This invention relates to making electrical connections between electrical devices.
Electrical connection pins are a popular means for connecting two electrical devices. For example, integrated circuit (IC) packages typically possess a number of male electrical connection pins for mounting the IC package an electrical socket on a printed circuit board (PCB). Each of the male electrical connection pins of the IC package is inserted into corresponding female sockets in the electrical socket on the PCB.
As technology continues to advance, the size of electrical devices continues to decrease while the number of connections required between electrical devices continues to increase. Consequently, increasing the density of electrical connection terminals for electrically connecting two electrical devices is necessary.
The invention relates to a terminal assembly for electrically connecting two electrical devices as described in U.S. patent application Ser. No. 10/935,880 which is incorporated herein in its entirety. In one aspect of the invention, the terminal assembly includes an insulating support member for supporting female sockets and male pins; a number of female sockets received within a first array of apertures in the insulating support member, each aperture extending from the upper surface of the insulating support member to the bottom surface of the insulating support member; and a number of male pins received within a second array of apertures in the insulating support member, each aperture extending from the upper surface of the insulating support member to the bottom surface of the insulating support member.
Preferred embodiments of this aspect of the invention may include one or more of the following features. The female sockets and male pins are arranged in a pattern such that each interstitial space between the sockets is occupied by a pin and each interstitial space between the pins is occupied by a socket. The terminal assembly is used to electrically connect a first circuit board to a second circuit board. The terminal assembly is used to electrically connect an IC package to a circuit board. The height of at least one of the male pins is different than the height of every other pin. The terminal assembly includes at least one alignment element to align the female sockets and male pins with corresponding male pins and female sockets on a second terminal assembly. For example, the terminal assembly includes at least one alignment guide post or at least one alignment guide hole. The alignment guide post is capable of serving as an electric power, voltage, or ground connection. In these embodiments, the alignment guide posts are advantageously dual-purposed: serving to both align electrical connections between electrical devices as well as to provide an electrical path themselves. The terminal assembly further includes a member that applies a downward force on the terminal assembly and to each pin and socket.
In another aspect of this invention, an intercoupling component for electrically connecting two electrical devices includes two terminal assemblies of the type described above. The two terminal assemblies are used to electrically connect two electrical devices by inserting the male pins of the first terminal assembly into the female sockets of the second terminal assembly and by inserting the male pins of the second terminal assembly into the female sockets of the first terminal assembly.
Among other advantages, intercoupling components having the structure discussed above provides all of the advantages associated with traditional socket/adapter technology (e.g., non-permanent connections) while providing a substantial increase in the density of electrical connections between electrical devices or substrates (e.g., printed circuit boards) having electrical connections.
In another aspect of this invention, a terminal assembly of the type used to electrically connect electrical devices includes a first insulating support member having a peripheral wall defining an interior recess; a first array of apertures, each aperture extending from an upper surface of the first insulating support member to an opposite lower surface of the first insulating support member contiguous with the recess, each aperture configured to receive a socket, and a second array of apertures, each aperture extending from an upper surface of the first insulating support member to an opposite lower surface of the first insulating support member contiguous with the recess, configured to receive a pin; as well as a plurality of sockets for providing electrical connections arranged in a configuration corresponding with the first array of apertures, each socket received within a corresponding aperture of the first array of apertures of the first insulating support member and having an end with an opening configured to receive a pin of a corresponding terminal assembly and an opposite end configured to contact a corresponding electrical contact; and a plurality of pins for providing electrical connections arranged in a configuration corresponding with the second array of apertures, each pin received within an opening of a corresponding aperture of the second array of apertures of the first insulating support member and having an end configured to be received within a socket of a corresponding terminal assembly and an opposite end configured to contact a corresponding electrical contact.
In another aspect of the invention, an intercoupling component has two such terminal assemblies.
Embodiments of the invention may include one or more of the following features. The female sockets and male pins of the first terminal assembly are arranged in a pattern such that each interstitial space between the sockets is occupied by a pin and each interstitial space between the pins is occupied by a socket. The female sockets and male pins of the second terminal assembly are arranged in a pattern corresponding to the pattern of the female sockets and male pins of the first terminal assembly such that each interstitial space between the sockets is occupied by a pin and each interstitial space between the pins is occupied by a socket. The intercoupling component is used to electrically connect a first circuit board to a second circuit board. The intercoupling component is used to electrically connect an IC package to a circuit board.
