4800
agaggatcaa gatgttctgg aggtggcggg atggcgtcaa tcattactac cattggcttt 4860
atatcagtaa aatatgatag ttttgtttta gtttttttta atttttcgtt taactttgta 4920
atttcattgt ttctttcttt ctctcctatt ggaaatccgt atggcattgg atgagttaga 4980
gcactagcat acatgccgca aatatcgtaa acaaaaattt tttctttgaa tattcctaag 5040
tgtgttgggt aacaacgtcc acctctaacg gactgacgga tgaaactgta catttcatca 5100
gatggtgcta ctatgtctgg cagggtggag gcttttgttc cattttgttt gaagtgtaac 5160
tgtctaaaaa tggcgtgaga attagatgaa atagtcggtc ttttaaaaat attaaaattg 5220
cattttaggt ttagttcctc tttgatgaat gtatcgaaag tatttaggag ggtttttgtt 5280
agttcttccg ttattttaac gtctttaata caatagtcga ttaattcttt aacaatgtca 5340
tatttgactt cctttttttc taaccaaatt tctttttgtt cgttatattc ttctttgcta 5400
gaccaatatt tttctgatgg aaacgagtct gagtctgtag ataatgaatt ggttgacatg 5460
tactcattta tagctttgaa cggacaacaa cctttgtgaa tttttaagtt gtatgctttg 5520
gccgcttctt ttagagaagt gtgtgttatt tggaaagtat ctctgaccat agacttgata 5580
tataaatttt ttatactttc tggatgtgga attccttctt taatctgtga aagtatttca 5640
cttttattat tttttttttc ttctttagct acatagtagt ctgggttggg gaatttaatt 5700
gtaatatcgt taaaaagtat tctgccttgt cttggcataa aatttctttc aactgtgaaa 5760
aggggagtga tgtctaggtt ttcgtcttga aggatttgtg ttgctaatag aatttcatcg 5820
aatgactgaa tgttgtgtcc gatgatgtaa aattctatga aaattggttt aactttcaga 5880
ctcattatga ggttagtatg ttcacttaaa ttgatatttg taattgattc taaattttgt 5940
gtttgagcga aatcttcgag aatttctcgg ttttctggtg ttaaaattaa ttttgtgaag 6000
taatctgtga gtgcaaatag gatgttattt cttaattttc tgaactccgt actaatgaag 6060
tttttaactt tagaaaacca gaagtacgta gaattttttg tttgaataga ttttattttg 6120
gctatttctg ttttacagat attgataaga caatcatctc cgaaaattga aaagcatagt 6180
agaagaggat ttaataaaac tccagatgtt tcagctagtg taaatgtttc tatatcgtag 6240
ataaggaaga gtttttttgt gttttcattt tctcctatag gttgaaatgg tatagtttcc 6300
cagaattttc ttgtgtcatt gtctacgctg ttgtagtagt aagtagatct taagtcattg 6360
caggtatgaa ttgcggagta gattctacca catgagctgc atttttgttg ttgagtccat 6420
gattttatcc agcataattt tgacttatca tatatgaagt ctaattcaat atattcatgc 6480
gatgttttga attcattttg gatcataaca catccagtta attttttcca gatagttatt 6540
gatttgaccg gtaagttttt tacattttca atatcgctgt ttgtgggctt gtatttacta 6600
caaatgagga tatatgattg tgcatctttt actttttttg caagtttttt acaattaaat 6660
aaattatatg tccaagctat ttctattata gtggctttta tgtctttttt acatatttgc 6720
aacctgtatg gaatttcgtt ttgagtggta taaatgtatt tgctcatctt ggttgtctta 6780
atcttctcat ttcttgtgtt cttacagccg aagcattgtt aattatttgt ctgtttgtag 6840
caattgttac aagaccaata ggcttgattt taaaggaaag agttactgtg ttgattaaat 6900
cttcattaag tctagcttgg tttagaaggt cgtttggatc tccagattct ggtctgtgtg 6960
atagggatgt aagtaggtct tcttgttctg cttgagtttc aatactatct ggccttctgt 7020
cacatattat tagaaggtca ttgatgattg ttctaaatat tcttaaaaat ggagaaatgt 7080
ttgtgttagt ccaaactctg tgaaggttaa catttccttc atgatctcgt ccagtcatta 7140
tgacttggac atattgcata tttacatatc ttctgaaaat aacgtttaag tttaatagag 7200
catgataata aaatagtgta ctactgatgt gttcagctat gaaaaagtaa aatatgaatc 7260
ttcttataaa ctctctagtt acccttcctt gttcatttgc tctctgtaaa agattgtaaa 7320
ataactgacc gaaagaaaaa atttcatgtt ctcttgcagg ttctgttaat tctgctctta 7380
gttcattaag gatattttga aaaattcgaa ggatttcatt gcctaattct tcttccattt 7440
cttcttcttc aggtccggca cttggacctt ctcctgcatc ttcctcttcc acaggacttg 7500
gtgggggtct tcttattctt ctgattaaag gtaagctgtc tataaacctc gaaactatct 7560
gtcctctatt tcttctcatt tgttcagtta tggctctttg attttctctc tgtcttaaaa 7620
atggtaagtc tgttctagtg ccacttctta atcttgcacc accttttaga tttgttttcc 7680
actctttgaa aggaaatatc attgaattta atgctgtgat atatgataca gcgtagttta 7740
tatccatttc aggctgccat ttgtcgtatt ctgttttgag gatttgaagc caattatcct 7800
tcaacggtac gtatattttt tcatctttaa attgccaatt ataaataaat tttgcaagta 7860
gttctaaagt gtagttaatg cactttaatg tgttaatatc tttttcagtt tcatattgat 7920
acctttgatt gaaagcaaaa cttttggagt taataaaatc tcttaaattt gttacgtaca 7980
ttttatttat ttcattttgg atatttatat tttcgtaagc ttctggttgt aatgtaacac 8040
ctgttccttg catgttactt ctagattcaa tgtcagctct aattctatta ataagaattt 8100
cttcttgaaa ctggtttaag ttatcttcgt agttttctgg aatggtgcgc acattacttg 8160
tgttaattgt atatgaacaa tcacttagaa tagaccaaaa atttctaggt cttcttgtag 8220
tagattgatc agcttcatag tttaattttg tatatgttct gctttcaaaa cggtagttat 8280
tgttcacatt gaatagataa gcgtagccaa tcagcaaatg aggaggcggc aatccgttta 8340
aaggaggatt taaaacggca gggccttgtg gtgctaaatt ttctaacatt aaaatctgat 8400
agttaaagaa tgtactgcac catcttaatc caggaatact tcttacaaac atagggatgt 8460
tgacttgatc tgtgaattgt gttaaatgca taaatctgat ggtgtcttct tcttggttag 8520
ttaggcgggc ataattgtta atctgaaaga aagacatttg tctttcagat gaataccatt 8580
atgaaagcaa tgcaaacaga tagaggtaga ctagaagcag caacacccat gtcttcaccg 8640
gctatttctg gagaacctga aagtccgtta caacctttta ctgagcaaat ggagaaggaa 8700
gaatctaaag tgcctcaaaa taatcttttc agggatggca atgttaatga acatttaaga 8760
gatattcgat attatagtgg aaaatctgtt cagctagatg gggatcaaaa gctaaaaggt 8820
tcagactttg gagaagacta tccgtgtttt tcaaaaggag agaattttat gaaagcagct 8880
aagttaaaaa gagatgcaga ttatactgaa acttatgaag tatctgctca agatgcagat 8940
aataattttt ataaggtcat gttaatgaga cctgaaacat tatttggttt gtattatttt 9000
gaaagtatca taaagaacat tatgagtgat cctagtaata ctgtttttct tagaaggttg 9060
tgtgctttgg ctgttgaatg gaatggaagg ttaaaaggtt tcataccgga attgccagat 9120
gataggcatg agtggttgag agatttaatt accctattag ctgccatttg taggtcatgt 9180
gttacggttg atgaacaagt ggcagctata aacactagtc tagtagaaat ggcattaaat 9240
ttttcttctg cagcttctgt aataccttct gcagctttag gtgtacaaac tagaagtatt 9300
ttgagttcta tatgtaagga aattttacaa aatatgtgtc aaattggagt ttgtaaggat 9360
aattatcgac cagctgtgca atattatgca gatcagcctg gaatctcaca tagtacatac 9420
ttttctagtt tgagagacgt tctacaatca aacggaagaa atgtcttcta aggatgtggc 9480
agagatctta tctggaaatg ctcctagatt gtcaaaggaa tttagaaata tgcccgtagc 9540
taataaaatg attgagttgg agaaagcaat tgttcagcct aaaaagacag atactccaac 9600
catgctttct ataattgtta aacaattagt tgatacaggg gctattttcc ctgaagaagc 9660
ttctgctgtt tatagcaggt tgttggacag gcttgtaaag tttaactcta ttagaaatca 9720
taataactta gaaggtcttg ttaatgatat acagcaaggg cagaaaagtg ttgtaatgtc 9780
taatcttaaa gctaatagaa acatgtctaa tgttgttgta ttacagaatt tcttgcagca 9840
gctgccaaaa actgtttcaa aaggccagca gaattatgac tcttttaaag gtttattgaa 9900
acagtttgtg attgattata atcaatttat agaagtttat aaatcaggtc cggatacatt 9960
tttacagtat aactttggtc cagctgtaca aaaaattaat ttaaatcaat cttttagaaa 10020
tttgtcaaat ttatggggag ctgttgtgcg atctgaagat gatattccat ctttgtcagc 10080
tttattagaa ccgcaaacga gatatttgtt gcttttactg tctcccatag ctatcgagca 10140
gtattttaca agagatagct ttgtatggta tatgttgaaa ctatataaaa ataccgttgc 10200
tcctccaatg agtactgagc cattagtaga gttgggtaat gttatagcta gtcttggacc 10260
gagttatgat caattaaagt tgcagcaagg attgaattat ttggtaacta accaaagaca 10320
agaatataaa ccatcagtac ctgacttgac taaagaagaa gaagcattac ttcgttattt 10380
tcaaacttta cttagaacaa aagttgctgg tacaacacgt cagttaagac agtcagattt 10440
agataatgtt attcaaaatg taaatcctgc tgctttccag ggcaatgtgg attttattaa 10500
taggcttttt gattttttta gtaaaatctt gaaaataaat ccagattttt taactagaat 10560
agtttatgat tctcaatgga aactacctcc agctttcttt ttgaagtctg taattactcc 10620
tcaagatttg ttacaatttc ctcaacctaa aagaattcca gatcctaata tagttcaggt 10680
tcctgtttct aatgttactg ttccagttcc agcgcccagg actaaattta aaatgccaca 10740
acctgtgtcc aggccttcaa aaacagccta taggtctaaa tatcagtatc ctagtgaatc 10800
tgatacagat actgactcag aaattgaggt atttggtaag ccttacggac caataaaacc 10860
agctacaatc gacattgaca acttgtctgc tcaatttaaa agactgaaag gaaagggttt 10920
agatatttct aattatatga gaagaaaagc aagaaatgtt aatgttagac catactgacc 10980
aattcctggt tcattttaga tggaatcttc gaacactgcc actagaattt ttgctccaac 11040
ggaagggaga aacagtataa tttacagcaa cttgcctcct gttcaagata caaccaaaat 11100
attttatata gataacaagg ccattgatat agagtcatat aatcaagaga aagatcattc 11160
taattattat actaatataa ttcaaacaca gaacatttca actattgatt caagtataca 11220
gcaaattcag ttagatgaaa ggtctagatg gggaggagaa ctacatacaa gcttagtaac 11280
atctgttatg aattgtacta aacattttaa ttcagataga tgtttagtga aaattcagac 11340
tattaagagt ccacctacat ttgaatggaa agaattgaaa atacctgagg gaaactatgt 11400
tttaaatgag tttattgatt tattaaatga aggtattact tctttatacc ttcagtatgg 11460
caggcaacag ggtgtacttg aagaagacat aggaataaaa tttgatactc gcaattttga 11520
aattggtaaa gatccaacta ctaatcttgt tactcctggt aaatacttgt ttaagggtta 11580
tcatgctgat ataatacttc ttcctggttg ggctattgat ttttcttttt ctagattggg 11640
taacatttta ggtattagaa aacgtgagac ttataaagct ggctttttga ttgaatatga 11700
tgacttgaca aatggtaata ttccaccact gttggatgtt gctaactata agtctacaag 11760
tcaagctaaa ccattattac aggatccatc tggcagatct taccacgtta tggatagtga 11820
ttctaacaga cctgtgactg catataggtc ttttgttttg tcatataaca atgaaggtgc 11880
tgcaaaatta aagtttttga tgtgtatgag tgatataacg gggggtctca atcagctgta 11940
ttggtgtttg cctgattctt ataaaccgcc agtatctttt aagcaagaaa cgcaagtaga 12000
taaactgcct gttgttggta tgcaactttt tccttttgtt tctaaatctg tgtattctgg 12060
tgctgctgtt tacacacagt taattgaaca gcagactaat ttgacacaaa tttttaacag 12120
atttcatgat aatgaaattt taaaacaagc tccatatgtg aatcaagttt tattggctga 12180
aaatgtgccc ataaatgtta atcagggaac aataccaata ttttcaactc ttccaggagt 12240
acagagagtg gttgtggaag acgataggag aagaactgta ccctacgtta ccaagtcact 12300
tgctacagta tatccgaagg ttttgtctag caaaactttg caataatgca ttctgttgtt 12360
tattctccag gggacagtag aggatggggt attggtaatt caagtatgcg agattattat 12420
ttgataggtg gcgctttgca accgtctgat atttatactg ttagggttcg tgaacattgg 12480
agacgtaaaa ggaggccaac tgctcaaact ggaaattctg ctgtaacccc acgacgtaga 12540
agacggagaa caattgcaat tcaagtacca gctccaacta gagtactaag aaatagaata 12600
gttacacctg ttgtgcctgc agttcctgta cctgctccta cagtttctgc tgtaccagta 12660
cctgctgctc ctgtagctgt agctgctaag agacgtagag taggttagaa atgtttgaaa 12720
atttagcacc cagaaaaggt ctaaaaaccg aaacacggaa tgtaaagttt agtaatgaat 12780
tgagaggtgg ttttgttgtc tctgttttag ttcctttgct ttcttcttta ataggcgcag 12840
ctcctgccat tgctggaact gtaattgcag ctagaaattc taagtagtgt tttttcttac 12900
agatatgttt tcaaatttag ctccacgact tggacacaca tcattttcaa ctgtatctgt 12960
tgggtctgct gaactgcgtg gaggaaagat taattggggc tctttaggtt cttccatttc 13020
aaatgcttta agaacaactg gcagatattt aggccagaaa gctactaaat ttgcaaatag 13080
taaaacattt agtgatatta aggccggtat tcaagatagt ggtttagtaa gaaatgtggc 13140
aggattagca ggtcaaacat tgaattcttt agtcgatatt ggaaggttta aagttgaatc 13200
tgaacttcaa aaattaagag atagagtatt aaatacaatt ccagcagatc agttagctca 13260
aattttactg aactatcagc aaactcatga tcaggtgcct atgcctgtca caccaggtga 13320
tgctattcct ttaccaccac cacctccagc tgctattgaa cctagaaaac gtccttatgt 13380
tgaggaaata gacgataatc ctaacgatgc agaagtggtt attgacaccc ctgctttgtc 13440
tactgttcct gctatacctg cacctcctcc tactgttgct tttgtacctt ctattaaacg 13500
tcctagaatt aggggaactg gtgaatctga atggcaaact cacttgaata aaatgttggg 13560
tcagggtgtt agatttacct caacaaatca atgttattaa ttttttagat ggacatatca 13620
aatgctacgc caaaacttga tatattccac atagctggac cagatgcttc agaatatctt 13680
tcagaaaatc tcgttaattt catctccagt acagaatcgt attttccaat taataaaaaa 13740
tttagagaaa caattgtagc accaacaaaa ggtgtgacga cagaacaatc tcagaaattg 13800
caagttaaaa ttgttccaac tttgacacaa gatttagaaa atagttttac tgctagattt 13860
actattgctg ttggcgatgg tcgggttttg gatatgggaa gtacgtattt tgatattagg 13920
ggtaacattg atcggggacc ttcatttaag ccatatggtg gtacagcata taatcctcta 13980
gctccaaggt cagctcaatt taataatatt aaaactgtgg gtggtaaaac atatttgact 14040
gctcaagcta ctaaattttt ttcaacatct ggaaatggtt gtgcagctgc taatactgaa 14100
gcaagttcat ttacaaattt agttccttca cctaatactg gttcagcaga aagttctttt 14160
gatcctacaa cagagggagc tagttgcaga gctataacac ttggcagttc tgtaacagat 14220
gcaacttgtt atggagctta tacacctatt caaaatgcta atggttcaat tttacctcca 14280
tctgttacgc ctgataaaaa atttgccgat gctggtaaat ctggcagtgt tacatgtact 14340
gctgctattt gttgtgataa tgttactgta caatatccag atactagaat agttgcttat 14400
gactctactg ataaaatagc aactagaatg ggtaacagaa ttaattatat tggatttaga 14460
gataatttta taggtttgat gtattatgat aatggtgcac atagtggttc tttggctaca 14520
gaaacaggag atataaattt ggtagaacaa ttgcaagata gaaatacaga aattagttat 14580
caatatatgt tagcggattt gatgagtagg aatcattatt atagtcagtg gaatcaagct 14640
gtagatgatt atgatttaaa tgttagagta cttacaaata ttggttatga agagggtcct 14700
ccaggttact gttatccaag cacaggcatg ggcaactatc ctaatactgt catgtcggtt 14760
gggacattag tggataataa tggtacaact gctacaacaa cgtcaaatac tgtagctgtg 14820
atgggttttg gcagtgttcc tactatggaa attaacgttc aagcttattt gcaaaaatgt 14880
tggatgtatg ctaacattgc agaatattta cctgataagt ataaaaaagc tattcaaggt 14940
actagtgaaa ctgatccaac aacttatagt tatatgaata gtaggcttcc taatgtgaat 15000
atggctgatc tctttacaca tattggcggg cgttatagtt tggatgtaat ggataatgtt 15060
aatcctttta atcatcatag aaatagaggt ttgcaatata gaagtcaaat tttgggtaat 15120
ggtagaaatg tccgttttca tattcaggta cctcagaaat tttttgctat taagaatcta 15180
ttgttacttc ctggaactta tagttatgaa tggtggttca ggaaagatcc aaacttagta 15240
ctacagtcta cgttgggaaa tgatttaaga aaagatggag caagcattca gtttagcagt 15300
attagtcttt atgcgagttt ttttcctatg gatcacgcta cttgtagtga gcttatttta 15360
atgcttagaa acgatcaaaa tgatcaaact tttatggatt atatgggtgc aaagaataat 15420
ttgtatttag ttcctgctaa tcaaactaat gttcagattg aaataccttc tagagcttgg 15480
acagcattta gaggctggag ttttaaccga attaaaactg ctgagacacc agctgtgtgg 15540
tctacttatg atcttaattt taaatattct ggctcaatac cttatctaga tggtacattt 15600
