The present disclosure relates to techniques for fabricating accelerometers and other types of microstructures having small footprints with high aspect ratios.
High sensitivity and low noise are important characteristics of high performance accelerometers since they determine the accelerometer's signal to noise ratio (SNR). Signal to noise ratio indicates directly the resolution or how small of an acceleration signal the accelerometer is able to detect.
The dominant mechanical noise source for a micromachined accelerometer is the molecular Brownian motion. To achieve thermal mechanical noise below 1 μg/√Hz and high sensitivity per unit footprint for capacitive accelerometers, efforts have been made toward realizing both large proof-mass, while efforts at increasing the sensitivity to acceleration of a capacitive accelerometer focused on increasing the capacitive sensitivity of the accelerometer by increasing the area and reducing the size of the capacitive gap through creating a high aspect-ratio gap. Increasing the proof-mass size has proven to be the most effective way to reduce the noise. While the sensing gaps need to be reasonably narrow to provide higher sensitivity without compromising the noise performance (increase the air damping).
With the existing technologies, the MEMS device footprint has to be increased to allow for large proof-mass and sense area because the device height is typically limited to ≤500 μm. Silicon on glass (SOG) and CMOS MEMS capacitive accelerometers that demonstrated <10 μg/√Hz noise floor have limited proof-mass thickness, typically <150 μm and 5 μm respectively. Thus device footprint has to be increased. A HARPSS-SOI process has also been used to increase proof-mass by utilizing the silicon mass on the backside of the SOI handle wafer (400 μm). Although a noise floor of 200 ng/√Hz is reported, the device footprint is large (49 mm2). There is a need for multi-axis accelerometers with small footprint and sub-μg resolution based on robust CMOS-compatible fabrication technology.
This section provides background information related to the present disclosure which is not necessarily prior art.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
In one aspect of the disclosure, a transducer is presented with a sensing gap positioned between bottom plane of the proof-mass and the substrate. The transducer includes: a substrate; a transducer structure and one or more sensing electrodes. The transducer structure is mounted on a top surface of the substrate and extends upwardly from the top surface of the substrate. In one embodiment, the transducer structure is comprised of a support beam integrally formed with a proof-mass. The sensing electrodes are mounted to the top surface of the substrate and spatially separated from the transducer structure. The sensing electrodes may be used to measure capacitance across a gap formed between the one or more electrodes and the transducer structure. Motion of the transducer structure causes size of the gap to vary in a direction that is parallel with longitudinal axis of the cantilever beam.
In another aspect, a transducer is presented with a sensing gap positioned near the top of the transducer structure. The transducer includes: a substrate; a transducer structure; one or more stationary electrodes; and one or more sensing electrodes. The transducer structure is mounted on a top surface of the substrate and extends upwardly from the top surface of the substrate. In one embodiment, the transducer structure is comprised of a support beam. The stationary electrodes extend upwardly from the top surface of the substrate and arranged around periphery of the transducer structure. The stationary electrodes are spatially separated from the transducer structure by a channel that extends along entire height of the transducer structure.
In one embodiment, the sensing electrodes are formed on a top surface of the transducer structure. In this case, the sensing electrodes extend radially outward from the transducer structure and overhang at least a portion of a top surface of the one or more stationary electrodes, thereby defining a gap between the one or more sensing electrodes and the top surface of the one or more stationary electrodes.
In another embodiment, the sensing electrodes are formed on a top surface of the one or more stationary electrodes. In this case, the sensing electrodes extend radially inward from the one or more stationary electrodes and overhang at least a portion of a top surface of the transducer structure, thereby defining a gap between the one or more sensing electrodes and the top surface of the transducer structure.