In certain embodiments, the first terminal assembly is identical to the second terminal assembly. The height of at least one of the male pins of the first terminal assembly is different than the height of every other pin of the first terminal assembly. The height of at least one of the male pins of the second terminal assembly is different than the height of every other pin of the second terminal assembly. Both the first terminal assembly and the second terminal assembly include at least one alignment element each to align the female sockets and male pins of the first terminal assembly with corresponding male pins and female sockets of the second terminal assembly. For example, the first terminal assembly includes at least one alignment guide post that is inserted into at least one alignment guide hole in the second terminal assembly. The alignment guide post is capable of serving as an electric power, voltage, or ground connection. The intercoupling component further includes a member that applies a downward force on the intercoupling component.
In certain embodiments, the terminal assembly also includes a second insulating support member, the second insulating support member including a third array of apertures corresponding to first array of apertures, each aperture extending from an upper surface of the second insulating support member to an opposite lower surface of the second insulating support member, each aperture configured to receive a socket, and a fourth array of apertures corresponding to the second array of apertures, each aperture extending from an upper surface of the second insulating support member to an opposite lower surface of the second insulating support member, configured to receive a pin. In some instances, the first and second insulating members are attached to each other with the first array of apertures substantially aligned with the third array of apertures and the second array of apertures substantially aligned with the fourth array of apertures.
In certain embodiments, the first array of apertures and the second array of apertures are arranged in a pattern comprising a plurality of columns, each column having an axis, the columns located such that the distance between the axes of adjacent columns is less than a standard diameter of apertures of the first array of apertures. In some instances, each column is arranged in an alternating sequence of sockets and pins.
In another aspect of the invention, a method of manufacturing a terminal assembly of the type used to electrically connect electrical devices includes: providing a first insulating support member including a peripheral wall defining an interior recess; a first array of apertures, each aperture extending from an upper surface of the first insulating support member to an opposite lower surface of the first insulating support member contiguous with the recess, each aperture configured to receive a socket, and a second array of apertures, each aperture extending from an upper surface of the first insulating support member to an opposite lower surface of the first insulating support member contiguous with the recess, configured to receive a pin; providing a plurality of sockets for providing electrical connections, each socket having an end with an opening configured to receive a pin of a corresponding terminal assembly and an opposite end configured to contact a corresponding electrical contact, arranged in a configuration corresponding with the first array of apertures such that each socket is received within a corresponding aperture of the first array of apertures of the insulating support member; and providing a plurality of pins for providing electrical connections, each pin having an end configured to be received within a socket of a corresponding terminal assembly and an opposite end configured to contact a corresponding electrical contact, arranged in a configuration corresponding with the second array of apertures such that each pin is received within an opening of a corresponding aperture of the second array of apertures of the insulating support member.
In some embodiments, the method includes providing the first insulating support member by machining the first and second arrays of apertures in the first support member, each aperture extending from a first surface of the first support member and terminating before reaching an opposite second surface of the first support member; and forming a recess in the opposite second surface of the first support member such that each aperture extends from the first surface of the first support member to a base surface of the recess. In some instances, the method includes attaching a second insulating support member to the first insulating support member, the second insulating support member including a third array of apertures corresponding to first array of apertures, each aperture extending from an upper surface of the second insulating support member to an opposite lower surface of the second insulating support member, each aperture configured to receive a socket, and a fourth array of apertures corresponding to the second array of apertures, each aperture extending from an upper surface of the second insulating support member to an opposite lower surface of the second insulating support member, configured to receive a pin; wherein first and second insulating members are attached to each other with the first array of apertures substantially aligned with the third array of apertures and the second array of apertures substantially aligned with the fourth array of apertures.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring to
First hermaphroditic terminal assembly 16 includes an insulating support member 20 for supporting female sockets 22 and male pins 24. Insulating support member 20 includes a first array of apertures 26, extending from the upper surface 28 of insulating support member 20 to the bottom surface 30 of insulating support member 20. Each female socket 22 is received within one aperture 26 of the first array of apertures of the insulating support member 20. Each female socket 22 has a first end 32 configured to receive a corresponding male pin 34 of the second hermaphroditic terminal assembly 18 and a second end 36 attached to a solder ball 38 that establishes an electrical connection with the electrical contact 39 on PCB 14. The female sockets 22 received within the first array of apertures 26 of the insulating support member 20 are arranged such that interstitial spaces 40 exist between the female sockets 22.