tatctttctc acacttttaa ctctatgtct attttgtttg attcagcaat aacatggcca 15660
ggtaatgata gaatgttagt tccgaatttt tttgaaataa aaagagagat agatacggag 15720
ggatacacta ctagtcagtc taatatgact aaagattggt atttgattca aatgtctgca 15780
aattataacc aggggtatca cggttatagt tttccagcag ataaagtata cagacagtat 15840
gattttatgt caaattttga ttctatgtct gttcaagtac cccggtcagg tctggcattt 15900
ttgtttaatg aaaattataa cttgatagta aataattcag gatttttgcc cagtaggacg 15960
gctccaattg ctggagttaa tgaaggccat ccttatccag caaactggcc agcgccatta 16020
ataggtaata gtcctgatag tgttgttaca gttaggaaat ttttatgtga taagtattta 16080
tggacaatac ctttttcaag caattttatg aatatgggtg aattgactga ccttggacag 16140
agtttgctgt atactgagtc tgcacatagt ttgcaaataa catttaatgt tgatccaatg 16200
cctgagccta cgtacattta cttactttat agtgtttttg attgtgttag ggtcaatcaa 16260
cctaacaaaa attacttatc tgcagcttat ttcagaactc cttttgctac tggaactgct 16320
tcagtataaa atggctggaa cttcaagttc agaattgatt acattagtac gttctttagg 16380
tttgggttct tattttttag gagtttatga taaacacttt cctggttttt taaatgatcg 16440
cagattagca tatgctattg taaatacggg tgattatatg tctggaggtt tacattggat 16500
agcttttgct tacgacccta atggtcgaaa attttacatt tttgatccat ttggttggtc 16560
aaaaaaggag ctttggaagt tttacaagtt tcagtatgat agaattgtta gaagaacagc 16620
gttacagaat ggtagatgta ttaaattagt tagatctgta gatactgttc agtgtccttg 16680
ttctgctgca tgtggtttgt attgtgtgtt atttttagct tcattttatt attttagaaa 16740
ttctcctatg tataataatc ctattattga tgttgttact ggcgtgccgc atagtaagat 16800
gaaatcttct tacggcatag ctatattaca ttgtaatcaa gaaagattgt ataactggct 16860
gtattacaac tctgtatatt ttcgagataa tgaattggaa ataaagagaa atacaagaat 16920
aaattctatt ttagttcatt atctctttat tgtattgttt ttatttgcgc gttaacaaaa 16980
agcgtcatca tcactttcca cctcgtgttg agccacaata gcttgcttaa aagaatgctt 17040
tttaggattg aatacaaaag caggcaacat tattttagta ggggagccat catctatggt 17100
ttccttcagc ttagtatata tatctttgct aattttcata gcctgtctca catcaatcat 17160
tgacaattta aaatcacaat gtttgtgagt ctgattatct ttatccttag catttctttt 17220
aagtctaatg ggattgcaac attgaaacac aaaggtgtgt ttatacttgg cagttgcaag 17280
aagcatatca tcatgacaac tctcagggtc tatgtcattc gctccaggta tttcaaaagc 17340
agtcattttg cagatttgtc tgccaagctg aatgttttca tgaccatagt tacagaagca 17400
ctttgtaact ataatcattt tttcagaaat ttcacatttc tttgctttag gaaacatagc 17460
acttgtccaa tcaatattat gaagaaaggc agcttttgct ttttctttgt tgccaaaatt 17520
cattccacaa gagtctggtg aatgaatagt tggccactga acattactat ctaatggaca 17580
gactatattg ctataatttg ttagctttat cacgtctttt tgattttttt ctttctctaa 17640
tctgccctca ccagctgtca gagctctcat tccttcctct gattgaggag acaggctgta 17700
agttatgggt tttgaaagca taacagtgcc atgaaaacat ctaatgttat cttcatccca 17760
attatgaacc cagatattgg ctccaaggca attataattg caaattaagc cgctatcatt 17820
atacacaaaa ctgcttacga tacggccagc aaagtgataa aaagatttag cggaggaaat 17880
cgtaagatta agatctggtt tattcttctt aacatatgtc tcaaccagtt tggcccagta 17940
atcagaagta ggtaaaatat tcgcttcagc ttggcatgca aacaatgctt gtaatcctgt 18000
agcgtattgc atagcttttt ggtgacagtt ttcaaattca tcattttcca cccgctgtct 18060
cttaaggcaa ggctcctcct ctgagtctaa aaaaaattaa atttattaca tttaaatgca 18120
aatagttttg catacgattc tgattggtct tacttaccaa ccaatgagcg ctggtcagaa 18180
gacatgatct ataaaagagg aaaagagaga ggaaattcta aaattataat ggcttcgtct 18240
gaggaggtcg tagactctgc agcgcaagaa ttcaatgaac ccttcccgcc agcaccagaa 18300
acattaccag attcagaagt tgatatagaa cttatgaatc gtgacttggg tgagtttgaa 18360
acaaattctt ttagcatcca cttaaggaga caagcacaat tgtgcaaatt ggctttacaa 18420
gctaaattca aatatttacc agaatctgta gctgaaattg gagatgcatt cgaatcattc 18480
atttttaatc caattactga atctgaccga aaacaacaag agcctagact caatttttac 18540
cctccatttg ctgtgccaga acgaacagca acttacaata gcttttttca aattatgtct 18600
ctaccattta gctgcttagc taacagatca ggtagtaaaa aatataagac tctaaaatca 18660
attacaaaat ttgaagtctt acccaagttt gaatcagata tgtttgtgat ttcagactgt 18720
cttgggtccg aagtctcagc aacagattct ctgccaagga aaacaaggtt ggttaattta 18780
caatctgata acataagatt aatgtccatg aaagaaaaac tgaagcatgt aactcaattt 18840
gcttatccag ccttgaacat tcctccaaaa atttataaaa ctctaattga gacactatat 18900
aaacctattc aacagggaga ggatgatgaa tctgattatg tgttttcaga tgatgatgtt 18960
agacaagtct ttatttcaaa tttagaggat tttgaaaaat ttactgatgg agagatagga 19020
gaattaacaa attgtttcag aaaaaacttg cttcaggcaa tacagtatgt gctaccttta 19080
aaacttatgc aaggtacttt tagacatccg tgctttgtaa agaaattaca agagatgtta 19140
cattatactt ttcatcatgg ctatatcaag ttaattagtt ctattacggg ccacaatttg 19200
agtaaatata taacttttca ctgcatgaca tatgagaata acaataacaa tccaaatctt 19260
cacacaacat tagatttgaa tgatggtgaa gattatatgg ttgatacaat ttttttatac 19320
ttgataatga cttggcagac tgcaatgggt gtgtggcaac aaaatatcaa tgagaagaat 19380
ttagctagta tgaaagattt tttaactaaa aacggaccaa aattgatttt gtgtcgtgat 19440
tcagatagca tggctgatat gctagcagat tggataacag atggcggagt cttgcttcag 19500
atttttaggg atgctttacc agattttatg tcacagactc aattgaataa ctttagaaca 19560
tttattttag cgagaagtaa tatagtgagc tgtatggttt caacagtagt taaagatttt 19620
gtaccattag attttaaaga atctccacca caattgtggc cacatgttta ctgcttgaga 19680
ctgtcttatt ttttctacaa tcatggagat tatcaacaaa ttttttattg ggacgataat 19740
aaacctacag aaaatgaaat tttttgttat tgcaatcttt gtgctcctca tagaacacca 19800
atgctgaaca cagctttaca caatgaaatt ttagcaattg ggtcgtttga cttttttgtt 19860
ccaagtagtg atggtaaagg tggagaaaga gttacattaa ctccgggatt atgggctaat 19920
aaatttttga atcattttgt aagttctgaa tattttccat ttgaagttaa aaaatatgta 19980
gaccatccag aatgtttcaa aatacctcct acagcatgtg taattactaa gcctgagatt 20040
ttaagtagtt tgaaagagat aaagaagagg agagaaaagt ttttaattga aaaaggttct 20100
ggtatttatt tggatcctca aacgggagat aacttaagtg atgctaaaat tgtttcacag 20160
cccagaagag gcagcagtgg cggaaaaaca gaaaaagaag aaacggcaaa gaagaatccc 20220
aggtagttat tctaaatgga agcaatactg cacagatgta aaagaagcaa ttgcagttgt 20280
cggaagacag ccagtttgtg ttaagagata tctcacagca aagggcatac aaattccttc 20340
atcaaccatt aattattatg taaacaagtt tataagttgt gaagaagata gtaaattttc 20400
ctttttttaa tttataggcg agcccataca tgaaggaaca tatcaagaaa tattaaaact 20460
tagaaaagaa atttggatta ctgtgagaga cttaaaagat tatctatata ataatgagat 20520
aaacgaagaa attcatatac agaatagaac tttaaattct atcttagcta agcattctac 20580
atgttcagat ttaaatgcat tatttaagat gcatttggat gctaaggctt tacaatatca 20640
atatgagaaa aagctccgca ccatacctga taagaagtct cagaagaaaa agagatagct 20700
tctaccctga cagcaaattt tatagagaag acctccccta gtcacctgac caagcttggc 20760
gggcaatatg gatcccgttc cgttagaata tatttggcag tacaaccctg tgactggtag 20820
agttggagga gcaaatcaga attacggaca gaggattaat gttttgcata caaatcgtta 20880
cctctacaac agaatgcaga atgtgcagaa aaaaagcaac gaaagagcca ctgaaagagg 20940
attactatct ctgaagggag gaagcacatt gccgactatt gcagaagatg aacctgccca 21000
gttgaactcg gctatagttc gcatggcagg attgaatgac ttgaacacgg ttcaagcacc 21060
ggattcatct aatctgcaaa acctggccaa cattgcactt gaagctgctg aacacaacaa 21120
agctacctca tctctcctaa caacgaagaa gtttgttgaa gagtttcctc ctgttgttta 21180
cgaaaatcct ttttctggct ctaattttgc ttatgaattt aatcctctgt attcaccgtc 21240
cgggaatgag ttctccaatc ctccatttaa attcaccgga ggtgctatta gcctcacagg 21300
acaacaccca gtcctctcgg gaggtgctgt tatcttatca ggacagaatc cggtactgga 21360
caaagcataa acatgagtgt caatctatta attgtatgac ggatgttgtt aatgtaatgg 21420
atcttgtttt tgattgtgat tatcctgagt ttaaatctgg aagcagtgtt atgttttctc 21480
atcgcttttc ttacttaaca gattgcaaaa ataaaacaat attaccgctt gttgatgaaa 21540
attgtgaatt aatgctagtt aatgatgaga tatgtgtagt tgtaaaatgt tactgtgatg 21600
aagaattttc agatcattgt cttactatta acttgaaatt aatgtgtacg ttagtaatga 21660
aattaataga tggggcttac ccattgccgc cttcgcctgc agatttacct gcttcagctt 21720
gtgttgcaac agcgctaaaa aatgagaaca agagagactt tttacataat agcttttgca 21780
ataaatgcag aataccagta ttgctttgct tatgtactga aaatgcttta acgaaggaag 21840
aatttatgca tcaattagtt aattttccat tatgtagtaa ctgttttaaa ggtaatagtg 21900
attgtagttg tgcattttat atctgtaagt tgtattcttt ttatcgaagc agagtttcct 21960
ccggtttagt taggaagaag ttaaatgatg ttaagaggtt agcatattta ggatcatgta 22020
acgttgatat gtgtattaac tgtggaagaa gtcttaagga ttgtttgtgt tctgaagctt 22080
atcagttatt atataagaaa tgcctttctt attgatagat tgtttacgaa gcagaagcag 22140
agtttctcct ccaatttagt aagattatta ttactgtgcc tagatattac tatgtgttca 22200
ggaagaagtt ttacggattg tctgtgctct tacaagaaat aaaaaatttg acatttactt 22260
acctgtctac ctggtcatgt attgatggga agagagtttc caaaattaag tctgagtttt 22320
ggatacagta tcgaattaac caatagagac acgtttgaca cagaagctgt gttgctgacg 22380
gtctatattc tgtttgtatt cctttttcca ttccatccac agaatcttca gatacagttt 22440
ggatgttttg tttaagtaaa ttctgattga tttctcttgg tttgcaacag gaacaacatt 22500
tgctgcattt attgcccatg gctactcctg gaaagcgttc tgcagaggaa ccagatcaac 22560
agaccttgaa aaagtcaaaa caatctgacc aaagtcaggg tttaaatcta gcatatcctt 22620
ttgataaaat aacagaattt gaagcaacac ctccctttat tcatgttggg caaggcttag 22680
acatatcaga tttatcgtta aatatgagaa ttggcaaagg attaaagttt gaaaatggta 22740
atctagttgt atcagatcaa cagtataatg ttacaccacc tttaattgca gatcagtcaa 22800
cattaggttt aaagtataat ccggatgttc tttctttaac acattcaggt gctttaactt 22860
tgccaactat tcaacatccc ctccaggctt cagctggaaa atttgaactt gctttgtcat 22920
caggtttaaa atctgatgat caaggtttaa ctttagattt ggatcctgta ttttctacag 22980
aatcatcaaa atttttgctt aattgttcat tgccgttaga taagaatagt gacaagttaa 23040
cgttaaaatt tggtaatggt cttggattga ataatgacca gctagagaat actatgactt 23100
ataatcttcc tttaaaacgt gatggaacta atgttagtct ttcatttgga actaatttca 23160
aaatattgaa tgagatgtta gatttaaatc ttgtggcacc tatgtctaat tcagcaggag 23220
gattagcatt gcaatttaaa agccctttgt cagcagatga tggtatttta tcaattaaaa 23280
cagatacatc tttgggtata acaggaaata aattaggaat aagattggcc cctaacagtg 23340
gtctgcaaat aacaccaaat ggtctagcag ttagtgttaa tgctgtgcaa attctaagta 23400
gtcctttaat tactgcagcg tctataggcc caccaacaac aatggttact ggaacagtgt 23460
caccgggcag agcaacaaat ggtcaatttg taaccaaaac tgctaaagtt ttacgttata 23520
aatttgtgag atgggatgct ctgttaatca tacagtttat agataacata ggtgtaatag 23580
aaaaccctac cttttatcgt aacaaaagta ttgaattaag atctgctgat ttcttgagtc 23640
ctacgttaaa taatacatat atagtgccat tgaatggagg ggtaagggta gaatcaccta 23700
ctattcctgt acaattagaa gttatacttg aaaacaattc ctctttcatt caagtagggt 23760
ttgttaggtt aacagttaag aatggtaacc ctcatatgat tattcagtgt aatcctgtac 23820
ctgggaatat taaaatgata aagataaaat ctgtaatgct ttttacttgt ttgataggct 23880
gatgaaataa actagtgatg caactttcgg ttttagtgac tcactttcga tttaaacacc 23940
tgcaggaagt ttttgctttc ttttttatcc tacatacggt tagaacgtta gattctcaca 24000
tatttgactt tgcaggtgcg cagagcggga aatttttatt ttgcatattt tttattttta 24060
tgtctggctt taaccacaac tcctttacga ttggctatta aaatgtcaag ttaagacaag 24120
tgtgaatttt ctcattagta atgctgtggc gcgaaacaca tattttttta tctaaagcct 24180
tcgagtaacc acaactttta tatgattggc tacttaagtt tcagttaggg taaatgtgaa 24240
gtttctcatg agaaatgcta tgccgccaaa aaaaaattta catcttgctg cagttcaaag 24300
ggtaaattct ttttccacta acatttcatg tctttcaagc gggaaaatgc ttggtcgagc 24360
caaagaactt aaatagttag tttgtggcca tggtttgaat gcttcactga ttaaatagac 24420
agattgctat tgagttagag cgggtaaaac tgagccaaga atctgagcgt gtagtataaa 24480
aaggactcac acttacacac ttacaatcat gcctctgact tggtggttgc aagctgacat 24540
tcacttcaat gaagatgacc aatttcagca gaacttaagt cttactcttc aagcaatggc 24600
tgagaacaaa gaagaaaaag actgtaaatt caacgtaact attcataagg aaattgaacc 24660
tgaattgaat actatttttg atactcaaat ggatacctgg ttatcttgcg gctttactaa 24720
aatgactgtt ttttcaactg gtaaaggaga tatatttttg cgcattttat ttagaacttg 24780
tgctatacct tttttactgc tggagtggaa ggaagaaaat taaaatctaa aattgaacaa 24840
tcaatgtacg agacctttgg aagctgccta tctatggact ttattaaggt tgcttctgtt 24900
gctgtgcaag gctacgatct gcctgctatc aactgtaatg ttggaaaacc tctcgtgttg 24960
ctggtggcca cgcaagatga accgaatttt cgtgaaatac ctggaccata tatcaaagat 25020
gtgtggatgc gtcactgtta cacaccaccg gaattaacgc ctgatgaaga tgatgacctt 25080
tgtacaccat tagccagtca tttctcatat gattttgatc catcaattgt gcctgatatt 25140
gccttgttag acctttttga ataaaaaata cttaaacaga aaatcgtgta atgtatttat 25200
tatgcgaaaa cagtaccata aggtaatgag tggtcttctc ctaccaaacg cacgtggtca 25260
aagaaattaa ctccattact tatacactgn aaaagcacac cacgcaagta cacaaggcca 25320
gtagtcaatg ttttccaagt catacagtgc aatccgacgc tctgtataaa cattaaccgt 25380
gttactcgaa atcaacatta ggccacttac catcaagcat gtagtcgaaa catgtaatgg 25440
aaatccgaga ctcatttcta gtgttacaac atcaaagtca tcggaacagt ttaccaaaaa 25500
ttatattcag aaaagtttaa atgtacccgt attttccaac atgatggatt catcgtcttc 25560
ggtctttaaa acatacacga accggagttg atgatggtgt aggcatcgtt tctcgcgagc 25620
ctgatgagaa cgggttcgta gaatgtactt ttggcacttg tattcttctg tcttctactt 25680
cattatcaga ttctccaaca tccatctaca acaaaaatgg agggtaaatt tttgccaact 25740
aatgcacaat aagctatgaa catcattatg acagatgcag taaatatgac ggtatattag 25800
tgagcggtta aaaagtatta tcattgcagc gtgtctgcct gctcttatct gtagattgtg 25860
ttttagaccg ggaggcattt tttccagtat taacagcgaa tgaatgtagt aaactacagg 25920
ttccggcatc ggaatcacga aaggcatcgg catttcaatt tcggcattca tgtcctataa 25980
aatacgattt aaaacatata tagtctctat acaacgttta aaggattgat ttgtgaaaaa 26040
aaagattata aagacttacg atttgagagg attgagaaga atttgaaaga actgccgcgg 26100
atcctgcttg tgattcttta aaatggcgat tatccgcctt cttttccggt tctctaacga 26160
acacgtgtcc taaagaggat gtcatcatat ttgaccatgt aatatcctgt tcaattttgt 26220
catctgaaag tcgaaatccc ctcccaagca tgcggtatat atattgattg 26270