In yet another aspect, a transducer is presented with an extra mass deposited on a top surface of the transducer structure. The extra mass is comprised of a material having a higher density than material comprising the transducer structure.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
More specifically, the transducer structure 11 is mounted on a top surface of a substrate 8 and extends upwardly from a surface of the top surface of the substrate. In this example, the transducer structure is comprised of a cantilever beam 13 integrally formed with a mass 12 that is attached to the cantilever beam 13. The mass 12 is coupled to the cantilever beam 13 proximate to top of the cantilever beam. The mass 12 includes one or more overhangs 17 extending downward from the top of the cantilever beam 13 and adjacent to one or more vertical surfaces of the cantilever beam 13, such that a slot 18 separates the overhangs 17 from the cantilever beam.
The electrodes 14 are also mounted on the top surface of the substrate and extend upwardly from a surface of the top surface of the substrate. The electrodes 14 are disposed around periphery of the transducer structure with a channel 15 extending entire height of the transducer structure 11 and separating the one or more electrodes 14 from the transducer structure 11.
When the upward beam cross-section is square shaped, for the first bending mode, the spring-mass bends along one of the two orthogonal axes toward one of the four electrodes (x+, x−, y+, y−) when force is exerted. This structure meets the following requirements: small footprint transduction element, high performance and easily tailored structural dimensions, built in large and dense arrays with potential signal processing ability. The transduction gaps and separation trenches can be independently defined from both sides. The fabrication technology is more compatible with proceeding or subsequent processing steps so it will allow the transducer to be easily integrated with complementary metal-oxide-semiconductor (CMOS) integrated circuits (IC) fabricated in foundry.
Assuming a device thickness of 500 μm, the transducer is simulated using COMSOL. With reference to
The upward spring in the middle can be made very narrow and long, thus it is very compliant and flexible. The electrodes are designed to be much less compliant than the hair-like spring such that they experience deflection more than two orders of magnitude less than the proof-mass on top of the spring. Therefore, the proof-mass may be considered movable and the electrode may be considered as fixed. In the simulated embodiment, both proof-mass and electrodes are fabricated in the same highly-doped bulk silicon that has low resistance so they naturally form the conductive capacitor plates.
Critical design parameters are shown in
When the proof-mass is displaced under external lateral force, the final gap dimensions at the top and at the bottom are:
gtop(H)=g0−Δxmass(H), gbot(0)=g0−Δxmass(0) (3)
Thus the new capacitance reading when force is applied compared to the initial capacitance are:
When the displacement is small, the change in capacitance can be approximated by Taylor expansion as:
From Equation (6), one can see that the sensitivity is inversely proportional to 1/g02 and scales with the proof-mass size (a, b, H), the sensing area (a, H) and the spring dimensions (c, d, L). A taller H also allows for longer vertical spring L. Thus, device height H plays a critical role in improving the sensitivity for this design by utilizing the third dimension.
By varying the design parameters (H, L, a, b, c, d, and gap), multi-element arrays of transducers can be built with modulated dimensions. An example array of transducers with varying dimensions can be seen in
The rectangular cuboid shape for the cantilever beam 13 and the proof-mass 12 can easily be modified by varying the mask design to realize different structures. In
Due to limitations associated with deep reactive ion etching, gap dimension of less than 3 μm is only achievable for heights ranging from 10 s to 100 μm. Not only the gap height is limited, the device thickness is also limited to the same range. Electrostatic devices also require various gap dimensions for reducing the parasitics to avoid coupling and provide good isolation. With one DRIE step, when large gaps are exposed first, the materials already patterned on the glass substrates will be sputtered or etched. Thus, conventional processes are not applicable for fabricating the proposed transducer.
A method for fabricating a transducer with higher aspect ratios is described in relation to
Referring to the
A second substrate 75 serves as the base for the transducer. A circuit is formed at 63 on the top surface of the second substrate 75 as seen in
In
Lastly, a third trench 77 is formed at 66 into the top surface of the first substrate as seen in
For a better understanding, a particular fabrication method is further described as follows. Starting with a highly doped silicon wafer, a shallow recess (e.g., 6 μm) is patterned and etched into one surface of this first substrate. Cantilever and electrodes anchors are not etched. Oxide layers (e.g., 4 μm) are then deposited on both sides of a highly doped silicon wafer. A patterned photoresist layer on the bottom side is used as a mask for reactive ion etching of the oxide. This mask defines the vertical springs, masses, electrodes and the larger capacitive sensing/actuation gaps gbot. The backside oxide layer defines the smaller capacitive sensing/actuation gaps gtop during the final DRIE release step. The alignment between the small and large gaps is critical in this step. In this embodiment, the small gaps are located at the top part of the proof mass, which contribute the most to the sensitivity. Larger openings are also patterned to physically separate and electrically isolate the individual mass, electrodes and neighboring sensors.