Insulating support member 20 also includes a second array of apertures 42, extending from the upper surface 28 of insulating support member 20 to the bottom surface 30 of insulating support member 20. Each male pin 24 is received within one aperture 42 of the second array of apertures of the insulating support member 20. Each male pin has a first end 44 configured to be received within a corresponding female socket 46 of the second hermaphroditic terminal assembly 18 and a second end 48 attached to a solder ball 38 that establishes an electrical connection with electrical contact 39 on PCB 14. In some applications, it may be desirable for at least one male pin 49 to be of a different height than every other male pin 24 where the height of a pin is defined as the length from the first end of the pin 44 to the second end of the pin 48. Varying the height of the pins serves to decrease the force required to insert the first hermaphroditic terminal assembly 16 into a corresponding hermaphroditic terminal assembly. Varying the height of the pins also serves to decrease the force required to extract the first hermaphroditic terminal assembly 16 from a corresponding hermaphroditic terminal assembly into which it has been inserted. The male pins 24 received within the second array of apertures 42 of the insulating support member 20 are arranged such that interstitial spaces 50 exist between the male pins 24. Collectively, the female sockets 22 and the male pins 24 are arranged in a pattern such that the interstitial spaces 40 between the female sockets 22 are occupied by male pins 24, and the interstitial spaces 50 between the male pins 24 are occupied by female sockets 22. It is appreciated that the female sockets 22 and the male pins 24 could be arranged in different patterns.
First hermaphroditic terminal assembly 16 also includes two alignment guide posts 52 located in opposite corners 54, 56 of first hermaphroditic terminal assembly 16 and disposed through the upper surface 28 of the insulating support member 20 and two alignment guide holes 58 located in opposite corners 60, 62 of the upper surface 28 of the insulating support member 20. In addition, first hermaphroditic terminal assembly 16 includes two alignment guide posts 64 located in opposite corners 54, 56 of first hermaphroditic terminal assembly 16 and disposed through the lower surface 30 of the insulating support member 20 and two alignment guide holes (not shown) located in opposite corners 60, 62 of the lower surface 30 of the insulating support member 20.
Second hermaphroditic terminal assembly 18 includes an insulating support member 68 for supporting female sockets 46 and male pins 34. Insulating support member 68 includes a first array of apertures 70, extending from the upper surface 72 of insulating support member 68 to the bottom surface 74 of insulating support member 68. Each female socket 46 is received within one aperture 70 of the first array of apertures of the insulating support member 68. Each female socket 46 has a first end 76 configured to receive a corresponding male pin 24 of the first hermaphroditic terminal assembly 16 and a second end 78 configured to contact a solder ball 80 on IC package 12. The female sockets 46 received within the first array of apertures 70 of the insulating support member 68 are arranged such that interstitial spaces 82 exist between the female sockets 46.
Insulating support member 68 also includes a second array of apertures 84, extending from the upper surface 72 of insulating support member 68 to the bottom surface 74 of insulating support member 68. Each male pin 34 is received within one aperture 84 of the second array of apertures of the insulating support member 68. Each male pin has a first end 86 configured to be received within a corresponding female socket 22 of the first hermaphroditic terminal assembly 16 and a second end 88 configured to contact a corresponding solder ball 80 on IC package 12. In some applications, it may be desirable for at least one male pin 87 to be of a different height than every other male pin 34, where the height of a pin is defined as the length from the first end of the pin 86 to the second end of the pin 88. Varying the height of the pins serves to decrease the force required to insert the second hermaphroditic terminal assembly 18 into a corresponding hermaphroditic terminal assembly. Varying the height of the pins also serves to decrease the force required to extract the second hermaphroditic terminal assembly 18 from a corresponding hermaphroditic terminal assembly into which it has been inserted. The male pins 34 received within the second array of apertures 84 of the insulating support member 68 are arranged such that interstitial spaces 90 exist between the male pins 34. Collectively, the female sockets 46 and the male pins 34 are arranged in a pattern such that the interstitial spaces 82 between the female sockets 46 are occupied by male pins 34, and the interstitial spaces 90 between the male pins 34 are occupied by female sockets 46. It is appreciated that the female sockets 46 and the male pins 34 could be arranged in different patterns.