2


900


DNA


hemorrhagic enteritis virus



2
atgaatacca ttatgaaagc aatgcaaaca gatagaggta gactagaagc agcaacaccc 60
atgtcttcac cggctatttc tggagaacct gaaagtccgt tacaaccttt tactgagcaa 120
atggagaagg aagaatctaa agtgcctcaa aataatcttt tcagggatgg caatgttaat 180
gaacatttaa gagatattcg atattatagt ggaaaatctg ttcagctaga tggggatcaa 240
aagctaaaag gttcagactt tggagaagac tatccgtgtt tttcaaaagg agagaatttt 300
atgaaagcag ctaagttaaa aagagatgca gattatactg aaacttatga agtatctgct 360
caagatgcag ataataattt ttataaggtc atgttaatga gacctgaaac attatttggt 420
ttgtattatt ttgaaagtat cataaagaac attatgagtg atcctagtaa tactgttttt 480
cttagaaggt tgtgtgcttt ggctgttgaa tggaatggaa ggttaaaagg tttcataccg 540
gaattgccag atgataggca tgagtggttg agagatttaa ttaccctatt agctgccatt 600
tgtaggtcat gtgttacggt tgatgaacaa gtggcagcta taaacactag tctagtagaa 660
atggcattaa atttttcttc tgcagcttct gtaatacctt ctgcagcttt aggtgtacaa 720
actagaagta ttttgagttc tatatgtaag gaaattttac aaaatatgtg tcaaattgga 780
gtttgtaagg ataattatcg accagctgtg caatattatg cagatcagcc tggaatctca 840
catagtacat acttttctag tttgagagac gttctacaat caaacggaag aaatgtcttc 900




3


300


PRT


hemorrhagic enteritis virus



3
Met Asn Thr Ile Met Lys Ala Met Gln Thr Asp Arg Gly Arg Leu Glu
1 5 10 15
Ala Ala Thr Pro Met Ser Ser Pro Ala Ile Ser Gly Glu Pro Glu Ser
20 25 30
Pro Leu Gln Pro Phe Thr Glu Gln Met Glu Lys Glu Glu Ser Lys Val
35 40 45
Pro Gln Asn Asn Leu Phe Arg Asp Gly Asn Val Asn Glu His Leu Arg
50 55 60
Asp Ile Arg Tyr Tyr Ser Gly Lys Ser Val Gln Leu Asp Gly Asp Gln
65 70 75 80
Lys Leu Lys Gly Ser Asp Phe Gly Glu Asp Tyr Pro Cys Phe Ser Lys
85 90 95
Gly Glu Asn Phe Met Lys Ala Ala Lys Leu Lys Arg Asp Ala Asp Tyr
100 105 110
Thr Glu Thr Tyr Glu Val Ser Ala Gln Asp Ala Asp Asn Asn Phe Tyr
115 120 125
Lys Val Met Leu Met Arg Pro Glu Thr Leu Phe Gly Leu Tyr Tyr Phe
130 135 140
Glu Ser Ile Ile Lys Asn Ile Met Ser Asp Pro Ser Asn Thr Val Phe
145 150 155 160
Leu Arg Arg Leu Cys Ala Leu Ala Val Glu Trp Asn Gly Arg Leu Lys
165 170 175
Gly Phe Ile Pro Glu Leu Pro Asp Asp Arg His Glu Trp Leu Arg Asp
180 185 190
Leu Ile Thr Leu Leu Ala Ala Ile Cys Arg Ser Cys Val Thr Val Asp
195 200 205
Glu Gln Val Ala Ala Ile Asn Thr Ser Leu Val Glu Met Ala Leu Asn
210 215 220
Phe Ser Ser Ala Ala Ser Val Ile Pro Ser Ala Ala Leu Gly Val Gln
225 230 235 240
Thr Arg Ser Ile Leu Ser Ser Ile Cys Lys Glu Ile Leu Gln Asn Met
245 250 255
Cys Gln Ile Gly Val Cys Lys Asp Asn Tyr Arg Pro Ala Val Gln Tyr
260 265 270
Tyr Ala Asp Gln Pro Gly Ile Ser His Ser Thr Tyr Phe Ser Ser Leu
275 280 285
Arg Asp Val Leu Gln Ser Asn Gly Arg Asn Val Phe
290 295 300




4


1515


DNA


hemorrhagic enteritis virus



4
atgtcttcta aggatgtggc agagatctta tctggaaatg ctcctagatt gtcaaaggaa 60
tttagaaata tgcccgtagc taataaaatg attgagttgg agaaagcaat tgttcagcct 120
aaaaagacag atactccaac catgctttct ataattgtta aacaattagt tgatacaggg 180
gctattttcc ctgaagaagc ttctgctgtt tatagcaggt tgttggacag gcttgtaaag 240
tttaactcta ttagaaatca taataactta gaaggtcttg ttaatgatat acagcaaggg 300
cagaaaagtg ttgtaatgtc taatcttaaa gctaatagaa acatgtctaa tgttgttgta 360
ttacagaatt tcttgcagca gctgccaaaa actgtttcaa aaggccagca gaattatgac 420
tcttttaaag gtttattgaa acagtttgtg attgattata atcaatttat agaagtttat 480
aaatcaggtc cggatacatt tttacagtat aactttggtc cagctgtaca aaaaattaat 540
ttaaatcaat cttttagaaa tttgtcaaat ttatggggag ctgttgtgcg atctgaagat 600
gatattccat ctttgtcagc tttattagaa ccgcaaacga gatatttgtt gcttttactg 660
tctcccatag ctatcgagca gtattttaca agagatagct ttgtatggta tatgttgaaa 720
ctatataaaa ataccgttgc tcctccaatg agtactgagc cattagtaga gttgggtaat 780
gttatagcta gtcttggacc gagttatgat caattaaagt tgcagcaagg attgaattat 840
ttggtaacta accaaagaca agaatataaa ccatcagtac ctgacttgac taaagaagaa 900
gaagcattac ttcgttattt tcaaacttta cttagaacaa aagttgctgg tacaacacgt 960
cagttaagac agtcagattt agataatgtt attcaaaatg taaatcctgc tgctttccag 1020
ggcaatgtgg attttattaa taggcttttt gattttttta gtaaaatctt gaaaataaat 1080
ccagattttt taactagaat agtttatgat tctcaatgga aactacctcc agctttcttt 1140
ttgaagtctg taattactcc tcaagatttg ttacaatttc ctcaacctaa aagaattcca 1200
gatcctaata tagttcaggt tcctgtttct aatgttactg ttccagttcc agcgcccagg 1260
actaaattta aaatgccaca acctgtgtcc aggccttcaa aaacagccta taggtctaaa 1320
tatcagtatc ctagtgaatc tgatacagat actgactcag aaattgaggt atttggtaag 1380
ccttacggac caataaaacc agctacaatc gacattgaca acttgtctgc tcaatttaaa 1440
agactgaaag gaaagggttt agatatttct aattatatga gaagaaaagc aagaaatgtt 1500
aatgttagac catac 1515




5


505


PRT


hemorrhagic enteritis virus



5
Met Ser Ser Lys Asp Val Ala Glu Ile Leu Ser Gly Asn Ala Pro Arg
1 5 10 15
Leu Ser Lys Glu Phe Arg Asn Met Pro Val Ala Asn Lys Met Ile Glu
20 25 30
Leu Glu Lys Ala Ile Val Gln Pro Lys Lys Thr Asp Thr Pro Thr Met
35 40 45
Leu Ser Ile Ile Val Lys Gln Leu Val Asp Thr Gly Ala Ile Phe Pro
50 55 60
Glu Glu Ala Ser Ala Val Tyr Ser Arg Leu Leu Asp Arg Leu Val Lys
65 70 75 80
Phe Asn Ser Ile Arg Asn His Asn Asn Leu Glu Gly Leu Val Asn Asp
85 90 95
Ile Gln Gln Gly Gln Lys Ser Val Val Met Ser Asn Leu Lys Ala Asn
100 105 110
Arg Asn Met Ser Asn Val Val Val Leu Gln Asn Phe Leu Gln Gln Leu
115 120 125
Pro Lys Thr Val Ser Lys Gly Gln Gln Asn Tyr Asp Ser Phe Lys Gly
130 135 140
Leu Leu Lys Gln Phe Val Ile Asp Tyr Asn Gln Phe Ile Glu Val Tyr
145 150 155 160
Lys Ser Gly Pro Asp Thr Phe Leu Gln Tyr Asn Phe Gly Pro Ala Val
165 170 175
Gln Lys Ile Asn Leu Asn Gln Ser Phe Arg Asn Leu Ser Asn Leu Trp
180 185 190
Gly Ala Val Val Arg Ser Glu Asp Asp Ile Pro Ser Leu Ser Ala Leu
195 200 205
Leu Glu Pro Gln Thr Arg Tyr Leu Leu Leu Leu Leu Ser Pro Ile Ala
210 215 220
Ile Glu Gln Tyr Phe Thr Arg Asp Ser Phe Val Trp Tyr Met Leu Lys
225 230 235 240
Leu Tyr Lys Asn Thr Val Ala Pro Pro Met Ser Thr Glu Pro Leu Val
245 250 255
Glu Leu Gly Asn Val Ile Ala Ser Leu Gly Pro Ser Tyr Asp Gln Leu
260 265 270
Lys Leu Gln Gln Gly Leu Asn Tyr Leu Val Thr Asn Gln Arg Gln Glu
275 280 285
Tyr Lys Pro Ser Val Pro Asp Leu Thr Lys Glu Glu Glu Ala Leu Leu
290 295 300
Arg Tyr Phe Gln Thr Leu Leu Arg Thr Lys Val Ala Gly Thr Thr Arg
305 310 315 320
Gln Leu Arg Gln Ser Asp Leu Asp Asn Val Ile Gln Asn Val Asn Pro
325 330 335
Ala Ala Phe Gln Gly Asn Val Asp Phe Ile Asn Arg Leu Phe Asp Phe
340 345 350
Phe Ser Lys Ile Leu Lys Ile Asn Pro Asp Phe Leu Thr Arg Ile Val
355 360 365
Tyr Asp Ser Gln Trp Lys Leu Pro Pro Ala Phe Phe Leu Lys Ser Val
370 375 380
Ile Thr Pro Gln Asp Leu Leu Gln Phe Pro Gln Pro Lys Arg Ile Pro
385 390 395 400
Asp Pro Asn Ile Val Gln Val Pro Val Ser Asn Val Thr Val Pro Val
405 410 415
Pro Ala Pro Arg Thr Lys Phe Lys Met Pro Gln Pro Val Ser Arg Pro
420 425 430
Ser Lys Thr Ala Tyr Arg Ser Lys Tyr Gln Tyr Pro Ser Glu Ser Asp
435 440 445
Thr Asp Thr Asp Ser Glu Ile Glu Val Phe Gly Lys Pro Tyr Gly Pro
450 455 460
Ile Lys Pro Ala Thr Ile Asp Ile Asp Asn Leu Ser Ala Gln Phe Lys
465 470 475 480
Arg Leu Lys Gly Lys Gly Leu Asp Ile Ser Asn Tyr Met Arg Arg Lys
485 490 495
Ala Arg Asn Val Asn Val Arg Pro Tyr
500 505