Inner and outer trenches with different depths are formed by deep reactive ion etching, using different trench opening sizes and taking advantage of the DRIE lag. Following that, the oxide on the front side is removed and a blanket stack (e.g., Cr/Au 200 Å/3000 Å) is evaporated on the front side to serve as Si—Au eutectic bonding inter-layer and prevent the silicon surface from being oxidized prior to bonding.
For the device base, a lightly doped wafer is covered with a layer of LCPVD oxide (e.g., 4 μm). The oxide is patterned using photoresist. This oxide is used as a passivation layer. Recesses (e.g., 3 μm) are formed on the oxide to further suspend the proof mass and separate individual sensor. To form a detection circuit, in-situ doped polysilicon (e.g., 0.6 μm using LPCVD) is deposited and patterned for electrical interconnections. Additionally, oxide passivation (e.g., 1 μm using PECVD) is patterned to protect the polysilicon interconnects from the subsequent DRIE release step. A metal layer (e.g., 1 μm of Au) is deposited and lifted off to define the eutectic bond pads and connections.
Next, the two wafers are aligned and brought in contact before being placed in a bonder (e.g., SUSS SB6e bonder). In this example, Si—Au eutectic bonding is used to anchor the vertical springs and sidewall electrodes to the base substrate although other types of bonding techniques may be used as well.
Finally, the small gaps gtop are formed from the top by deep reactive ion etching. Dry etch of the remaining oxide mask is followed by blanket deposition of metal for contact and electrical testing. This method results in small effective sensing gaps where needed and achieves device thickness beyond the typical 500 μm. While the above fabrication method has been described with specific components having specific values and arranged in a specific configuration, it will be appreciated that this method may be implemented with many different configurations, components, and/or values as necessary or desired for a particular application. The above configurations, components and values are presented only to describe one particular embodiment that has proven effective and should be viewed as illustrating, rather than limiting, the present disclosure.
In some embodiments, the transducer structure has a height on the order of 100 micrometers (e.g., 100-150 micrometers). In such embodiments, the aspect ratio of the height of the transducer structure to the narrow section of the gap is greater than 100 and preferably greater than 200. For example, for a transducer structure with a height of 100 micrometers, the narrow section of the gap may be formed in the range of 0.2-1 micrometers (and preferably less than 1 micrometer). Thus, a transducer structure with a height of 100 micrometers with a gap width of 0.5 micrometers has an aspect ratio of 200. Similar values may apply to transducer structures with a uniform gap width as well. It is readily understood that the narrow section of the gap may be near the top of the structure, near the bottom of the structure or a combination thereof.
In other embodiments, the transducer structure has a height greater than 500 micrometers (e.g., in the range of 500-2000 micrometers). In such embodiments, the aspect ratio of the height of the transducer structure to the narrow section of the gaps greater than 250 and preferably greater than 300. For example, the transducer structure may have a height on the order of 500 micrometers with the narrow section of the gap in the range of 2 to 5 micrometers and preferably around 2-3 micrometers. In another example, the transducer structure may have a height on the order of 1000 micrometers with the narrow section of the gap in the order of 3 micrometers. These examples are merely illustrative of the combinations of heights and widths that may yield transducers with high aspect ratios.