Second hermaphroditic terminal assembly 18 also includes two alignment guide posts 92 located in opposite corners 94, 96 of second hermaphroditic terminal assembly 18 and disposed through the upper surface 72 of the insulating support member 68 and two alignment guide holes 98 located in opposite corners 100, 102 of the upper surface 72 of the insulating support member 68. In addition, second hermaphroditic terminal assembly 18 includes two alignment guide posts 104 located in opposite corners 94, 96 of second hermaphroditic terminal assembly 18 and disposed through the lower surface 74 of the insulating support member 68 and two alignment guide holes 98 located in opposite corners 100, 102 of the lower surface 74 of the insulating support member 68.
The intercoupling component 19 is used to electrically connect IC package 12 to PCB 14. IC package 12 is secured to the lower surface 74 of insulating support member 68 of the second hermaphroditic terminal assembly 18 such that the solder balls 80 on IC package 12 are brought into contact with the second ends 78 of the female sockets 46 of the second hermaphroditic terminal assembly 18 and the second ends 88 of the male pins 34 of the second hermaphroditic terminal assembly 18. The alignment guide posts 104 disposed through the lower surface 74 the insulating support member 68 of the second terminal assembly can be used to properly align the solder balls 80 on IC package 12 with the second ends 78 of the female sockets 46 of the second hermaphroditic terminal assembly 18 and the second ends 88 of the male pins 34 of the second hermaphroditic terminal assembly 18. It is appreciated that other alignment elements could be used to facilitate proper alignment of the solder balls 80 on IC package 12 with the second ends 78 of the female sockets 46 of the second hermaphroditic terminal assembly 18 and the second ends of the male pins 34 of the second hermaphroditic terminal assembly 18. It is also appreciated that alignment elements are not required to properly align the electrical contacts 80 on IC package 12 with the second ends 78 of the female sockets 46 of the second hermaphroditic terminal assembly 18 and the second ends of the male pins 34 of the second hermaphroditic terminal assembly 18.
Hermaphroditic socket/adapter assembly 10 includes a hold-down cover 108 for securing the IC package 12 to the intercoupling component 19. Hold-down cover 108 includes a pair of opposite walls 110 having tab members 112 that engage the intercoupling component 19. Hold-down cover 108 includes a threaded thru-hole 114 that threadingly receives a heat sink 116 to provide a thermal path for dissipating heat from the IC package 12. Heat sink 116 is inserted through threaded thru-hole 114 and a slot 118 formed in the heat sink 116 facilitates threading the heat sink 116 within the cover, for example, with a screwdriver or coin. It is appreciated that other mechanisms may also be used to secure the IC package 12 to the intercoupling component 19. It is also appreciated that other heat sink arrangements may be substituted for the version shown in
The second hermaphroditic terminal assembly 18 is coupled to the first hermaphroditic terminal assembly 16 by inserting each male pin 34 of the second terminal assembly 18 into a corresponding female socket 22 of the first hermaphroditic terminal assembly 16 and inserting each male pin 24 of the first hermaphroditic terminal assembly 16 into a corresponding female socket 46 of the second hermaphroditic terminal assembly 18. When the second hermaphroditic terminal assembly 18 is coupled to the first hermaphroditic terminal assembly 16, it is said to be mated with the first hermaphroditic terminal assembly 16. The alignment guide posts 92 disposed through the upper surface 72 of the insulating support member 68 of the second hermaphroditic terminal assembly 18 are inserted into alignment guide holes 58 in the upper surface 28 of the insulating support member 20 of the first hermaphroditic terminal assembly 16 and the alignment guide