6


1344


DNA


hemorrhagic enteritis virus



6
atggaatctt cgaacactgc cactagaatt tttgctccaa cggaagggag aaacagtata 60
atttacagca acttgcctcc tgttcaagat acaaccaaaa tattttatat agataacaag 120
gccattgata tagagtcata taatcaagag aaagatcatt ctaattatta tactaatata 180
attcaaacac agaacatttc aactattgat tcaagtatac agcaaattca gttagatgaa 240
aggtctagat ggggaggaga actacataca agcttagtaa catctgttat gaattgtact 300
aaacatttta attcagatag atgtttagtg aaaattcaga ctattaagag tccacctaca 360
tttgaatgga aagaattgaa aatacctgag ggaaactatg ttttaaatga gtttattgat 420
ttattaaatg aaggtattac ttctttatac cttcagtatg gcaggcaaca gggtgtactt 480
gaagaagaca taggaataaa atttgatact cgcaattttg aaattggtaa agatccaact 540
actaatcttg ttactcctgg taaatacttg tttaagggtt atcatgctga tataatactt 600
cttcctggtt gggctattga tttttctttt tctagattgg gtaacatttt aggtattaga 660
aaacgtgaga cttataaagc tggctttttg attgaatatg atgacttgac aaatggtaat 720
attccaccac tgttggatgt tgctaactat aagtctacaa gtcaagctaa accattatta 780
caggatccat ctggcagatc ttaccacgtt atggatagtg attctaacag acctgtgact 840
gcatataggt cttttgtttt gtcatataac aatgaaggtg ctgcaaaatt aaagtttttg 900
atgtgtatga gtgatataac ggggggtctc aatcagctgt attggtgttt gcctgattct 960
tataaaccgc cagtatcttt taagcaagaa acgcaagtag ataaactgcc tgttgttggt 1020
atgcaacttt ttccttttgt ctttaaatct gtgtattctg gtgctgctgt ttacacacag 1080
ttaattgaac agcagactaa tttgacacaa atttttaaca gatttcatga taatgaaatt 1140
ttaaaacaag ctccatatgt gaatcaagtt ttattggctg aaaatgtgcc cataaatgtt 1200
aatcagggaa caataccaat attttcaact cttccaggag tacagagagt ggttgtggaa 1260
gacgatagga gaagaactgt accctacgtt accaagtcac ttgctacagt atatccgaag 1320
gttttgtcta gcaaaacttt gcaa 1344




7


448


PRT


hemorrhagic enteritis virus



7
Met Glu Ser Ser Asn Thr Ala Thr Arg Ile Phe Ala Pro Thr Glu Gly
1 5 10 15
Arg Asn Ser Ile Ile Tyr Ser Asn Leu Pro Pro Val Gln Asp Thr Thr
20 25 30
Lys Ile Phe Tyr Ile Asp Asn Lys Ala Ile Asp Ile Glu Ser Tyr Asn
35 40 45
Gln Glu Lys Asp His Ser Asn Tyr Tyr Thr Asn Ile Ile Gln Thr Gln
50 55 60
Asn Ile Ser Thr Ile Asp Ser Ser Ile Gln Gln Ile Gln Leu Asp Glu
65 70 75 80
Arg Ser Arg Trp Gly Gly Glu Leu His Thr Ser Leu Val Thr Ser Val
85 90 95
Met Asn Cys Thr Lys His Phe Asn Ser Asp Arg Cys Leu Val Lys Ile
100 105 110
Gln Thr Ile Lys Ser Pro Pro Thr Phe Glu Trp Lys Glu Leu Lys Ile
115 120 125
Pro Glu Gly Asn Tyr Val Leu Asn Glu Phe Ile Asp Leu Leu Asn Glu
130 135 140
Gly Ile Thr Ser Leu Tyr Leu Gln Tyr Gly Arg Gln Gln Gly Val Leu
145 150 155 160
Glu Glu Asp Ile Gly Ile Lys Phe Asp Thr Arg Asn Phe Glu Ile Gly
165 170 175
Lys Asp Pro Thr Thr Asn Leu Val Thr Pro Gly Lys Tyr Leu Phe Lys
180 185 190
Gly Tyr His Ala Asp Ile Ile Leu Leu Pro Gly Trp Ala Ile Asp Phe
195 200 205
Ser Phe Ser Arg Leu Gly Asn Ile Leu Gly Ile Arg Lys Arg Glu Thr
210 215 220
Tyr Lys Ala Gly Phe Leu Ile Glu Tyr Asp Asp Leu Thr Asn Gly Asn
225 230 235 240
Ile Pro Pro Leu Leu Asp Val Ala Asn Tyr Lys Ser Thr Ser Gln Ala
245 250 255
Lys Pro Leu Leu Gln Asp Pro Ser Gly Arg Ser Tyr His Val Met Asp
260 265 270
Ser Asp Ser Asn Arg Pro Val Thr Ala Tyr Arg Ser Phe Val Leu Ser
275 280 285
Tyr Asn Asn Glu Gly Ala Ala Lys Leu Lys Phe Leu Met Cys Met Ser
290 295 300
Asp Ile Thr Gly Gly Leu Asn Gln Leu Tyr Trp Cys Leu Pro Asp Ser
305 310 315 320
Tyr Lys Pro Pro Val Ser Phe Lys Gln Glu Thr Gln Val Asp Lys Leu
325 330 335
Pro Val Val Gly Met Gln Leu Phe Pro Phe Val Phe Lys Ser Val Tyr
340 345 350
Ser Gly Ala Ala Val Tyr Thr Gln Leu Ile Glu Gln Gln Thr Asn Leu
355 360 365
Thr Gln Ile Phe Asn Arg Phe His Asp Asn Glu Ile Leu Lys Gln Ala
370 375 380
Pro Tyr Val Asn Gln Val Leu Leu Ala Glu Asn Val Pro Ile Asn Val
385 390 395 400
Asn Gln Gly Thr Ile Pro Ile Phe Ser Thr Leu Pro Gly Val Gln Arg
405 410 415
Val Val Val Glu Asp Asp Arg Arg Arg Thr Val Pro Tyr Val Thr Lys
420 425 430
Ser Leu Ala Thr Val Tyr Pro Lys Val Leu Ser Ser Lys Thr Leu Gln
435 440 445




8


360


DNA


hemorrhagic enteritis virus



8
atgcattctg ttgtttattc tccaggggac agtagaggat ggggtattgg taattcaagt 60
atgcgagatt attatttgat aggtggcgct ttgcaaccgt ctgatattta tactgttagg 120
gttcgtgaac attggagacg taaaaggagg ccaactgctc aaactggaaa ttctgctgta 180
accccacgac gtagaagacg gagaacaatt gcaattcaag taccagctcc aactagagta 240
ctaagaaata gaatagttac acctgttgtg cctgcagttc ctgtacctgc tcctacagtt 300
tctgctgtac cagtacctgc tgctcctgta gctgtagctg ctaagagacg tagagtaggt 360




9


120


PRT


hemorrhagic enteritis virus



9
Met His Ser Val Val Tyr Ser Pro Gly Asp Ser Arg Gly Trp Gly Ile
1 5 10 15
Gly Asn Ser Ser Met Arg Asp Tyr Tyr Leu Ile Gly Gly Ala Leu Gln
20 25 30
Pro Ser Asp Ile Tyr Thr Val Arg Val Arg Glu His Trp Arg Arg Lys
35 40 45
Arg Arg Pro Thr Ala Gln Thr Gly Asn Ser Ala Val Thr Pro Arg Arg
50 55 60
Arg Arg Arg Arg Thr Ile Ala Ile Gln Val Pro Ala Pro Thr Arg Val
65 70 75 80
Leu Arg Asn Arg Ile Val Thr Pro Val Val Pro Ala Val Pro Val Pro
85 90 95
Ala Pro Thr Val Ser Ala Val Pro Val Pro Ala Ala Pro Val Ala Val
100 105 110
Ala Ala Lys Arg Arg Arg Val Gly
115 120




10


174


DNA


hemorrhagic enteritis virus



10
atgtttgaaa atttagcacc cagaaaaggt ctaaaaaccg aaacacggaa tgtaaagttt 60
agtaatgaat tgagaggtgg ttttgttgtc tctgttttag ttcctttgct ttcttcttta 120
ataggcgcag ctcctgccat tgctggaact gtaattgcag ctagaaattc taag 174




11


58


PRT


hemorrhagic enteritis virus



11
Met Phe Glu Asn Leu Ala Pro Arg Lys Gly Leu Lys Thr Glu Thr Arg
1 5 10 15
Asn Val Lys Phe Ser Asn Glu Leu Arg Gly Gly Phe Val Val Ser Val
20 25 30
Leu Val Pro Leu Leu Ser Ser Leu Ile Gly Ala Ala Pro Ala Ile Ala
35 40 45
Gly Thr Val Ile Ala Ala Arg Asn Ser Lys
50 55




12


693


DNA


hemorrhagic enteritis virus



12
atgttttcaa atttagctcc acgacttgga cacacatcat tttcaactgt atctgttggg 60
tctgctgaac tgcgtggagg aaagattaat tggggctctt taggttcttc catttcaaat 120
gctttaagaa caactggcag atatttaggc cagaaagcta ctaaatttgc aaatagtaaa 180
acatttagtg atattaaggc cggtattcaa gatagtggtt tagtaagaaa tgtggcagga 240
ttagcaggtc aaacattgaa ttctttagtc gatattggaa ggtttaaagt tgaatctgaa 300
cttcaaaaat taagagatag agtattaaat acaattccag cagatcagtt agctcaaatt 360
ttactgaact atcagcaaac tcatgatcag gtgcctatgc ctgtcacacc aggtgatgct 420
attcctttac caccaccacc tccagctgct attgaaccta gaaaacgtcc ttatgttgag 480
gaaatagacg ataatcctaa cgatgcagaa gtggttattg acacccctgc tttgtctact 540
gttcctgcta tacctgcacc tcctcctact gttgcttttg taccttctat taaacgtcct 600
agaattaggg gaactggtga atctgaatgg caaactcact tgaataaaat gttgggtcag 660
ggtgttagat ttacctcaac aaatcaatgt tat 693




13


231


PRT


hemorrhagic enteritis virus



13
Met Phe Ser Asn Leu Ala Pro Arg Leu Gly His Thr Ser Phe Ser Thr
1 5 10 15
Val Ser Val Gly Ser Ala Glu Leu Arg Gly Gly Lys Ile Asn Trp Gly
20 25 30
Ser Leu Gly Ser Ser Ile Ser Asn Ala Leu Arg Thr Thr Gly Arg Tyr
35 40 45
Leu Gly Gln Lys Ala Thr Lys Phe Ala Asn Ser Lys Thr Phe Ser Asp
50 55 60
Ile Lys Ala Gly Ile Gln Asp Ser Gly Leu Val Arg Asn Val Ala Gly
65 70 75 80
Leu Ala Gly Gln Thr Leu Asn Ser Leu Val Asp Ile Gly Arg Phe Lys
85 90 95
Val Glu Ser Glu Leu Gln Lys Leu Arg Asp Arg Val Leu Asn Thr Ile
100 105 110
Pro Ala Asp Gln Leu Ala Gln Ile Leu Leu Asn Tyr Gln Gln Thr His
115 120 125
Asp Gln Val Pro Met Pro Val Thr Pro Gly Asp Ala Ile Pro Leu Pro
130 135 140
Pro Pro Pro Pro Ala Ala Ile Glu Pro Arg Lys Arg Pro Tyr Val Glu
145 150 155 160
Glu Ile Asp Asp Asn Pro Asn Asp Ala Glu Val Val Ile Asp Thr Pro
165 170 175
Ala Leu Ser Thr Val Pro Ala Ile Pro Ala Pro Pro Pro Thr Val Ala
180 185 190
Phe Val Pro Ser Ile Lys Arg Pro Arg Ile Arg Gly Thr Gly Glu Ser
195 200 205
Glu Trp Gln Thr His Leu Asn Lys Met Leu Gly Gln Gly Val Arg Phe
210 215 220
Thr Ser Thr Asn Gln Cys Tyr
225 230




14


2718


DNA


hemorrhagic enteritis virus



14
atggacatat caaatgctac gccaaaactt gatatattcc acatagctgg accagatgct 60
tcagaatatc tttcagaaaa tctcgttaat ttcatctcca gtacagaatc gtattttcca 120
attaataaaa aatttagaga aacaattgta gcaccaacaa aaggtgtgac gacagaacaa 180
tctcagaaat tgcaagttaa aattgttcca actttgacac aagatttaga aaatagtttt 240
actgctagat ttactattgc tgttggcgat ggtcgggttt tggatatggg aagtacgtat 300
tttgatatta ggggtaacat tgatcgggga ccttcattta agccatatgg tggtacagca 360
tataatcctc tagctccaag gtcagctcaa tttaataata ttaaaactgt gggtggtaaa 420
acatatttga ctgctcaagc tactaaattt ttttcaacat ctggaaatgg ttgtgcagct 480
gctaatactg aagcaagttc atttacaaat ttagttcctt cacctaatac tggttcagca 540
gaaagttctt ttgatcctac aacagaggga gctagttgca gagctataac acttggcagt 600
tctgtaacag atgcaacttg ttatggagct tatacaccta ttcaaaatgc taatggttca 660
attttacctc catctgttac gcctgataaa aaatttgccg atgctggtaa atctggcagt 720
gttacatgta ctgctgctat ttgttgtgat aatgttactg tacaatatcc agatactaga 780
atagttgctt atgactctac tgataaaata gcaactagaa tgggtaacag aattaattat 840
attggattta gagataattt tataggtttg atgtattatg ataatggtgc acatagtggt 900
tctttggcta cagaaacagg agatataaat ttggtagaac aattgcaaga tagaaataca 960
gaaattagtt atcaatatat gttagcggat ttgatgagta ggaatcatta ttatagtcag 1020
tggaatcaag ctgtagatga ttatgattta aatgttagag tacttacaaa tattggttat 1080
gaagagggtc ctccaggtta ctgttatcca agcacaggca tgggcaacta tcctaatact 1140
gtcatgtcgg ttgggacatt agtggataat aatggtacaa ctgctacaac aacgtcaaat 1200
actgtagctg tgatgggttt tggcagtgtt cctactatgg aaattaacgt tcaagcttat 1260
ttgcaaaaat gttggatgta tgctaacatt gcagaatatt tacctgataa gtataaaaaa 1320
gctattcaag gtactagtga aactgatcca acaacttata gttatatgaa tagtaggctt 1380
cctaatgtga atatggctga tctctttaca catattggcg ggcgttatag tttggatgta 1440
atggataatg ttaatccttt taatcatcat agaaatagag gtttgcaata tagaagtcaa 1500
attttgggta atggtagaaa tgtccgtttt catattcagg tacctcagaa attttttgct 1560
attaagaatc tattgttact tcctggaact tatagttatg aatggtggtt caggaaagat 1620
ccaaacttag tactacagtc tacgttggga aatgatttaa gaaaagatgg agcaagcatt 1680
cagtttagca gtattagtct ttatgcgagt ttttttccta tggatcacgc tacttgtagt 1740
gagcttattt taatgcttag aaacgatcaa aatgatcaaa cttttatgga ttatatgggt 1800
gcaaagaata atttgtattt agttcctgct aatcaaacta atgttcagat tgaaatacct 1860
tctagagctt ggacagcatt tagaggctgg agttttaacc gaattaaaac tgctgagaca 1920
ccagctgtgt ggtctactta tgatcttaat tttaaatatt ctggctcaat accttatcta 1980
gatggtacat tttatctttc tcacactttt aactctatgt ctattttgtt tgattcagca 2040
ataacatggc caggtaatga tagaatgtta gttccgaatt tttttgaaat aaaaagagag 2100
atagatacgg agggatacac tactagtcag tctaatatga ctaaagattg gtatttgatt 2160
caaatgtctg caaattataa ccaggggtat cacggttata gttttccagc agataaagta 2220
tacagacagt atgattttat gtcaaatttt gattctatgt ctgttcaagt accccggtca 2280
ggtctggcat ttttgtttaa tgaaaattat aacttgatag taaataattc aggatttttg 2340
cccagtagga cggctccaat tgctggagtt aatgaaggcc atccttatcc agcaaactgg 2400
ccagcgccat taataggtaa tagtcctgat agtgttgtta cagttaggaa atttttatgt 2460
gataagtatt tatggacaat acctttttca agcaatttta tgaatatggg tgaattgact 2520
gaccttggac agagtttgct gtatactgag tctgcacata gtttgcaaat aacatttaat 2580
gttgatccaa tgcctgagcc tacgtacatt tacttacttt atagtgtttt tgattgtgtt 2640
agggtcaatc aacctaacaa aaattactta tctgcagctt atttcagaac tccttttgct 2700
actggaactg cttcagta 2718