Referring to
Critical design parameters are: device height/proof-mass height H and footprint area (a×b), spring length L and cross-section (c×d), and the two-part transduction gaps. The top gap gtop extends a height of htop and the bottom gap gbot extends a height of hbot. Since the top of a vertical inverted pendulum (proof mass) undergoes the maximum deflection under applied lateral (in plane) inertial force, the gap profile can be approximated as a trapezoidal shape when force is applied and the capacitance is expressed as (with bases d1 and d2):
When the displacement is small, the change in capacitance of a single gap can be written as:
Applying this to a two-gap accelerometer design, the capacitive sensitivity (S) of the accelerometer 90 is highly dependent on the gap dimensions, the proof-mass size and spring dimensions. From Equation (10) and (11), it is shown that the sensitivity scales with H. The device height plays a critical role in improving the sensitivity for this accelerometer design by utilizing the third dimension. H=1 mm provides large proof-mass (>2.33 milligram/mm2) and can be further increased by using thicker silicon wafers (1.5 mm, 2 mm, etc.).
The Brownian noise associated with the squeeze film damping effect in air increases significantly with reduction of the gap size so one should not reduce the gap indefinitely. While the proof-mass size has proven to be the more effective design parameter since both sensitivity and Brownian Noise Equivalent Acceleration (BNEA) are improved.
Tall device, narrow gap, and long/thin vertical springs are needed for improved sensitivity and reduced BNEA. In the design, the gap definition and proof-mass size definition are weakly dependent. Both gtop and H can be optimized without compromising the sensitivity or the mechanical noise floor, realized by the two-gap process.
The top of a vertical inverted pendulum (proof-mass) undergoes the maximum deflection under applied in-plane force. COMSOL simulation of various gap profiles verified that the capacitive sensing gap near the top of a vertical capacitive transducer (gtop) contributes a larger fraction of the total change in capacitance, ΔCtotal, as seen in
For a uniform gap (gtop=gbot=2 μm), the top 30% (htop/H=0.3) of the gap contributes >50% of ΔCtotal (black). For gtop=2 μm, gbot=20 μm and htop/H=0.3, ΔCtop/ΔCtotal is >90% (red) and ΔCtotal is >50% of a 2 μm uniform narrow gap profile. Therefore, to achieve high sensitivity, one does not need to etch a narrow gap through the entire device height. A narrow gap near the top of a tall device is sufficient to improve sensitivity. The device height (H) is not limited by DRIE etch and can be greatly increased by allowing a wider gbot. The new design allows all the critical structural dimensions to be independently varied.
In one example embodiment, various design parameters for the accelerometer 90 are optimized, targeting high capacitive sensitivity (S) and sub-μg/√Hz BNEA for a sensor footprint at 1 mm2 and 2 mm2. The 1 mm2 footprint sensor is designed to have a proof-mass area of 4 mm×250 μm while the 2 mm2 footprint sensor has a proof-mass area of 4 mm×500 μm. In both devices, 4 mm is the sense capacitor width. Other design parameters are as follows: H is 1 mm, c is 20 μm, d is 30 μm and L is 600 μm.
One way to use this structure to sense z-axis acceleration is by detecting the resonant frequency shift. The resonant frequency of the mass-spring will decrease under the compressive force, while it increases under the tensile force. The magnitude of the z-axis input acceleration will be calculated from the resonant frequency shift. The multiple electrodes with narrow gap can be used for driving and sensing.
Silicon is widely used in a variety of commercial electronic products because of its well-established electrical properties and material properties. However the density of silicon is 2.32 g/cm3 and this is relatively low compared to iron, nickel and other metals. For MEMS accelerometers, increasing the proof-mass has been proved to be the most effective way to reduce the thermal mechanical noise below 1 μg/√Hz.
Entirely replacing the silicon material will pose many challenges in device design, long-term device stability, readout design and fabrication options while replacing part of proof-mass by a denser material can be realized.
Solder spheres available in the market have a broad diameter range from 40 μm to several hundred micrometers. SnAgCu, SnAg, AuSn and InSn are some of the most common solder alloys for flip chip and other IC interconnection applications that can potentially be used in this method. If 75% of H=1 mm can be etched along the vertical direction and 75% of the footprint of the original silicon mass is replaced by a material (e.g., metal) that is 5× as dense as Si, then the new effective mass would be 3× the original value. Other example materials include but are not limited to iron, nickel and other metals.
