The invention pertains to hermetically sealed devices and the processes for manufacturing the same. The invention is particularly adapted for use in connection with light emitting or receiving devices because it permits the light-emitting or receiving surface of a device to be placed very close to a transparent window of the package.
Electrical components such as integrated circuit dies are used in a wide variety of applications in which it is necessary to hermetically seal the electric components from the environment in which they will be located. For example, integrated circuit dies used in environments with high humidity should be hermetically sealed from the high humidity environment in order to prevent corrosion of their electrical connections and/or other electronic components. Typically, electronic components are hermetically sealed in a ceramic or semiconductor enclosure.
In the case of electronic circuits that include light emitting surfaces, e.g., light emitting diodes (LEDs) that need to be hermetically sealed, the light emitting surface must be positioned adjacent a transparent window in the hermetic package in order to permit the light to be seen or received by another optical component, such as an optical fiber or optical receiver. Such a transparent window typically might be formed of glass (with or without an anti-reflection coating on either or both surfaces). The window would form part of the hermetic package.
More particularly, the die 100 is mounted on the base via a suitable technique, such as soldering. The area of the base is larger than the area of the lid such that the base protrudes as shown by reference numeral 114 in
Alternately, the base of the hermetic package can be fabricated so that it comprises portions of conductive material, such as silicon and portions of non-conductive material so that both the cathode and the anode can be electrically coupled to external components through the bottom of the base layer (while preventing the anode and the cathode from being electrically connected to each other). Merely by way of example, U.S. Pat. No. 7,026,223, incorporated herein fully by reference, discloses a hermetically sealed integrated circuit die structure in which contact to the top, anode side of the die to external of the package is made via wire bonds from the top, anode side of the die to the top surface of a conductive portion of the base and through the base to the bottom surface of the base via the conductivity of that portion of the base itself. The bottom, cathode side of the die is mounted to a different, electrically separated conductive portion of the base via a conductive mounting material, such as solder, so that the cathode can be electrically connected to external circuitry through the base.
While both of these techniques for providing electrical contact between the terminals of the diode and external circuitry are advantageous in their own respects, they both require wire bonds from the top, anode surface of the die to the surface of the base.
In order to maximize the amount of light from a light-emitting surface that is transmitted through the transparent window, it is desirable to place the light-emitting surface of the die as close as possible to that window. However, the use of wire bonds to connect the top, anode surface of the die to the surface of the base, wherein the top, anode surface of the die also is the light emitting surface, limits how close the transparent window can be placed to the light emitting surface. Particularly, a typical wire used in wire bonding might be on the order of about 25 microns in diameter. Further, a well-made wire bond that will not break under normal conditions forms a loop from the surface of the die, at one end of the wire bond, to the surface of the substrate, at the other end of the wire bond. This loop of wire must have a certain shape and, therefore, a certain maximum height above the top surface of the die in order to form a suitable loop that will withstand breakage. Typically, the wire loop of a wire bond may have a maximum height of approximately 100 microns above the top surface of the die (e.g., the light emitting surface) at its highest point. This circumstance, in turn, requires that the window be positioned at a distance from the light-emitting surface of the die greater than the maximum height of the wire bond loop above that surface.
The invention is a hermetically sealed semiconductor die package wherein a surface of the die can be positioned very close to the hermetic package and a method of fabricating such a package. The invention is particularly suited to hermetically sealed circuit components, such as dies with a light emitting surface or light receiving surface for which it would be desirable to place the light emitting or light receiving surface as close as possible to a transparent window in the package so as to maximize the amount of light that can be transmitted out of or into the package.
In accordance with a first aspect of the invention, a method of fabricating a hermetically sealed die is provided comprising depositing a conductive layer on a base substrate, mounting a die having first and second opposing surfaces to the conductive layer with the first surface thereof in electrical contact with the first conductive layer, hermetically sealing a conductive frame to the conductive layer, the conductive frame surrounding the die, and hermetically sealing a lid on top of the frame and the die, the lid comprising at least a first conductive portion in electrical contact with a second surface of the die opposite the first surface and a second conductive portion electrically isolated from the first conductive portion in electrical contact with the frame.
In accordance with a second aspect of the invention, a hermetically sealed die is provided comprising a base substrate, a conductive layer on the base substrate, a die mounted to the conductive layer so as to provide conductive contact between a first surface of the die and a portion of the first conductive layer, a conductive frame hermetically sealed to the substrate surrounding the die in contact with at least a portion of the first conductive layer, and a lid hermetically sealed on top of the frame and the die, the lid comprising at least a first conductive portion in electrical contact with a second surface of the die opposite the first surface and a second conductive portion electrically isolated from the first conductive portion in electrical contact with the frame.
It also should be noted that terms such as bottom and top or vertical and horizontal are used herein only in their relative senses to each other in order to simplify the description and are not intended to require or insinuate any particular orientation of the device package. It also needs to be understood that the drawings are not drawn to scale. Particularly, some of the layers are significantly exaggerated in thickness relative to the other layers, such as all of the solder layers, in order to clearly show them.
Although the anode and cathode contacts of the die are on opposite surfaces of the die 201, all electrical contacts on the exterior of the package 200 are on same side of the package, and, particularly, on the exterior of the lid 213. Particularly, the cathode 201b of the die 201 is electrically coupled to a metal contact 229b formed on the external surface of the lid 213 through portion 225b of solder metal layer 225, corresponding portion 227b of solder metal layer 227, and portion 213b of the silicon lid 213.
With respect to the anode on surface 201a of the die 201, electrical contact is made between the anode on side 201a of the die and metal contact 229a formed on the external surface of the lid 213 through portion 223b of solder metal layer 223, corresponding portion 221b of solder metal layer 221, conductive path 209, portion 221a of solder metal layer 221, corresponding portion 223a of solder metal layer 223, silicon layer 211, portion 225a of solder metal layer 225, a corresponding portion 227a of solder metal layer 227, and portion 213a of the silicon lid 213.