15


906


PRT


hemorrhagic enteritis virus



15
Met Asp Ile Ser Asn Ala Thr Pro Lys Leu Asp Ile Phe His Ile Ala
1 5 10 15
Gly Pro Asp Ala Ser Glu Tyr Leu Ser Glu Asn Leu Val Asn Phe Ile
20 25 30
Ser Ser Thr Glu Ser Tyr Phe Pro Ile Asn Lys Lys Phe Arg Glu Thr
35 40 45
Ile Val Ala Pro Thr Lys Gly Val Thr Thr Glu Gln Ser Gln Lys Leu
50 55 60
Gln Val Lys Ile Val Pro Thr Leu Thr Gln Asp Leu Glu Asn Ser Phe
65 70 75 80
Thr Ala Arg Phe Thr Ile Ala Val Gly Asp Gly Arg Val Leu Asp Met
85 90 95
Gly Ser Thr Tyr Phe Asp Ile Arg Gly Asn Ile Asp Arg Gly Pro Ser
100 105 110
Phe Lys Pro Tyr Gly Gly Thr Ala Tyr Asn Pro Leu Ala Pro Arg Ser
115 120 125
Ala Gln Phe Asn Asn Ile Lys Thr Val Gly Gly Lys Thr Tyr Leu Thr
130 135 140
Ala Gln Ala Thr Lys Phe Phe Ser Thr Ser Gly Asn Gly Cys Ala Ala
145 150 155 160
Ala Asn Thr Glu Ala Ser Ser Phe Thr Asn Leu Val Pro Ser Pro Asn
165 170 175
Thr Gly Ser Ala Glu Ser Ser Phe Asp Pro Thr Thr Glu Gly Ala Ser
180 185 190
Cys Arg Ala Ile Thr Leu Gly Ser Ser Val Thr Asp Ala Thr Cys Tyr
195 200 205
Gly Ala Tyr Thr Pro Ile Gln Asn Ala Asn Gly Ser Ile Leu Pro Pro
210 215 220
Ser Val Thr Pro Asp Lys Lys Phe Ala Asp Ala Gly Lys Ser Gly Ser
225 230 235 240
Val Thr Cys Thr Ala Ala Ile Cys Cys Asp Asn Val Thr Val Gln Tyr
245 250 255
Pro Asp Thr Arg Ile Val Ala Tyr Asp Ser Thr Asp Lys Ile Ala Thr
260 265 270
Arg Met Gly Asn Arg Ile Asn Tyr Ile Gly Phe Arg Asp Asn Phe Ile
275 280 285
Gly Leu Met Tyr Tyr Asp Asn Gly Ala His Ser Gly Ser Leu Ala Thr
290 295 300
Glu Thr Gly Asp Ile Asn Leu Val Glu Gln Leu Gln Asp Arg Asn Thr
305 310 315 320
Glu Ile Ser Tyr Gln Tyr Met Leu Ala Asp Leu Met Ser Arg Asn His
325 330 335
Tyr Tyr Ser Gln Trp Asn Gln Ala Val Asp Asp Tyr Asp Leu Asn Val
340 345 350
Arg Val Leu Thr Asn Ile Gly Tyr Glu Glu Gly Pro Pro Gly Tyr Cys
355 360 365
Tyr Pro Ser Thr Gly Met Gly Asn Tyr Pro Asn Thr Val Met Ser Val
370 375 380
Gly Thr Leu Val Asp Asn Asn Gly Thr Thr Ala Thr Thr Thr Ser Asn
385 390 395 400
Thr Val Ala Val Met Gly Phe Gly Ser Val Pro Thr Met Glu Ile Asn
405 410 415
Val Gln Ala Tyr Leu Gln Lys Cys Trp Met Tyr Ala Asn Ile Ala Glu
420 425 430
Tyr Leu Pro Asp Lys Tyr Lys Lys Ala Ile Gln Gly Thr Ser Glu Thr
435 440 445
Asp Pro Thr Thr Tyr Ser Tyr Met Asn Ser Arg Leu Pro Asn Val Asn
450 455 460
Met Ala Asp Leu Phe Thr His Ile Gly Gly Arg Tyr Ser Leu Asp Val
465 470 475 480
Met Asp Asn Val Asn Pro Phe Asn His His Arg Asn Arg Gly Leu Gln
485 490 495
Tyr Arg Ser Gln Ile Leu Gly Asn Gly Arg Asn Val Arg Phe His Ile
500 505 510
Gln Val Pro Gln Lys Phe Phe Ala Ile Lys Asn Leu Leu Leu Leu Pro
515 520 525
Gly Thr Tyr Ser Tyr Glu Trp Trp Phe Arg Lys Asp Pro Asn Leu Val
530 535 540
Leu Gln Ser Thr Leu Gly Asn Asp Leu Arg Lys Asp Gly Ala Ser Ile
545 550 555 560
Gln Phe Ser Ser Ile Ser Leu Tyr Ala Ser Phe Phe Pro Met Asp His
565 570 575
Ala Thr Cys Ser Glu Leu Ile Leu Met Leu Arg Asn Asp Gln Asn Asp
580 585 590
Gln Thr Phe Met Asp Tyr Met Gly Ala Lys Asn Asn Leu Tyr Leu Val
595 600 605
Pro Ala Asn Gln Thr Asn Val Gln Ile Glu Ile Pro Ser Arg Ala Trp
610 615 620
Thr Ala Phe Arg Gly Trp Ser Phe Asn Arg Ile Lys Thr Ala Glu Thr
625 630 635 640
Pro Ala Val Trp Ser Thr Tyr Asp Leu Asn Phe Lys Tyr Ser Gly Ser
645 650 655
Ile Pro Tyr Leu Asp Gly Thr Phe Tyr Leu Ser His Thr Phe Asn Ser
660 665 670
Met Ser Ile Leu Phe Asp Ser Ala Ile Thr Trp Pro Gly Asn Asp Arg
675 680 685
Met Leu Val Pro Asn Phe Phe Glu Ile Lys Arg Glu Ile Asp Thr Glu
690 695 700
Gly Tyr Thr Thr Ser Gln Ser Asn Met Thr Lys Asp Trp Tyr Leu Ile
705 710 715 720
Gln Met Ser Ala Asn Tyr Asn Gln Gly Tyr His Gly Tyr Ser Phe Pro
725 730 735
Ala Asp Lys Val Tyr Arg Gln Tyr Asp Phe Met Ser Asn Phe Asp Ser
740 745 750
Met Ser Val Gln Val Pro Arg Ser Gly Leu Ala Phe Leu Phe Asn Glu
755 760 765
Asn Tyr Asn Leu Ile Val Asn Asn Ser Gly Phe Leu Pro Ser Arg Thr
770 775 780
Ala Pro Ile Ala Gly Val Asn Glu Gly His Pro Tyr Pro Ala Asn Trp
785 790 795 800
Pro Ala Pro Leu Ile Gly Asn Ser Pro Asp Ser Val Val Thr Val Arg
805 810 815
Lys Phe Leu Cys Asp Lys Tyr Leu Trp Thr Ile Pro Phe Ser Ser Asn
820 825 830
Phe Met Asn Met Gly Glu Leu Thr Asp Leu Gly Gln Ser Leu Leu Tyr
835 840 845
Thr Glu Ser Ala His Ser Leu Gln Ile Thr Phe Asn Val Asp Pro Met
850 855 860
Pro Glu Pro Thr Tyr Ile Tyr Leu Leu Tyr Ser Val Phe Asp Cys Val
865 870 875 880
Arg Val Asn Gln Pro Asn Lys Asn Tyr Leu Ser Ala Ala Tyr Phe Arg
885 890 895
Thr Pro Phe Ala Thr Gly Thr Ala Ser Val
900 905




16


644


DNA


hemorrhagic enteritis virus



16
atggctggaa cttcaagttc agaattgatt acattagtac gttctttagg tttgggttct 60
tattttttag gagtttatga taaacacttt cctggttttt taaatgatcg cagattagca 120
tatgctattg taaatacggg tgattatatg tctggaggtt tacattggat agcttttgct 180
tacgacccta atggtcgaaa attttacatt tttgatccat ttggttggtc aaaaaaggag 240
ctttggaagt tttacaagtt tcagtatgat agaattgtta gaagaacagc gttacagaat 300
ggtagatgta ttaaattagt tagatctgta gatactgttc agtgtccttg ttctgctgca 360
tgtggtttgt attgtgtgtt atttttagct tcattttatt attttagaaa ttctcctatg 420
tataataatc ctattattga tgttgttact ggcgtgccgc atagtaagat gaaatcttct 480
tacggcatag ctatattaca ttgtaatcaa gaaagattgt ataactggct gtattacaac 540
tctgtatatt ttcgagataa tgaattggaa ataaagagaa atacaagaat aaattctatt 600
ttagttcatt atctctttat tgtattgttt ttatttgcgc gtta 644




17


214


PRT


hemorrhagic enteritis virus



17
Met Ala Gly Thr Ser Ser Ser Glu Leu Ile Thr Leu Val Arg Ser Leu
1 5 10 15
Gly Leu Gly Ser Tyr Phe Leu Gly Val Tyr Asp Lys His Phe Pro Gly
20 25 30
Phe Leu Asn Asp Arg Arg Leu Ala Tyr Ala Ile Val Asn Thr Gly Asp
35 40 45
Tyr Met Ser Gly Gly Leu His Trp Ile Ala Phe Ala Tyr Asp Pro Asn
50 55 60
Gly Arg Lys Phe Tyr Ile Phe Asp Pro Phe Gly Trp Ser Lys Lys Glu
65 70 75 80
Leu Trp Lys Phe Tyr Lys Phe Gln Tyr Asp Arg Ile Val Arg Arg Thr
85 90 95
Ala Leu Gln Asn Gly Arg Cys Ile Lys Leu Val Arg Ser Val Asp Thr
100 105 110
Val Gln Cys Pro Cys Ser Ala Ala Cys Gly Leu Tyr Cys Val Leu Phe
115 120 125
Leu Ala Ser Phe Tyr Tyr Phe Arg Asn Ser Pro Met Tyr Asn Asn Pro
130 135 140
Ile Ile Asp Val Val Thr Gly Val Pro His Ser Lys Met Lys Ser Ser
145 150 155 160
Tyr Gly Ile Ala Ile Leu His Cys Asn Gln Glu Arg Leu Tyr Asn Trp
165 170 175
Leu Tyr Tyr Asn Ser Val Tyr Phe Arg Asp Asn Glu Leu Glu Ile Lys
180 185 190
Arg Asn Thr Arg Ile Asn Ser Ile Leu Val His Tyr Leu Phe Ile Val
195 200 205
Leu Phe Leu Phe Ala Arg
210




18


2040


DNA


hemorrhagic enteritis virus



18
atgatctata aaagaggaaa agagagagga aattctaaaa ttataatggc ttcgtctgag 60
gaggtcgtag actctgcagc gcaagaattc aatgaaccct tcccgccagc accagaaaca 120
ttaccagatt cagaagttga tatagaactt atgaatcgtg acttgggtga gtttgaaaca 180
aattctttta gcatccactt aaggagacaa gcacaattgt gcaaattggc tttacaagct 240
aaattcaaat atttaccaga atctgtagct gaaattggag atgcattcga atcattcatt 300
tttaatccaa ttactgaatc tgaccgaaaa caacaagagc ctagactcaa tttttaccct 360
ccatttgctg tgccagaacg aacagcaact tacaatagct tttttcaaat tatgtctcta 420
ccatttagct gcttagctaa cagatcaggt agtaaaaaat ataagactct aaaatcaatt 480
acaaaatttg aagtcttacc caagtttgaa tcagatatgt ttgtgatttc agactgtctt 540
gggtccgaag tctcagcaac agattctctg ccaaggaaaa caaggttggt taatttacaa 600
tctgataaca taagattaat gtccatgaaa gaaaaactga agcatgtaac tcaatttgct 660
tatccagcct tgaacattcc tccaaaaatt tataaaactc taattgagac actatataaa 720
cctattcaac agggagagga tgatgaatct gattatgtgt tttcagatga tgatgttaga 780
caagtcttta tttcaaattt agaggatttt gaaaaattta ctgatggaga gataggagaa 840
ttaacaaatt gtttcagaaa aaacttgctt caggcaatac agtatgtgct acctttaaaa 900
cttatgcaag gtacttttag acatccgtgc tttgtaaaga aattacaaga gatgttacat 960
tatacttttc atcatggcta tatcaagtta attagttcta ttacgggcca caatttgagt 1020
aaatatataa cttttcactg catgacatat gagaataaca ataacaatcc aaatcttcac 1080
acaacattag atttgaatga tggtgaagat tatatggttg atacaatttt tttatacttg 1140
ataatgactt ggcagactgc aatgggtgtg tggcaacaaa atatcaatga gaagaattta 1200
gctagtatga aagatttttt aactaaaaac ggaccaaaat tgattttgtg tcgtgattca 1260
gatagcatgg ctgatatgct agcagattgg ataacagatg gcggagtctt gcttcagatt 1320
tttagggatg ctttaccaga ttttatgtca cagactcaat tgaataactt tagaacattt 1380
attttagcga gaagtaatat agtgagctgt atggtttcaa cagtagttaa agattttgta 1440
ccattagatt ttaaagaatc tccaccacaa ttgtggccac atgtttactg cttgagactg 1500
tcttattttt tctacaatca tggagattat caacaaattt tttattggga cgataataaa 1560
cctacagaaa atgaaatttt ttgttattgc aatctttgtg ctcctcatag aacaccaatg 1620
ctgaacacag ctttacacaa tgaaatttta gcaattgggt cgtttgactt ttttgttcca 1680
agtagtgatg gtaaaggtgg agaaagagtt acattaactc cgggattatg ggctaataaa 1740
tttttgaatc attttgtaag ttctgaatat tttccatttg aagttaaaaa atatgtagac 1800
catccagaat gtttcaaaat acctcctaca gcatgtgtaa ttactaagcc tgagatttta 1860
agtagtttga aagagataaa gaagaggaga gaaaagtttt taattgaaaa aggttctggt 1920
atttatttgg atcctcaaac gggagataac ttaagtgatg ctaaaattgt ttcacagccc 1980
agaagaggca gcagtggcgg aaaaacagaa aaagaagaaa cggcaaagaa gaatcccagg 2040




19


680


PRT


hemorrhagic enteritis virus



19
Met Ile Tyr Lys Arg Gly Lys Glu Arg Gly Asn Ser Lys Ile Ile Met
1 5 10 15
Ala Ser Ser Glu Glu Val Val Asp Ser Ala Ala Gln Glu Phe Asn Glu
20 25 30
Pro Phe Pro Pro Ala Pro Glu Thr Leu Pro Asp Ser Glu Val Asp Ile
35 40 45
Glu Leu Met Asn Arg Asp Leu Gly Glu Phe Glu Thr Asn Ser Phe Ser
50 55 60
Ile His Leu Arg Arg Gln Ala Gln Leu Cys Lys Leu Ala Leu Gln Ala
65 70 75 80
Lys Phe Lys Tyr Leu Pro Glu Ser Val Ala Glu Ile Gly Asp Ala Phe
85 90 95
Glu Ser Phe Ile Phe Asn Pro Ile Thr Glu Ser Asp Arg Lys Gln Gln
100 105 110
Glu Pro Arg Leu Asn Phe Tyr Pro Pro Phe Ala Val Pro Glu Arg Thr
115 120 125
Ala Thr Tyr Asn Ser Phe Phe Gln Ile Met Ser Leu Pro Phe Ser Cys
130 135 140
Leu Ala Asn Arg Ser Gly Ser Lys Lys Tyr Lys Thr Leu Lys Ser Ile
145 150 155 160
Thr Lys Phe Glu Val Leu Pro Lys Phe Glu Ser Asp Met Phe Val Ile
165 170 175
Ser Asp Cys Leu Gly Ser Glu Val Ser Ala Thr Asp Ser Leu Pro Arg
180 185 190
Lys Thr Arg Leu Val Asn Leu Gln Ser Asp Asn Ile Arg Leu Met Ser
195 200 205
Met Lys Glu Lys Leu Lys His Val Thr Gln Phe Ala Tyr Pro Ala Leu
210 215 220
Asn Ile Pro Pro Lys Ile Tyr Lys Thr Leu Ile Glu Thr Leu Tyr Lys
225 230 235 240
Pro Ile Gln Gln Gly Glu Asp Asp Glu Ser Asp Tyr Val Phe Ser Asp
245 250 255
Asp Asp Val Arg Gln Val Phe Ile Ser Asn Leu Glu Asp Phe Glu Lys
260 265 270
Phe Thr Asp Gly Glu Ile Gly Glu Leu Thr Asn Cys Phe Arg Lys Asn
275 280 285
Leu Leu Gln Ala Ile Gln Tyr Val Leu Pro Leu Lys Leu Met Gln Gly
290 295 300
Thr Phe Arg His Pro Cys Phe Val Lys Lys Leu Gln Glu Met Leu His
305 310 315 320
Tyr Thr Phe His His Gly Tyr Ile Lys Leu Ile Ser Ser Ile Thr Gly
325 330 335
His Asn Leu Ser Lys Tyr Ile Thr Phe His Cys Met Thr Tyr Glu Asn
340 345 350
Asn Asn Asn Asn Pro Asn Leu His Thr Thr Leu Asp Leu Asn Asp Gly
355 360 365
Glu Asp Tyr Met Val Asp Thr Ile Phe Leu Tyr Leu Ile Met Thr Trp
370 375 380
Gln Thr Ala Met Gly Val Trp Gln Gln Asn Ile Asn Glu Lys Asn Leu
385 390 395 400
Ala Ser Met Lys Asp Phe Leu Thr Lys Asn Gly Pro Lys Leu Ile Leu
405 410 415
Cys Arg Asp Ser Asp Ser Met Ala Asp Met Leu Ala Asp Trp Ile Thr
420 425 430
Asp Gly Gly Val Leu Leu Gln Ile Phe Arg Asp Ala Leu Pro Asp Phe
435 440 445
Met Ser Gln Thr Gln Leu Asn Asn Phe Arg Thr Phe Ile Leu Ala Arg
450 455 460
Ser Asn Ile Val Ser Cys Met Val Ser Thr Val Val Lys Asp Phe Val
465 470 475 480
Pro Leu Asp Phe Lys Glu Ser Pro Pro Gln Leu Trp Pro His Val Tyr
485 490 495
Cys Leu Arg Leu Ser Tyr Phe Phe Tyr Asn His Gly Asp Tyr Gln Gln
500 505 510
Ile Phe Tyr Trp Asp Asp Asn Lys Pro Thr Glu Asn Glu Ile Phe Cys
515 520 525
Tyr Cys Asn Leu Cys Ala Pro His Arg Thr Pro Met Leu Asn Thr Ala
530 535 540
Leu His Asn Glu Ile Leu Ala Ile Gly Ser Phe Asp Phe Phe Val Pro
545 550 555 560
Ser Ser Asp Gly Lys Gly Gly Glu Arg Val Thr Leu Thr Pro Gly Leu
565 570 575
Trp Ala Asn Lys Phe Leu Asn His Phe Val Ser Ser Glu Tyr Phe Pro
580 585 590
Phe Glu Val Lys Lys Tyr Val Asp His Pro Glu Cys Phe Lys Ile Pro
595 600 605
Pro Thr Ala Cys Val Ile Thr Lys Pro Glu Ile Leu Ser Ser Leu Lys
610 615 620
Glu Ile Lys Lys Arg Arg Glu Lys Phe Leu Ile Glu Lys Gly Ser Gly
625 630 635 640
Ile Tyr Leu Asp Pro Gln Thr Gly Asp Asn Leu Ser Asp Ala Lys Ile
645 650 655
Val Ser Gln Pro Arg Arg Gly Ser Ser Gly Gly Lys Thr Glu Lys Glu
660 665 670
Glu Thr Ala Lys Lys Asn Pro Arg
675 680