Another way to increase the size of the proof-mass is to add an extra mass 151 onto the top surface of the transducer structure 150 as shown in
Heavier metals will more effectively increase the mass, as the extra block height h increases the center of mass moves higher relative to the vertical spring top end. The electroplating process is more established for some metals than the others before maximum thickness is reached.
Sensitivity of the accelerometer can be increased by reducing the size of the gap between the sensing electrodes and the transducer structure. In one example, gtop can be further reduced to 1-1.5 μm by conformal deposition of in-situ doped poly-silicon as indicated at 171 in
Sensitivity of the accelerometer can also be increased by reducing the spring constant of the cantilever beam. For example, the spring width (b) may be narrowed by gas-phase anisotropic etch after the spring is initially defined by the first deep DRIE as seen in
In another aspect of this disclosure, interdigitated electrodes can be formed instead of only one capacitor on the side as seen in
In yet another aspect of this disclosure, sensing can occur at the bottom of the proof-mass as seen in
Unlike previous arrangements, one or more sensing electrodes 203 are mounted to the top surface of the substrate 201 and spatially separated from the transducer structure 202. Thus, the sensing gap 206 is formed between a bottom surface 207 of the proof-mass facing the top surface of the substrate and the top surface of the substrate 201. The one or more sensing electrodes 203 are configured to measure the change of this gap formed between the one or more electrodes 203 and the transducer structure 201, such that size of the gap 206 varies along an axis that is parallel with longitudinal axis of the support beam 205 due to the motion of the transducer proof mass.
In one embodiment, this gap between the bottom surface of the proof-mass and the top surface of the substrate is less than one micrometer after bonding. In another embodiment, this gap between the bottom surface of the proof-mass and the top surface of the substrate is several micrometers after bonding.
For this inverted pendulum mass-spring design, the displacement of the bottom surface of the proof-mass along the vertical direction is comparable to the lateral displacement of the proof-mass in the direction parallel to the substrate surface. Therefore, gap change close to the substrate at the base can be substantial. Methods for detection of the gap change include but are not limited to: measuring capacitance change, detecting an electrical short caused by contact of the two sides of the gap, or measuring the variations in the tunneling current between the proof mass and the electrode when the gap is very small.
Precise gap definition can be achieved by silicon/oxide RIE, sacrificial layer patterning and removal, and metal deposition/pattern. As described in relation to
No stationary side electrodes or vertical separation between the one or more stationary side electrodes and the transducer structure is needed, thus greatly reducing the footprint and increasing the packing density. Arrays of transducers of the same size can be closely built side by side using high aspect-ratio deep reactive ion etching, and separated by minimum distance high aspect-ratio deep reactive ion etching (HAR DRIE) as seen in
In yet another aspect of this disclosure,
Referring to
In a different approach, the sensing electrodes 210 are formed over the top of stationary electrodes 204 as seen in
The one or more sensing electrodes 210, however, are formed on a top surface of the transducer structure 202 (with or without a proof-mass). More specifically, the one or more sensing electrodes 210 extend radially outward from the transducer structure 202 and overhang at least a portion of a top surface 211 of the one or more stationary electrodes 204. In this way, the sensing gap g0 is defined between the one or more sensing electrodes 210 and the top surface 211 of the one or more stationary electrodes 204. These overhanging electrodes 210 are electrically connected to the transducer structure 202 and form very well-controlled narrow transduction gaps with the electrodes on the side.