posts 52 disposed through the upper surface 28 of the first hermaphroditic terminal assembly 16 are inserted into alignment guide holes 98 in the upper surface 72 of the insulating support member 68 of the second hermaphroditic terminal assembly 18 to properly align the male pins 34 of the second hermaphroditic terminal assembly 18 with the corresponding female sockets 22 of the first hermaphroditic terminal assembly 16 and the male pins 24 of the first hermaphroditic terminal assembly 16 with the corresponding female sockets 46 of the second hermaphroditic terminal assembly 18. It is appreciated that other alignment elements could be used to facilitate proper alignment of the male pins 34 of the second hermaphroditic terminal assembly 18 with the corresponding female sockets 22 of the first hermaphroditic terminal assembly 16 and the male pins 24 of the first hermaphroditic terminal assembly 16 with the corresponding female sockets 46 of the second hermaphroditic terminal assembly 18. It is also appreciated that alignment elements are not required to properly align the male pins 34 of the second hermaphroditic terminal assembly 18 with the corresponding female sockets 22 of the first hermaphroditic terminal assembly 16 and the male pins 24 of the first hermaphroditic terminal assembly 16 with the corresponding female sockets 46 of the second hermaphroditic terminal assembly 18. In some applications, it may be advantageous for the alignment guide posts 92 disposed through the upper surface 72 of insulating support member 68 of the second hermaphroditic terminal assembly 18 and the alignment guide posts 52 disposed through the upper surface 28 of the first hermaphroditic terminal assembly 16 to serve as power, voltage, or ground connections.
Referring to
First hermaphroditic terminal assembly 16 is secured to PCB 14 such that the solder balls 38 attached to second ends 36 of the female sockets 22 of the first hermaphroditic terminal assembly 16 and the solder balls 38 attached to second ends 48 of the male pins 24 of the first hermaphroditic terminal assembly 16 are in contact with the electrical contacts 39 on PCB 14. The alignment guide posts 64 disposed through the lower surface 30 of the insulating support member 20 of the first hermaphroditic terminal assembly 16 are inserted into alignment guide holes 128 in PCB 14. It is appreciated that other alignment elements could be used to facilitate proper alignment of the solder balls 38 attached to second ends 36 of the female sockets 22 of the first hermaphroditic terminal assembly 16 and the solder balls 38 attached to second ends 48 of the male pins 24 of the first hermaphroditic terminal assembly 16 with the electrical contacts 39 on PCB 14. It is also appreciated that alignment elements are not required.
When IC package 12 is secured to the lower surface 74 of insulating support member 68 of the second hermaphroditic terminal assembly 18 such that the solder balls 80 on IC package 12 are in contact with the second ends 78 of the female sockets 46 of the second hermaphroditic terminal assembly 18 and the second ends 88 of the male pins 34 of the second hermaphroditic terminal assembly 18; second hermaphroditic terminal assembly 18 is coupled to the first hermaphroditic terminal assembly 16 such that each male pin 34 of the second hermaphroditic terminal assembly 18 is received within a corresponding female socket 22 of the first hermaphroditic terminal assembly 16 and each male pin 24 of the first hermaphroditic terminal assembly 16 is received within a corresponding female socket 46 of the second hermaphroditic terminal assembly 18; and first hermaphroditic terminal assembly 16 is secured to PCB 14 such that that the solder balls 38 attached to second ends 36 of the female sockets 22 of the first hermaphroditic terminal assembly 16 and the solder balls 38 attached to second ends 48 of the male pins 24 of the first terminal assembly 16 are in contact with the electrical contacts 39 on PCB 14, the IC package 12 being electrically connected to PCB 14.