20


600


DNA


hemorrhagic enteritis virus



20
atggatcccg ttccgttaga atatatttgg cagtacaacc ctgtgactgg tagagttgga 60
ggagcaaatc agaattacgg acagaggatt aatgttttgc atacaaatcg ttacctctac 120
aacagaatgc agaatgtgca gaaaaaaagc aacgaaagag ccactgaaag aggattacta 180
tctctgaagg gaggaagcac attgccgact attgcagaag atgaacctgc ccagttgaac 240
tcggctatag ttcgcatggc aggattgaat gacttgaaca cggttcaagc accggattca 300
tctaatctgc aaaacctggc caacattgca cttgaagctg ctgaacacaa caaagctacc 360
tcatctctcc taacaacgaa gaagtttgtt gaagagtttc ctcctgttgt ttacgaaaat 420
cctttttctg gctctaattt tgcttatgaa tttaatcctc tgtattcacc gtccgggaat 480
gagttctcca atcctccatt taaattcacc ggaggtgcta ttagcctcac aggacaacac 540
ccagtcctct cgggaggtgc tgttatctta tcaggacaga atccggtact ggacaaagca 600




21


200


PRT


hemorrhagic enteritis virus



21
Met Asp Pro Val Pro Leu Glu Tyr Ile Trp Gln Tyr Asn Pro Val Thr
1 5 10 15
Gly Arg Val Gly Gly Ala Asn Gln Asn Tyr Gly Gln Arg Ile Asn Val
20 25 30
Leu His Thr Asn Arg Tyr Leu Tyr Asn Arg Met Gln Asn Val Gln Lys
35 40 45
Lys Ser Asn Glu Arg Ala Thr Glu Arg Gly Leu Leu Ser Leu Lys Gly
50 55 60
Gly Ser Thr Leu Pro Thr Ile Ala Glu Asp Glu Pro Ala Gln Leu Asn
65 70 75 80
Ser Ala Ile Val Arg Met Ala Gly Leu Asn Asp Leu Asn Thr Val Gln
85 90 95
Ala Pro Asp Ser Ser Asn Leu Gln Asn Leu Ala Asn Ile Ala Leu Glu
100 105 110
Ala Ala Glu His Asn Lys Ala Thr Ser Ser Leu Leu Thr Thr Lys Lys
115 120 125
Phe Val Glu Glu Phe Pro Pro Val Val Tyr Glu Asn Pro Phe Ser Gly
130 135 140
Ser Asn Phe Ala Tyr Glu Phe Asn Pro Leu Tyr Ser Pro Ser Gly Asn
145 150 155 160
Glu Phe Ser Asn Pro Pro Phe Lys Phe Thr Gly Gly Ala Ile Ser Leu
165 170 175
Thr Gly Gln His Pro Val Leu Ser Gly Gly Ala Val Ile Leu Ser Gly
180 185 190
Gln Asn Pro Val Leu Asp Lys Ala
195 200




22


1362


DNA


hemorrhagic enteritis virus



22
atggctactc ctggaaagcg ttctgcagag gaaccagatc aacagacctt gaaaaagtca 60
aaacaatctg accaaagtca gggtttaaat ctagcatatc cttttgataa aataacagaa 120
tttgaagcaa cacctccctt tattcatgtt gggcaaggct tagacatatc agatttatcg 180
ttaaatatga gaattggcaa aggattaaag tttgaaaatg gtaatctagt tgtatcagat 240
caacagtata atgttacacc acctttaatt gcagatcagt caacattagg tttaaagtat 300
aatccggatg ttctttcttt aacacattca ggtgctttaa ctttgccaac tattcaacat 360
cccctccagg cttcagctgg aaaatttgaa cttgctttgt catcaggttt aaaatctgat 420
gatcaaggtt taactttaga tttggatcct gtattttcta cagaatcatc aaaatttttg 480
cttaattgtt cattgccgtt agataagaat agtgacaagt taacgttaaa atttggtaat 540
ggtcttggat tgaataatga ccagctagag aatactatga cttataatct tcctttaaaa 600
cgtgatggaa ctaatgttag tctttcattt ggaactaatt tcaaaatatt gaatgagatg 660
ttagatttaa atcttgtggc acctatgtct aattcagcag gaggattagc attgcaattt 720
aaaagccctt tgtcagcaga tgatggtatt ttatcaatta aaacagatac atctttgggt 780
ataacaggaa ataaattagg aataagattg gcccctaaca gtggtctgca aataacacca 840
aatggtctag cagttagtgt taatgctgtg caaattctaa gtagtccttt aattactgca 900
gcgtctatag gcccaccaac aacaatggtt actggaacag tgtcaccggg cagagcaaca 960
aatggtcaat ttgtaaccaa aactgctaaa gttttacgtt ataaatttgt gagatgggat 1020
gctctgttaa tcatacagtt tatagataac ataggtgtaa tagaaaaccc taccttttat 1080
cgtaacaaaa gtattgaatt aagatctgct gatttcttga gtcctacgtt aaataataca 1140
tatatagtgc cattgaatgg aggggtaagg gtagaatcac ctactattcc tgtacaatta 1200
gaagttatac ttgaaaacaa ttcctctttc attcaagtag ggtttgttag gttaacagtt 1260
aagaatggta accctcatat gattattcag tgtaatcctg tacctgggaa tattaaaatg 1320
ataaagataa aatctgtaat gctttttact tgtttgatag gc 1362




23


454


PRT


hemorrhagic enteritis virus



23
Met Ala Thr Pro Gly Lys Arg Ser Ala Glu Glu Pro Asp Gln Gln Thr
1 5 10 15
Leu Lys Lys Ser Lys Gln Ser Asp Gln Ser Gln Gly Leu Asn Leu Ala
20 25 30
Tyr Pro Phe Asp Lys Ile Thr Glu Phe Glu Ala Thr Pro Pro Phe Ile
35 40 45
His Val Gly Gln Gly Leu Asp Ile Ser Asp Leu Ser Leu Asn Met Arg
50 55 60
Ile Gly Lys Gly Leu Lys Phe Glu Asn Gly Asn Leu Val Val Ser Asp
65 70 75 80
Gln Gln Tyr Asn Val Thr Pro Pro Leu Ile Ala Asp Gln Ser Thr Leu
85 90 95
Gly Leu Lys Tyr Asn Pro Asp Val Leu Ser Leu Thr His Ser Gly Ala
100 105 110
Leu Thr Leu Pro Thr Ile Gln His Pro Leu Gln Ala Ser Ala Gly Lys
115 120 125
Phe Glu Leu Ala Leu Ser Ser Gly Leu Lys Ser Asp Asp Gln Gly Leu
130 135 140
Thr Leu Asp Leu Asp Pro Val Phe Ser Thr Glu Ser Ser Lys Phe Leu
145 150 155 160
Leu Asn Cys Ser Leu Pro Leu Asp Lys Asn Ser Asp Lys Leu Thr Leu
165 170 175
Lys Phe Gly Asn Gly Leu Gly Leu Asn Asn Asp Gln Leu Glu Asn Thr
180 185 190
Met Thr Tyr Asn Leu Pro Leu Lys Arg Asp Gly Thr Asn Val Ser Leu
195 200 205
Ser Phe Gly Thr Asn Phe Lys Ile Leu Asn Glu Met Leu Asp Leu Asn
210 215 220
Leu Val Ala Pro Met Ser Asn Ser Ala Gly Gly Leu Ala Leu Gln Phe
225 230 235 240
Lys Ser Pro Leu Ser Ala Asp Asp Gly Ile Leu Ser Ile Lys Thr Asp
245 250 255
Thr Ser Leu Gly Ile Thr Gly Asn Lys Leu Gly Ile Arg Leu Ala Pro
260 265 270
Asn Ser Gly Leu Gln Ile Thr Pro Asn Gly Leu Ala Val Ser Val Asn
275 280 285
Ala Val Gln Ile Leu Ser Ser Pro Leu Ile Thr Ala Ala Ser Ile Gly
290 295 300
Pro Pro Thr Thr Met Val Thr Gly Thr Val Ser Pro Gly Arg Ala Thr
305 310 315 320
Asn Gly Gln Phe Val Thr Lys Thr Ala Lys Val Leu Arg Tyr Lys Phe
325 330 335
Val Arg Trp Asp Ala Leu Leu Ile Ile Gln Phe Ile Asp Asn Ile Gly
340 345 350
Val Ile Glu Asn Pro Thr Phe Tyr Arg Asn Lys Ser Ile Glu Leu Arg
355 360 365
Ser Ala Asp Phe Leu Ser Pro Thr Leu Asn Asn Thr Tyr Ile Val Pro
370 375 380
Leu Asn Gly Gly Val Arg Val Glu Ser Pro Thr Ile Pro Val Gln Leu
385 390 395 400
Glu Val Ile Leu Glu Asn Asn Ser Ser Phe Ile Gln Val Gly Phe Val
405 410 415
Arg Leu Thr Val Lys Asn Gly Asn Pro His Met Ile Ile Gln Cys Asn
420 425 430
Pro Val Pro Gly Asn Ile Lys Met Ile Lys Ile Lys Ser Val Met Leu
435 440 445
Phe Thr Cys Leu Ile Gly
450




24


1101


DNA


hemorrhagic enteritis virus



24
atgaataatg aagttgaaga attctacgat gtagttggac aatggaaaac tgctgtagac 60
agtattaact caagcatact accaggatgt gatttgccgc catttaaaga atttgaaagc 120
tataactcta atatagactt gagaagcaat atgaggaaat acaacgaaat taacaacatt 180
aacaagatgt atctaactaa aaactctgaa ctgccttcta tcaatatgaa ctctgatcca 240
cttattagtt tagtaatcgg acctacaggt tgcgggaaaa gccaattaat tagaaattta 300
ctgggattca aaaaaataca accaatgcca gaaacgatca tcttcataac tcctacaaaa 360
ggaactattt catatgacga agtaatatta tggaaaactc aactacaaga aggaaattat 420
tctgctcaag ataataccct ttacccaacc acaaaggtat tcaccattaa ttttctagaa 480
tgtgcttttg atgatgtcat taccccagag aatctagatg ttaacaacga aaattctatc 540
tttaatattc ataccaaaaa agggccagta tgcgtaattc tagatgaatg tatgcagaaa 600
ttaatacaga aaccaaatat aagcccatta tattgtagtt taccatcaaa gctatctagt 660
agatatggtc atgcattcta tatgttcgtt gttttacata atgtaaatcc gttatcagga 720
aacggtaata atattatgga cttgaagact caagccaaat tacacatttt aagcacaaaa 780
aaccaaccac tacaattatc taattttgta cataatcgat caggaggaat ggactctaac 840
gtacgaacga tactattaaa cagtattgta tctgaaaaaa atccgaaata ttcttttgta 900
atgtttaata cttgtccaac aagggaatca tttcaatggt cagcaatact cgagggaggg 960
aaaagtatta tacctttatg tttagatatg caaagtttac ttctagactc tgtaaataaa 1020
atctgtaaca ttcacttatg taaattaaaa aataagaaaa ggtacttgaa agaaaaacaa 1080
aaacgcatgt atgatgaaat t 1101




25


367


PRT


hemorrhagic enteritis virus



25
Met Asn Asn Glu Val Glu Glu Phe Tyr Asp Val Val Gly Gln Trp Lys
1 5 10 15
Thr Ala Val Asp Ser Ile Asn Ser Ser Ile Leu Pro Gly Cys Asp Leu
20 25 30
Pro Pro Phe Lys Glu Phe Glu Ser Tyr Asn Ser Asn Ile Asp Leu Arg
35 40 45
Ser Asn Met Arg Lys Tyr Asn Glu Ile Asn Asn Ile Asn Lys Met Tyr
50 55 60
Leu Thr Lys Asn Ser Glu Leu Pro Ser Ile Asn Met Asn Ser Asp Pro
65 70 75 80
Leu Ile Ser Leu Val Ile Gly Pro Thr Gly Cys Gly Lys Ser Gln Leu
85 90 95
Ile Arg Asn Leu Leu Gly Phe Lys Lys Ile Gln Pro Met Pro Glu Thr
100 105 110
Ile Ile Phe Ile Thr Pro Thr Lys Gly Thr Ile Ser Tyr Asp Glu Val
115 120 125
Ile Leu Trp Lys Thr Gln Leu Gln Glu Gly Asn Tyr Ser Ala Gln Asp
130 135 140
Asn Thr Leu Tyr Pro Thr Thr Lys Val Phe Thr Ile Asn Phe Leu Glu
145 150 155 160
Cys Ala Phe Asp Asp Val Ile Thr Pro Glu Asn Leu Asp Val Asn Asn
165 170 175
Glu Asn Ser Ile Phe Asn Ile His Thr Lys Lys Gly Pro Val Cys Val
180 185 190
Ile Leu Asp Glu Cys Met Gln Lys Leu Ile Gln Lys Pro Asn Ile Ser
195 200 205
Pro Leu Tyr Cys Ser Leu Pro Ser Lys Leu Ser Ser Arg Tyr Gly His
210 215 220
Ala Phe Tyr Met Phe Val Val Leu His Asn Val Asn Pro Leu Ser Gly
225 230 235 240
Asn Gly Asn Asn Ile Met Asp Leu Lys Thr Gln Ala Lys Leu His Ile
245 250 255
Leu Ser Thr Lys Asn Gln Pro Leu Gln Leu Ser Asn Phe Val His Asn
260 265 270
Arg Ser Gly Gly Met Asp Ser Asn Val Arg Thr Ile Leu Leu Asn Ser
275 280 285
Ile Val Ser Glu Lys Asn Pro Lys Tyr Ser Phe Val Met Phe Asn Thr
290 295 300
Cys Pro Thr Arg Glu Ser Phe Gln Trp Ser Ala Ile Leu Glu Gly Gly
305 310 315 320
Lys Ser Ile Ile Pro Leu Cys Leu Asp Met Gln Ser Leu Leu Leu Asp
325 330 335
Ser Val Asn Lys Ile Cys Asn Ile His Leu Cys Lys Leu Lys Asn Lys
340 345 350
Lys Arg Tyr Leu Lys Glu Lys Gln Lys Arg Met Tyr Asp Glu Ile
355 360 365