Referring to
One difference is that a sacrificial layer 73 is formed on the bottom of the substrate supporting the transducer structure 71. In one embodiment, the sacrificial layer 73 may be formed by deposition of an oxide although other materials are contemplated by this disclosure. Another silicon layer 74 is then deposited onto the sacrificial layer 72. This secondary silicon layer 74 will serve as the basis for the sensing electrodes 210 as further described below. It is also noted that the channel formed between the transducer structure and the stationary electrodes may have a uniform width as seen here or sections of varying width as seen in
In
Next, a top metal contact 75 may be formed on top of the inverted transducer structure 71 as seen in
One way to make this sensing gap is using SOI (Silicon-on-Insulator) wafers. The thick handle silicon layer side can be used to form the tall and small footprint proof-mass by deep reactive ion etching and the buried oxide layer can be used as the sacrificial gap (e.g., <500 nm or even <100 nm). The buried oxide layer will be an etch stop for this deep reactive ion etching step. The device silicon layer is then patterned to form the overhanging electrodes after this wafer is bonded to another substrate. Since the buried oxide layer is insulating, additional electrical connections will need to be made between the device and handle silicon layers. The connection could be made by metal deposition. This gap can be made very narrow down to 100 nm-500 nm, thus providing a large Δg/g0. While the above fabrication method has been described with specific components having specific values and arranged in a specific configuration, it will be appreciated that this method may be implemented with many different configurations, components, and/or values as necessary or desired for a particular application. The above configurations, components and values are presented only to describe one particular embodiment that has proven effective and should be viewed as illustrating, rather than limiting, the present disclosure.
Alternatively, the sensing electrodes 210 are formed over the top of the transducer structure 204 as seen in
The one or more sensing electrodes 210, however, are formed on a top surface of the stationary electrodes 204. More specifically, the one or more sensing electrodes 210 extend inwardly from the stationary side electrodes 204 and overhang at least a portion of a top surface 211 of the transducer structure 202. In this way, the sensing gap g0 is defined between the one or more overhanging sensing electrodes 210 and the top surface 211 of the transducer structure 202. These overhanging electrodes 210 are electrically connected to one or more stationary electrodes 204 and form very well-controlled narrow transduction gaps with the electrodes on the side. Since the sensing area is on top of the transducer structure 202, the footprint of the stationary electrodes 204 can be reduced. Compare the same transducer/spring-mass (dimension a and etc.) with different electrodes arrangements in
The selection of accelerometer is usually based on applications and measurement environments. One must determine whether one is trying to measure motion or vibration. For example, to use an accelerometer to measure motion accurately, the data must not contain any zero offset error; otherwise, it can lead to gross amount of velocity or displacement errors after numerical integrations. While for applications such as high-speed rotating machinery monitoring, it require accelerometers with exceptional high frequency characteristics. That is, the resonance of the accelerometer should be sufficiently high to avoid exciting the harmonics from the structure. However the design will have low output sensitivity. For high-g shock test, responses could be nonlinear and difficult to characterize. An accidental drop of a cellular phone from standing height can produce peak acceleration levels well over 10,000 g's due to localized material responses. For low-g vibration sensor has high sensitivity and good S/N. However, it also comes with limited dynamic range. In addition, the bandwidth and dynamic range of typical MEMS.
For a typical MEMS accelerometer using electrostatic method to measure continually varying acceleration, one mechanical sensor is used for single or multiple axis detection. The scale factor, the full-scale range, and the bandwidth are predetermined by the design of a single spring-mass-damper system and interface circuit.
Researchers have developed analytical apparatus for optimally combining measurements from N sensors into a single estimate that theoretically proves to be significantly improving the performance over that of individual element. Algorithm such as Kalman filtering is used to minimize the variance of errors. Currently the theory may only be tested by using commercially available consumer grade sensor chips.