Note that FIGS. 2 and 3A-3H are cross sectional elevation views, which inherently show only a single slice through the device. However, although not perceivable in these Figures, as noted above, the hermetic sealing wall 202 completely surrounds the die 201. Thus, for instance, solder joint 225a completely surrounds die 201, and thus intersects the planar slice seen in
One of the advantages of this design is that it has no wire bonds to make electrical contact to the anode on the light emitting surface 201a of the die 201. Hence, the light-emitting surface 201 can be placed very close to the window layer 205. In the illustrated embodiments, the distance between the glass substrate 203 and the light-emitting surface 201a of the die 201 is merely the combined depths of the metal conductor layer 209 and the two solder layers 221 and 223. In fact, as will be discussed in more detail further below, in certain embodiments, the solder layers 221 and 223 may be eliminated.
As noted above, the depths of the solder layers 221, 223 as well as the conductive trace layer 209 are not drawn to scale, but are exaggerated in order to show them more clearly. The thickness of these three layers combined can be less than 10 microns. In addition, while
While
It should be noted that, while the various steps of the process are described in a particular order herein below, the described order of the steps is merely exemplary and that many of the steps could be performed at different times.
With reference
In any event, a first layer of metal is deposited and patterned to form conductive leads 209 on the internal surface of the glass substrate. This layer of metal can be deposited and patterned using any conventional metal deposition technique, such as physical vapor deposition (PVD) and then patterned using any conventional patterning technique, such as photolithographic patterning followed by chemical etch, to put down the conductive leads as needed for the particular circuit design. This would, of course, include at least, the aforementioned metal patterns to connect the anode surface 201a of the die 201 to the wall 202 of the hermetic package.
If the die 201 and/or the silicon portion 211 of the peripheral wall 202 will be attached to the conductive leads 209 by solder bonding, then a layer of solder metal 221 is deposited and patterned. The pattern would be to provide at least a first solder joint 221b where the die 201 will be attached to the conductive lead 209 and a second solder joint 221a where the peripheral wall 202 will be attached to the conductive lead 209. For instance, the solder metal layer 221 would be patterned to form two square solder beads (or joints) 221a and 221b as shown in the cross-sectional view of
Next, with reference to
As previously noted, if thermo-compression bonding is employed rather than soldering, then both solder layers 221 and 223 can be eliminated and the anode surface 201a of the die 201 can be thermo-compression bonded directly to the first metal layer 209 without the solder layers.
Also as seen in
The silicon portion 211 of the wall 202 may be formed by etching a wafer of silicon completely through in the middle so as to leave only an enclosed frame (or peripheral wall) of silicon surrounding open-space. Then, that wall is soldered to the glass substrate 203 and lead 209 as shown in
Again, if, instead of using solder bonding, thermo-compression bonding is used to attach the silicon frame to the glass substrate, then both solder joints 221a and 223a could be eliminated and the silicon portion of the wall 202 could be directly thermo-compression bonded to the metal lead 209.
Turning to
Then, with reference to
Still referring to
Turning now to
Next, solder metal 227 may be deposited on top of the silicon and patterned into solder joints 227a and 227b to mate with the solder joints 225a and 225b, respectively that were formed on the top surface of the structure depicted in
Next, with reference to
lf an external anti-reflection coating 207 on the external side of the glass 203 is desired and has not already been deposited, it can be deposited at this time.
Next, referring to
Finally, referring to
As just noted, contact external of the package is made to the cathode of the die via contact metallization 229b, lid portion 213b, and solder joints 227b and 225b. External contact to the anode surface 201 a of the die 201 is made via contact metallization 229a, lid portion 213a, solder joints 227a and 225a, silicon wall portion 211, solder joints 223a and 221a, metal lead 209 and solder joints 221b and 223b.
Assuming the fabrication process is performed at the wafer level, the wafer can then be diced into the individual hermetically sealed dies. Particularly, in a preferred embodiment of the invention, the wafer is diced directly through the middles of the sealing silicon peripheral walls 202.
Hence, the die is hermetically sealed in a package in which the peripheral walls 202 of the package are conductive in order to provide connection from the anode side 201 a of the die 201 to the top side of the hermetically sealed package such that both the cathode and the anode contacts are on the same side of the hermetically sealed package. Furthermore, the light-emitting surface of the die is positioned extremely close to the glass since no wire bonds are used. The light emitting surface 201a of the die is spaced from the internal surface of the glass substrate 203 by merely the thickness of the metal layer or layers 209, 221 and/or 223 formed on the glass substrate for electrical contact purposes and for purposes of mounting the die on the glass substrate 203.
Having thus described a few particular embodiments of the invention, various alterations, modifications, and improvements will readily occur to those skilled in the art. For instance, the invention has been described in connection with a die having a light-emitting surface, such as an LED. However, similar considerations may be applicable to other light emitting components whether embodied on an integrated circuit die or otherwise. In addition, the invention can be equally attractive for application in connection with dies or other circuitry having light receiving components. Furthermore, the invention is not exclusively beneficial in connection with circuitry having light emitting or receiving surfaces. There may be many other reasons that a circuit designer may wish to bring the surface of a die or other circuitry as close as possible to the surface of a hermetic package and the invention may be applied in such application regardless of whether the circuit has a light emitting or receiving surface and/or a transparent window. Such alterations, modifications, and improvements as are made obvious by this disclosure are intended to be part of this description though not expressly stated herein, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description is by way of example only, and not limiting. The invention is limited only as defined in the following claims and equivalents thereto.