26


3336


DNA


hemorrhagic enteritis virus



26
ttcatcttcg aattcctgta gtaagatagg atttgttatt ctggggtttg ggtggtagag 60
atcataagga attaaagtgt ttgtctttag aaagtaaagg gttggatcat tccacggccg 120
tagttcgcgt attaattgta tttcatgaac agaaaagggg gagaattttc cgtaagactt 180
acataacgtt cttttcaaag cagttctttc tgtttggaag atctcaccag attttaattc 240
tgaagtgtgg tagttgaagc attcttccag gatttcaaaa gttatgtctg cggtacagtg 300
accctttgct cgtaattttc ctgtttttga atttttgcag gtggtacacg tgatttcttt 360
aagggcgtac agctttggag cgagaaaaat actttttgaa gaatatgcag gtgaattaca 420
caaattacac caagtttcac attctactgc ccaaacaatt gaaggttttt taggatcaaa 480
tgttagttgt gaatttttgt ttttaattct atgttgtcca tattttaaca tattttgatg 540
tcctttttct gtgagaaata gactgtctgt gtcaccgtag attgatttaa tggttttgaa 600
ttgaactggt atactatctt catcactgta taggatttcg cgccactcgc tcataaaggc 660
tcttgtccac gctaatacga agcttgctag ttgagttgga tatcttttgt ttgtcggatg 720
taaattcgtt gattttaaca tgtaaatagt gaggttttct gatgtgacgt ctaagatgtt 780
gaatggtttg taggttccca cgtgagcagt cgaagttgaa gtttgtgagg ctgggctttc 840
atccataaat tctaaactgt taaacggact ggtaagctca tcatccagtt ctaaatttct 900
ctctgcactg tcagttcggt tttttaaggt aaatgttaaa ttttctatac taacatatgg 960
aaggttgtaa gttggtagag tagtaatgct gtcaatggtt agttgtttgt tcaataattg 1020
atttcttatt ttaggatttt cttgaatgtg gttttcgaaa attgtaatgt cattgctttc 1080
tcttgtagca aaactaccgt atagtgcatt acttaggagt ttgctgattg ctcttttaac 1140
aggatttttt tcaacggtgg ctttttcttt tgctagaata tttttagtaa catattctaa 1200
gcagcaagtg ttccacgttg ggaatactgt gtttagcttg tggggaataa tgtttacttt 1260
ccatcctcta ttatggagtg tgataatatc aattgaggta acaatttcat ttttcagtat 1320
ttcgttcgtc caacataatt tgccgctttg tcttgaacat aatggcggta gaggatcaag 1380
atgttctgga ggtggcggga tggcgtcaat cattactacc attggcttta tatcagtaaa 1440
atatgatagt tttgttttag ttttttttaa tttttcgttt aactttgtaa tttcattgtt 1500
tctttctttc tctcctattg gaaatccgta tggcattgga tgagttagag cactagcata 1560
catgccgcaa atatcgtaaa caaaaatttt ttctttgaat attcctaagt gtgttgggta 1620
acaacgtcca cctctaacgg actgacggat gaaactgtac atttcatcag atggtgctac 1680
tatgtctggc agggtggagg cttttgttcc attttgtttg aagtgtaact gtctaaaaat 1740
ggcgtgagaa ttagatgaaa tagtcggtct tttaaaaata ttaaaattgc attttaggtt 1800
tagttcctct ttgatgaatg tatcgaaagt atttaggagg gtttttgtta gttcttccgt 1860
tattttaacg tctttaatac aatagtcgat taattcttta acaatgtcat atttgacttc 1920
ctttttttct aaccaaattt ctttttgttc gttatattct tctttgctag accaatattt 1980
ttctgatgga aacgagtctg agtctgtaga taatgaattg gttgacatgt actcatttat 2040
agctttgaac ggacaacaac ctttgtgaat ttttaagttg tatgctttgg ccgcttcttt 2100
tagagaagtg tgtgttattt ggaaagtatc tctgaccata gacttgatat ataaattttt 2160
tatactttct ggatgtggaa ttccttcttt aatctgtgaa agtatttcac ttttattatt 2220
ttttttttct tctttagcta catagtagtc tgggttgggg aatttaattg taatatcgtt 2280
aaaaagtatt ctgccttgtc ttggcataaa atttctttca actgtgaaaa ggggagtgat 2340
gtctaggttt tcgtcttgaa ggatttgtgt tgctaataga atttcatcga atgactgaat 2400
gttgtgtccg atgatgtaaa attctatgaa aattggttta actttcagac tcattatgag 2460
gttagtatgt tcacttaaat tgatatttgt aattgattct aaattttgtg tttgagcgaa 2520
atcttcgaga atttctcggt tttctggtgt taaaattaat tttgtgaagt aatctgtgag 2580
tgcaaatagg atgttatttc ttaattttct gaactccgta ctaatgaagt ttttaacttt 2640
agaaaaccag aagtacgtag aattttttgt ttgaatagat tttattttgg ctatttctgt 2700
tttacagata ttgataagac aatcatctcc gaaaattgaa aagcatagta gaagaggatt 2760
taataaaact ccagatgttt cagctagtgt aaatgtttct atatcgtaga taaggaagag 2820
tttttttgtg ttttcatttt ctcctatagg ttgaaatggt atagtttccc agaattttct 2880
tgtgtcattg tctacgctgt tgtagtagta agtagatctt aagtcattgc aggtatgaat 2940
tgcggagtag attctaccac atgagctgca tttttgttgt tgagtccatg attttatcca 3000
gcataatttt gacttatcat atatgaagtc taattcaata tattcatgcg atgttttgaa 3060
ttcattttgg atcataacac atccagttaa ttttttccag atagttattg atttgaccgg 3120
taagtttttt acattttcaa tatcgctgtt tgtgggcttg tatttactac aaatgaggat 3180
atatgattgt gcatctttta ctttttttgc aagtttttta caattaaata aattatatgt 3240
ccaagctatt tctattatag tggcttttat gtctttttta catatttgca acctgtatgg 3300
aatttcgttt tgagtggtat aaatgtattt gctcat 3336




27


1112


PRT


hemorrhagic enteritis virus



27
Met Ser Lys Tyr Ile Tyr Thr Thr Gln Asn Glu Ile Pro Tyr Arg Leu
1 5 10 15
Gln Ile Cys Lys Lys Asp Ile Lys Ala Thr Ile Ile Glu Ile Ala Trp
20 25 30
Thr Tyr Asn Leu Phe Asn Cys Lys Lys Leu Ala Lys Lys Val Lys Asp
35 40 45
Ala Gln Ser Tyr Ile Leu Ile Cys Ser Lys Tyr Lys Pro Thr Asn Ser
50 55 60
Asp Ile Glu Asn Val Lys Asn Leu Pro Val Lys Ser Ile Thr Ile Trp
65 70 75 80
Lys Lys Leu Thr Gly Cys Val Met Ile Gln Asn Glu Phe Lys Thr Ser
85 90 95
His Glu Tyr Ile Glu Leu Asp Phe Ile Tyr Asp Lys Ser Lys Leu Cys
100 105 110
Trp Ile Lys Ser Trp Thr Gln Gln Gln Lys Cys Ser Ser Cys Gly Arg
115 120 125
Ile Tyr Ser Ala Ile His Thr Cys Asn Asp Leu Arg Ser Thr Tyr Tyr
130 135 140
Tyr Asn Ser Val Asp Asn Asp Thr Arg Lys Phe Trp Glu Thr Ile Pro
145 150 155 160
Phe Gln Pro Ile Gly Glu Asn Glu Asn Thr Lys Lys Leu Phe Leu Ile
165 170 175
Tyr Asp Ile Glu Thr Phe Thr Leu Ala Glu Thr Ser Gly Val Leu Leu
180 185 190
Asn Pro Leu Leu Leu Cys Phe Ser Ile Phe Gly Asp Asp Cys Leu Ile
195 200 205
Asn Ile Cys Lys Thr Glu Ile Ala Lys Ile Lys Ser Ile Gln Thr Lys
210 215 220
Asn Ser Thr Tyr Phe Trp Phe Ser Lys Val Lys Asn Phe Ile Ser Thr
225 230 235 240
Glu Phe Arg Lys Leu Arg Asn Asn Ile Leu Phe Ala Leu Thr Asp Tyr
245 250 255
Phe Thr Lys Leu Ile Leu Thr Pro Glu Asn Arg Glu Ile Leu Glu Asp
260 265 270
Phe Ala Gln Thr Gln Asn Leu Glu Ser Ile Thr Asn Ile Asn Leu Ser
275 280 285
Glu His Thr Asn Leu Ile Met Ser Leu Lys Val Lys Pro Ile Phe Ile
290 295 300
Glu Phe Tyr Ile Ile Gly His Asn Ile Gln Ser Phe Asp Glu Ile Leu
305 310 315 320
Leu Ala Thr Gln Ile Leu Gln Asp Glu Asn Leu Asp Ile Thr Pro Leu
325 330 335
Phe Thr Val Glu Arg Asn Phe Met Pro Arg Gln Gly Arg Ile Leu Phe
340 345 350
Asn Asp Ile Thr Ile Lys Phe Pro Asn Pro Asp Tyr Tyr Val Ala Lys
355 360 365
Glu Glu Lys Lys Asn Asn Lys Ser Glu Ile Leu Ser Gln Ile Lys Glu
370 375 380
Gly Ile Pro His Pro Glu Ser Ile Lys Asn Leu Tyr Ile Lys Ser Met
385 390 395 400
Val Arg Asp Thr Phe Gln Ile Thr His Thr Ser Leu Lys Glu Ala Ala
405 410 415
Lys Ala Tyr Asn Leu Lys Ile His Lys Gly Cys Cys Pro Phe Lys Ala
420 425 430
Ile Asn Glu Tyr Met Ser Thr Asn Ser Leu Ser Thr Asp Ser Asp Ser
435 440 445
Phe Pro Ser Glu Lys Tyr Trp Ser Ser Lys Glu Glu Tyr Asn Glu Gln
450 455 460
Lys Glu Ile Trp Leu Glu Lys Lys Glu Val Lys Tyr Asp Ile Val Lys
465 470 475 480
Glu Leu Ile Asp Tyr Cys Ile Lys Asp Val Lys Ile Thr Glu Glu Leu
485 490 495
Thr Lys Thr Leu Leu Asn Thr Phe Asp Thr Phe Ile Lys Glu Glu Leu
500 505 510
Asn Leu Lys Cys Asn Phe Asn Ile Phe Lys Arg Pro Thr Ile Ser Ser
515 520 525
Asn Ser His Ala Ile Phe Arg Gln Leu His Phe Lys Gln Asn Gly Thr
530 535 540
Lys Ala Ser Thr Leu Pro Asp Ile Val Ala Pro Ser Asp Glu Met Tyr
545 550 555 560
Ser Phe Ile Arg Gln Ser Val Arg Gly Gly Arg Cys Tyr Pro Thr His
565 570 575
Leu Gly Ile Phe Lys Glu Lys Ile Phe Val Tyr Asp Ile Cys Gly Met
580 585 590
Tyr Ala Ser Ala Leu Thr His Pro Met Pro Tyr Gly Phe Pro Ile Gly
595 600 605
Glu Lys Glu Arg Asn Asn Glu Ile Thr Lys Leu Asn Glu Lys Leu Lys
610 615 620
Lys Thr Lys Thr Lys Leu Ser Tyr Phe Thr Asp Ile Lys Pro Met Val
625 630 635 640
Val Met Ile Asp Ala Ile Pro Pro Pro Pro Glu His Leu Asp Pro Leu
645 650 655
Pro Pro Leu Cys Ser Arg Gln Ser Gly Lys Leu Cys Trp Thr Asn Glu
660 665 670
Ile Leu Lys Asn Glu Ile Val Thr Ser Ile Asp Ile Ile Thr Leu His
675 680 685
Asn Arg Gly Trp Lys Val Asn Ile Ile Pro His Lys Leu Asn Thr Val
690 695 700
Phe Pro Thr Trp Asn Thr Cys Cys Leu Glu Tyr Val Thr Lys Asn Ile
705 710 715 720
Leu Ala Lys Glu Lys Ala Thr Val Glu Lys Asn Pro Val Lys Arg Ala
725 730 735
Ile Ser Lys Leu Leu Ser Asn Ala Leu Tyr Gly Ser Phe Ala Thr Arg
740 745 750
Glu Ser Asn Asp Ile Thr Ile Phe Glu Asn His Ile Gln Glu Asn Pro
755 760 765
Lys Ile Arg Asn Gln Leu Leu Asn Lys Gln Leu Thr Ile Asp Ser Ile
770 775 780
Thr Thr Leu Pro Thr Tyr Asn Leu Pro Tyr Val Ser Ile Glu Asn Leu
785 790 795 800
Thr Phe Thr Leu Lys Asn Arg Thr Asp Ser Ala Glu Arg Asn Leu Glu
805 810 815
Leu Asp Asp Glu Leu Thr Ser Pro Phe Asn Ser Leu Glu Phe Met Asp
820 825 830
Glu Ser Pro Ala Ser Gln Thr Ser Thr Ser Thr Ala His Val Gly Thr
835 840 845
Tyr Lys Pro Phe Asn Ile Leu Asp Val Thr Ser Glu Asn Leu Thr Ile
850 855 860
Tyr Met Leu Lys Ser Thr Asn Leu His Pro Thr Asn Lys Arg Tyr Pro
865 870 875 880
Thr Gln Leu Ala Ser Phe Val Leu Ala Trp Thr Arg Ala Phe Met Ser
885 890 895
Glu Trp Arg Glu Ile Leu Tyr Ser Asp Glu Asp Ser Ile Pro Val Gln
900 905 910
Phe Lys Thr Ile Lys Ser Ile Tyr Gly Asp Thr Asp Ser Leu Phe Leu
915 920 925
Thr Glu Lys Gly His Gln Asn Met Leu Lys Tyr Gly Gln His Arg Ile
930 935 940
Lys Asn Lys Asn Ser Gln Leu Thr Phe Asp Pro Lys Lys Pro Ser Ile
945 950 955 960
Val Trp Ala Val Glu Cys Glu Thr Trp Cys Asn Leu Cys Asn Ser Pro
965 970 975
Ala Tyr Ser Ser Lys Ser Ile Phe Leu Ala Pro Lys Leu Tyr Ala Leu
980 985 990
Lys Glu Ile Thr Cys Thr Thr Cys Lys Asn Ser Lys Thr Gly Lys Leu
995 1000 1005
Arg Ala Lys Gly His Cys Thr Ala Asp Ile Thr Phe Glu Ile Leu
1010 1015 1020
Glu Glu Cys Phe Asn Tyr His Thr Ser Glu Leu Lys Ser Gly Glu
1025 1030 1035
Ile Phe Gln Thr Glu Arg Thr Ala Leu Lys Arg Thr Leu Cys Lys
1040 1045 1050
Ser Tyr Gly Lys Phe Ser Pro Phe Ser Val His Glu Ile Gln Leu
1055 1060 1065
Ile Arg Glu Leu Arg Pro Trp Asn Asp Pro Thr Leu Tyr Phe Leu
1070 1075 1080
Lys Thr Asn Thr Leu Ile Pro Tyr Asp Leu Tyr His Pro Asn Pro
1085 1090 1095
Arg Ile Thr Asn Pro Ile Leu Leu Gln Glu Phe Glu Asp Glu
1100 1105 1110