Other embodiments of a hermaphroditic socket adapter assembly may be configured in a manner that provides improved electrical characteristics (e.g., improved capacitance, impedance, and electromagnetic coupling characteristics). For example, referring to
Terminal assemblies 16, 18 also include a second insulating support member 210, 214. Second insulating support members 210, 214 include a third array of apertures 232 corresponding to first array of apertures 228, each aperture extending from an upper surface 234 of the second insulating support member to an opposite lower surface 236 of the second insulating support member, each aperture configured to receive a socket 22. Second insulating support members 210, 214 also include a fourth array of apertures 230 corresponding to the second array of apertures 226, each aperture extending from upper surface 234 of the second insulating support member to opposite lower surface 236 of the second insulating support member, each aperture 230 configured to receive a pin 24. Second insulating support member 210 can have a thickness T2 between about 0.001 and 0.050 inch (e.g., between about 0.015 and 0.025 inch).
The fact that only air separates adjacent sockets 22 and pins 24 in recess 220 can provide the designer of such terminal assemblies with the ability to adjust the electrical characteristics relative to terminal assemblies without such recesses 20. For example, the dimensions of recess 220 can optimized or otherwise adjusted to produced terminal assemblies with specific desired electrical characteristics (e.g., capacitance, impedance, and electromagnetic coupling characteristics).
In some instances, first insulating support member 212 can be produced by machining the first and second arrays of apertures 226, 228 in a first support member with each aperture extending from a first surface 222 of the first support member and terminating before reaching an opposite second surface 223 of the first support member.
A recess 220 can then be formed by, for example, machining or counter-boring in opposite second surface 223 of the first support member such that each aperture 226, 228 extends from first surface 222 of the first support member to a base surface 224 of the recess. A second insulating support member 210 can then be attached to first insulating support member 212 with apertures 230, 232 corresponding to and aligned with apertures 226, 228. Sockets 22 and pins 24 can be press fit within the apertures. In some instances, machining apertures 226, 228 only partway through first insulating support member 212 provides increased ease of machining and improved true positioning of the apertures relative to methods of manufacturing in which apertures 226, 228 are machined through the full thickness of an insulating support member. The advantage of this approach increases with the increasing thickness of the insulating support member to which it is applied.
Referring to
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, hermaphroditic terminal assemblies can be used to electrically connect many different types of electrical devices. Referring to
The present application claims benefit of U.S. Non-Provisional Application No. 11/335,433, filed on Jan. 18, 2006 now abandoned. The disclosure of said non-provisional application, including the specification, claims and figures, is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2124207 | Neesen | Jul 1938 | A |
2376177 | Nichols, Jr. | May 1945 | A |
2384267 | Andersen | Sep 1945 | A |
2437358 | Mowery | Mar 1948 | A |
2465419 | Barany | Mar 1949 | A |
3432795 | Jayne | Mar 1969 | A |
3517373 | Jamon | Jun 1970 | A |
3582867 | Thompson et al. | Jun 1971 | A |
3840839 | Smaczny et al. | Oct 1974 | A |
3901574 | Paullus et al. | Aug 1975 | A |
4082397 | Tanaka et al. | Apr 1978 | A |
4442938 | Murphy | Apr 1984 | A |
RE32540 | Murphy | Nov 1987 | E |
5038467 | Murphy | Aug 1991 | A |
5088930 | Murphy | Feb 1992 | A |
5125848 | Zimmerly | Jun 1992 | A |
5176528 | Fry et al. | Jan 1993 | A |
5227718 | Stowers et al. | Jul 1993 | A |
5306171 | Marshall | Apr 1994 | A |
5356300 | Costello et al. | Oct 1994 | A |
5420519 | Stowers et al. | May 1995 | A |
5545050 | Sato et al. | Aug 1996 | A |
5576631 | Stowers et al. | Nov 1996 | A |
5877554 | Murphy | Mar 1999 | A |
6020635 | Murphy | Feb 2000 | A |
6065992 | Wu et al. | May 2000 | A |
6074236 | Wu | Jun 2000 | A |
6213787 | Murphy | Apr 2001 | B1 |
6299492 | Pierini et al. | Oct 2001 | B1 |
6313530 | Murphy | Nov 2001 | B1 |
6352437 | Tate | Mar 2002 | B1 |
6471524 | Nakano | Oct 2002 | B1 |
6896523 | Nishizawa et al. | May 2005 | B2 |
20060051987 | Goodman et al. | Mar 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070298644 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11335433 | Jan 2006 | US |
Child | 11780023 | US |