28


1791


DNA


hemorrhagic enteritis virus



28
atgtctttct ttcagattaa caattatgcc cgcctaacta accaagaaga agacaccatc 60
agatttatgc atttaacaca attcacagat caagtcaaca tccctatgtt tgtaagaagt 120
attcctggat taagatggtg cagtacattc tttaactatc agattttaat gttagaaaat 180
ttagcaccac aaggccctgc cgttttaaat cctcctttaa acggattgcc gcctcctcat 240
ttgctgattg gctacgctta tctattcaat gtgaacaata actaccgttt tgaaagcaga 300
acatatacaa aattaaacta tgaagctgat caatctacta caagaagacc tagaaatttt 360
tggtctattc taagtgattg ttcatataca attaacacaa gtaatgtgcg caccattcca 420
gaaaactacg aagataactt aaaccagttt caagaagaaa ttcttattaa tagaattaga 480
gctgacattg aatctagaag taacatgcaa ggaacaggtg ttacattaca accagaagct 540
tacgaaaata taaatatcca aaatgaaata aataaaatgt acgtaacaaa tttaagagat 600
tttattaact ccaaaagttt tgctttcaat caaaggtatc aatatgaaac tgaaaaagat 660
attaacacat taaagtgcat taactacact ttagaactac ttgcaaaatt tatttataat 720
tggcaattta aagatgaaaa aatatacgta ccgttgaagg ataattggct tcaaatcctc 780
aaaacagaat acgacaaatg gcagcctgaa atggatataa actacgctgt atcatatatc 840
acagcattaa attcaatgat atttcctttc aaagagtgga aaacaaatct aaaaggtggt 900
gcaagattaa gaagtggcac tagaacagac ttaccatttt taagacagag agaaaatcaa 960
agagccataa ctgaacaaat gagaagaaat agaggacaga tagtttcgag gtttatagac 1020
agcttacctt taatcagaag aataagaaga cccccaccaa gtcctgtgga agaggaagat 1080
gcaggagaag gtccaagtgc cggacctgaa gaagaagaaa tggaagaaga attaggcaat 1140
gaaatccttc gaatttttca aaatatcctt aatgaactaa gagcagaatt aacagaacct 1200
gcaagagaac atgaaatttt ttctttcggt cagttatttt acaatctttt acagagagca 1260
aatgaacaag gaagggtaac tagagagttt ataagaagat tcatatttta ctttttcata 1320
gctgaacaca tcagtagtac actattttat tatcatgctc tattaaactt aaacgttatt 1380
ttcagaagat atgtaaatat gcaatatgtc caagtcataa tgactggacg agatcatgaa 1440
ggaaatgtta accttcacag agtttggact aacacaaaca tttctccatt tttaagaata 1500
tttagaacaa tcatcaatga ccttctaata atatgtgaca gaaggccaga tagtattgaa 1560
actcaagcag aacaagaaga cctacttaca tccctatcac acagaccaga atctggagat 1620
ccaaacgacc ttctaaacca agctagactt aatgaagatt taatcaacac agtaactctt 1680
tcctttaaaa tcaagcctat tggtcttgta acaattgcta caaacagaca aataattaac 1740
aatgcttcgg ctgtaagaac acaagaaatg agaagattaa gacaaccaag a 1791




29


597


PRT


hemorrhagic enteritis virus



29
Met Ser Phe Phe Gln Ile Asn Asn Tyr Ala Arg Leu Thr Asn Gln Glu
1 5 10 15
Glu Asp Thr Ile Arg Phe Met His Leu Thr Gln Phe Thr Asp Gln Val
20 25 30
Asn Ile Pro Met Phe Val Arg Ser Ile Pro Gly Leu Arg Trp Cys Ser
35 40 45
Thr Phe Phe Asn Tyr Gln Ile Leu Met Leu Glu Asn Leu Ala Pro Gln
50 55 60
Gly Pro Ala Val Leu Asn Pro Pro Leu Asn Gly Leu Pro Pro Pro His
65 70 75 80
Leu Leu Ile Gly Tyr Ala Tyr Leu Phe Asn Val Asn Asn Asn Tyr Arg
85 90 95
Phe Glu Ser Arg Thr Tyr Thr Lys Leu Asn Tyr Glu Ala Asp Gln Ser
100 105 110
Thr Thr Arg Arg Pro Arg Asn Phe Trp Ser Ile Leu Ser Asp Cys Ser
115 120 125
Tyr Thr Ile Asn Thr Ser Asn Val Arg Thr Ile Pro Glu Asn Tyr Glu
130 135 140
Asp Asn Leu Asn Gln Phe Gln Glu Glu Ile Leu Ile Asn Arg Ile Arg
145 150 155 160
Ala Asp Ile Glu Ser Arg Ser Asn Met Gln Gly Thr Gly Val Thr Leu
165 170 175
Gln Pro Glu Ala Tyr Glu Asn Ile Asn Ile Gln Asn Glu Ile Asn Lys
180 185 190
Met Tyr Val Thr Asn Leu Arg Asp Phe Ile Asn Ser Lys Ser Phe Ala
195 200 205
Phe Asn Gln Arg Tyr Gln Tyr Glu Thr Glu Lys Asp Ile Asn Thr Leu
210 215 220
Lys Cys Ile Asn Tyr Thr Leu Glu Leu Leu Ala Lys Phe Ile Tyr Asn
225 230 235 240
Trp Gln Phe Lys Asp Glu Lys Ile Tyr Val Pro Leu Lys Asp Asn Trp
245 250 255
Leu Gln Ile Leu Lys Thr Glu Tyr Asp Lys Trp Gln Pro Glu Met Asp
260 265 270
Ile Asn Tyr Ala Val Ser Tyr Ile Thr Ala Leu Asn Ser Met Ile Phe
275 280 285
Pro Phe Lys Glu Trp Lys Thr Asn Leu Lys Gly Gly Ala Arg Leu Arg
290 295 300
Ser Gly Thr Arg Thr Asp Leu Pro Phe Leu Arg Gln Arg Glu Asn Gln
305 310 315 320
Arg Ala Ile Thr Glu Gln Met Arg Arg Asn Arg Gly Gln Ile Val Ser
325 330 335
Arg Phe Ile Asp Ser Leu Pro Leu Ile Arg Arg Ile Arg Arg Pro Pro
340 345 350
Pro Ser Pro Val Glu Glu Glu Asp Ala Gly Glu Gly Pro Ser Ala Gly
355 360 365
Pro Glu Glu Glu Glu Met Glu Glu Glu Leu Gly Asn Glu Ile Leu Arg
370 375 380
Ile Phe Gln Asn Ile Leu Asn Glu Leu Arg Ala Glu Leu Thr Glu Pro
385 390 395 400
Ala Arg Glu His Glu Ile Phe Ser Phe Gly Gln Leu Phe Tyr Asn Leu
405 410 415
Leu Gln Arg Ala Asn Glu Gln Gly Arg Val Thr Arg Glu Phe Ile Arg
420 425 430
Arg Phe Ile Phe Tyr Phe Phe Ile Ala Glu His Ile Ser Ser Thr Leu
435 440 445
Phe Tyr Tyr His Ala Leu Leu Asn Leu Asn Val Ile Phe Arg Arg Tyr
450 455 460
Val Asn Met Gln Tyr Val Gln Val Ile Met Thr Gly Arg Asp His Glu
465 470 475 480
Gly Asn Val Asn Leu His Arg Val Trp Thr Asn Thr Asn Ile Ser Pro
485 490 495
Phe Leu Arg Ile Phe Arg Thr Ile Ile Asn Asp Leu Leu Ile Ile Cys
500 505 510
Asp Arg Arg Pro Asp Ser Ile Glu Thr Gln Ala Glu Gln Glu Asp Leu
515 520 525
Leu Thr Ser Leu Ser His Arg Pro Glu Ser Gly Asp Pro Asn Asp Leu
530 535 540
Leu Asn Gln Ala Arg Leu Asn Glu Asp Leu Ile Asn Thr Val Thr Leu
545 550 555 560
Ser Phe Lys Ile Lys Pro Ile Gly Leu Val Thr Ile Ala Thr Asn Arg
565 570 575
Gln Ile Ile Asn Asn Ala Ser Ala Val Arg Thr Gln Glu Met Arg Arg
580 585 590
Leu Arg Gln Pro Arg
595




30


1038


DNA


hemorrhagic enteritis virus



30
atgcaatacg ctacaggatt acaagcattg tttgcatgcc aagctgaagc gaatatttta 60
cctacttctg attactgggc caaactggtt gagacatatg ttaagaagaa taaaccagat 120
cttaatctta cgatttcctc cgctaaatct ttttatcact ttgctggccg tatcgtaagc 180
agttttgtgt ataatgatag cggcttaatt tgcaattata attgccttgg agccaatatc 240
tgggttcata attgggatga agataacatt agatgttttc atggcactgt tatgctttca 300
aaacccataa cttacagcct gtctcctcaa tcagaggaag gaatgagagc tctgacagct 360
ggtgagggca gattagagaa agaaaaaaat caaaaagacg tgataaagct aacaaattat 420
agcaatatag tctgtccatt agatagtaat gttcagtggc caactattca ttcaccagac 480
tcttgtggaa tgaattttgg caacaaagaa aaagcaaaag ctgcctttct tcataatatt 540
gattggacaa gtgctatgtt tcctaaagca aagaaatgtg aaatttctga aaaaatgatt 600
atagttacaa agtgcttctg taactatggt catgaaaaca ttcagcttgg cagacaaatc 660
tgcaaaatga ctgcttttga aatacctgga gcgaatgaca tagaccctga gagttgtcat 720
gatgatatgc ttcttgcaac tgccaagtat aaacacacct ttgtgtttca atgttgcaat 780
cccattagac ttaaaagaaa tgctaaggat aaagataatc agactcacaa acattgtgat 840
tttaaattgt caatgattga tgtgagacag gctatgaaaa ttagcaaaga tatatatact 900
aagctgaagg aaaccataga tgatggctcc cctactaaaa taatgttgcc tgcttttgta 960
ttcaatccta aaaagcattc ttttaagcaa gctattgtgg ctcaacacga ggtggaaagt 1020
gatgatgacg ctttttgt 1038




31


346


PRT


hemorrhagic enteritis virus



31
Met Gln Tyr Ala Thr Gly Leu Gln Ala Leu Phe Ala Cys Gln Ala Glu
1 5 10 15
Ala Asn Ile Leu Pro Thr Ser Asp Tyr Trp Ala Lys Leu Val Glu Thr
20 25 30
Tyr Val Lys Lys Asn Lys Pro Asp Leu Asn Leu Thr Ile Ser Ser Ala
35 40 45
Lys Ser Phe Tyr His Phe Ala Gly Arg Ile Val Ser Ser Phe Val Tyr
50 55 60
Asn Asp Ser Gly Leu Ile Cys Asn Tyr Asn Cys Leu Gly Ala Asn Ile
65 70 75 80
Trp Val His Asn Trp Asp Glu Asp Asn Ile Arg Cys Phe His Gly Thr
85 90 95
Val Met Leu Ser Lys Pro Ile Thr Tyr Ser Leu Ser Pro Gln Ser Glu
100 105 110
Glu Gly Met Arg Ala Leu Thr Ala Gly Glu Gly Arg Leu Glu Lys Glu
115 120 125
Lys Asn Gln Lys Asp Val Ile Lys Leu Thr Asn Tyr Ser Asn Ile Val
130 135 140
Cys Pro Leu Asp Ser Asn Val Gln Trp Pro Thr Ile His Ser Pro Asp
145 150 155 160
Ser Cys Gly Met Asn Phe Gly Asn Lys Glu Lys Ala Lys Ala Ala Phe
165 170 175
Leu His Asn Ile Asp Trp Thr Ser Ala Met Phe Pro Lys Ala Lys Lys
180 185 190
Cys Glu Ile Ser Glu Lys Met Ile Ile Val Thr Lys Cys Phe Cys Asn
195 200 205
Tyr Gly His Glu Asn Ile Gln Leu Gly Arg Gln Ile Cys Lys Met Thr
210 215 220
Ala Phe Glu Ile Pro Gly Ala Asn Asp Ile Asp Pro Glu Ser Cys His
225 230 235 240
Asp Asp Met Leu Leu Ala Thr Ala Lys Tyr Lys His Thr Phe Val Phe
245 250 255
Gln Cys Cys Asn Pro Ile Arg Leu Lys Arg Asn Ala Lys Asp Lys Asp
260 265 270
Asn Gln Thr His Lys His Cys Asp Phe Lys Leu Ser Met Ile Asp Val
275 280 285
Arg Gln Ala Met Lys Ile Ser Lys Asp Ile Tyr Thr Lys Leu Lys Glu
290 295 300
Thr Ile Asp Asp Gly Ser Pro Thr Lys Ile Met Leu Pro Ala Phe Val
305 310 315 320
Phe Asn Pro Lys Lys His Ser Phe Lys Gln Ala Ile Val Ala Gln His
325 330 335
Glu Val Glu Ser Asp Asp Asp Ala Phe Cys
340 345




32


7


PRT


hemorrhagic enteritis virus



32
Val Phe Gln Cys Cys Asn Pro
1 5




33


12


PRT


adeno-associated virus 2



33
Arg Leu Pro Val Arg Arg Arg Arg Arg Arg Val Pro
1 5 10




34


12


PRT


EDS



34
Thr Leu Pro Ala Arg Thr Arg Arg Thr Arg Arg Pro
1 5 10




35


12


PRT


hemorrhagic enteritis virus



35
Ser Leu Pro Leu Ile Arg Arg Ile Arg Arg Pro Pro
1 5 10




36


5


PRT


hemorrhagic enteritis virus



36
Leu Arg Gly Gly Lys
1 5




37


11


PRT


Unknown




Description of Unknown Organism Conserved
sequence






37
Gly Xaa Xaa Xaa Xaa Xaa Arg Arg Xaa Cys Xaa
1 5 10




38


7


PRT


adeno-associated virus 2




MISC_FEATURE




(4)..(4)




X=Tyr or Arg or Phe





38
Met Leu Ile Xaa Gly Xaa Gly
1 5




39


7


PRT


adeno-associated virus 2




MISC_FEATURE




(4)..(4)




X=Tyr or Arg or Phe





39
Met Leu Ile Xaa Gly Gly Xaa
1 5




40


6


PRT


hemorrhagic enteritis virus



40
Gly Gly Gly Asn Gly Gly
1 5




41


4


PRT


hemorrhagic enteritis virus



41
Lys Lys Arg Lys
1




42


4


PRT


hemorrhagic enteritis virus



42
Lys Lys Asn Lys
1






Claims
  • 1. An isolated DNA sequence which comprises:a) a nucleotide sequence as shown in SEQ ID NO:1; or b) a nucleotide sequence which corresponds to the sequence shown in SEQ ID NO:1 within the scope of the degeneracy of the genetic code.
  • 2. The isolated DNA sequence as claimed in claim 1 which is genomic DNA or cDNA.
  • 3. A non-virulent HEV encoded by the DNA sequence of claim 1.
  • 4. A host cell transformed with a nucleotide sequence which comprises:a) a nucleotide sequence as shown in SEQ ID NO:1; or b) a nucleotide sequence which corresponds to the sequence shown in SEQ ID NO:1 within the scope of the degeneracy of the genetic code.
  • 5. A host cell as claimed in claim 4, said host cell being a eukaryotic host cell, wherein said eukaryotic host cell is an insect cell, a plant cell, a mammalian cell, a bird cell, or a yeast cell, or a prokaryotic host cell.
  • 6. A process for the production of transformed or transfected host cells as claimed in claim 4, which process comprises:a) transforming a host cell with a DNA sequence which comprises: i) a nucleotide sequence as shown in SEQ ID NO:1; or ii) a nucleotide sequence which corresponds to the sequence shown in SEQ ID NO:1 within the scope of the degeneracy of the genetic code; b) isolating the transformed or transfected cells obtained by step (a); and c) culturing the host cell isolated in step (b) under conditions in which propagation of said cells takes place.
  • 7. A method of eliciting an immune response in an animal against Hemorrhagic enteritis virus (HEV) by administering to the animal the nucleotide sequence as claimed in claim 1.
  • 8. The host cell of claim 5, wherein the prokaryotic host cell is a bacterial cell.
  • 9. The pharmaceutical composition comprising as active ingredient a therapeutically effective amount of the cells of claim 4, and a pharmaceutically acceptable carrier.
Priority Claims (1)
Number Date Country Kind
124567 May 1998 IL
Parent Case Info

This application is a continuation of PCT International Application No. PCT/IL99/00268, filed May 19, 1999, claiming priority of Israeli Patent Application No. 124567, filed May 20, 1998, the contents of which are hereby incorporated in their entireties into the present application.

US Referenced Citations (1)
Number Name Date Kind
4388298 Nazerian et al. Jun 1983 A
Foreign Referenced Citations (1)
Number Date Country
WO 9603508 Feb 1996 WO
Non-Patent Literature Citations (6)
Entry
Hess et al , Virology, 1997, vol. 238, pp. 145-156.*
Jucker et al , Journal of General Virology, 1997, vol. 77, pp. 469-479.*
Suresh et al , Virus Research, 1995, vol. 39, pp. 289-297.*
Nazerian et al , Avian Diseases, 1982, vol. 26 (4) 816-827.*
Boursnell M.E.G. et al., “A Recombinant Fowlpox Virus Expressing the Hemagglutinin-Neuraminidase Gene of Newcastel Disease Virus (NDV) Protects Chickens Against Challenge by NDV”, Virology, 1990, 178(1) : 297-300.
Yamanouchi et al., “Immunisation of Cattle with a Recombinant Vaccinia Vector Expressing the Haemagglutinin Gene of Rinderpest Virus”, The Veterinary Record, 1993, 132: 152-156.
Continuations (1)
Number Date Country
Parent PCT/IL99/00268 May 1999 US
Child 09/717364 US