The full scale range has been extended using multi-sensor inertial array. Different weighing factor is assigned by data fusion algorithm. However, as can be seen from
Since this accelerometer design can achieve higher performance within a smaller footprint than other accelerometer designs with similar transduction techniques, it is readily applicable to making large and dense accelerometer arrays to achieve high performance as seen in
Since an accelerometer array is contemplated, the array can be further designed to achieve greater bandwidth, full-scale and dynamic range by varying various design parameters. Referring to
To increase full-scale, one proposed implementation is by electrostatic force feedback between one/multiple high-g range sensor(s) and one/multiple low-g range sensor(s). With the same capacitance detection circuit specifications, high-g range sensors have lower resolution for a typical spring-mass system. Down-converting the high-g measurement to be handled by a low-g range sensor, one can achieve a high resolution system over the entire full scale range desired. In the meantime, while the higher sensitivity sensor has low cutoff frequency, the result can be combined with high-cutoff-frequency sensor to recover high frequency components, thus producing high dynamic range readout.
As shown in
The systematic noise of the MEMS accelerometer due to MEMS/CMOS process variation or temperature variation, and the stochastic noise from the mechanical Brownian motion may be cancelled by implementing large arrays of the same sensor as shown in
inherent to the mass-spring-damper system will be canceled in this fashion. Stochastic noise are proved in literature and some experiment to be reduce by √{square root over (N)} if an N-sensor-array of same sensors are used.
Another application of accelerometer array is combining electrostatic pull-in and threshold detection of large arrays of accelerometers. By designed an array of uniformly varying thresholds accelerometers, one can make a digital accelerometer. The range and resolution of the accelerometer would be determined by the thresholds of the individual accelerometers constituting the array.
For a one 1 DOF spring-mass-damper system with parallel plate electrostatic tuning ability, when the external acceleration is in the direction toward the countering electrodes, the spring restoring force Fk is balanced by the inertial force Fm and the electrostatic force Fc.
Pull-in occurs when spring restoring force can no long account for the external force. Quantitatively, the higher the external inertial force, the lower the Vpull-in. Traditional capacitive accelerometers are operated at a single ΔC vs. acceleration curve and typical threshold accelerometers are operated at the zero Vpull-in crossing of the Vpull-in vs. acceleration plot. FIG. 34A shows Vpull-in vs. external acceleration for a simplified 1DOF parallel plate capacitor with 20×20×400 μm3 vertical spring, 300×300×500 μm3 proof-mass, and 3 μm initial nominal capacitive gap. COMSOL FEA is used to simulate the pull-in curve for our particular hair structure (
The digital capacitive accelerometer arrays will be comprised of p×n×m sensors to cover a tunable range and provide fault tolerance.
If the two blocks are supplied with the same bias source from 0 to 30V, one can cover 0-200 g and the other can cover 200-400 g assuming the same specifications of the DAC. The digital nature of the latching the states will provide direct information on the sensor blocks being selected and is easily interfaced with microprocessor.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
This application claims the benefit of U.S. Provisional Application No. 62/297,327, filed on Feb. 19, 2016. The entire disclosure of the above application is incorporated herein by reference.
This invention was made with government support under W911NF-08-2-0004 awarded by the U.S. Army/Army Research Laboratory. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
4785215 | Blech | Nov 1988 | A |
5461916 | Fujii | Oct 1995 | A |
5892154 | Negoro | Apr 1999 | A |
6035714 | Yazdi et al. | Mar 2000 | A |
6938484 | Najafi et al. | Sep 2005 | B2 |
8183651 | Takagi et al. | May 2012 | B2 |
8705159 | Lee | Apr 2014 | B2 |
20060053889 | Yamamoto | Mar 2006 | A1 |
20060137450 | Eskridge | Jun 2006 | A1 |
20060138573 | McAlexander, III | Jun 2006 | A1 |
20060169044 | Hodgins et al. | Aug 2006 | A1 |
20070119252 | Adams | May 2007 | A1 |
20080202239 | Fazzio | Aug 2008 | A1 |
20090084181 | Kolb | Apr 2009 | A1 |
20120167681 | Reinmuth | Jul 2012 | A1 |
20120312097 | Koyama | Dec 2012 | A1 |
20120326566 | Koyama | Dec 2012 | A1 |
20130001550 | Seeger | Jan 2013 | A1 |
20130075237 | Gutierrez | Mar 2013 | A1 |
20130154442 | Koyama | Jun 2013 | A1 |
20130160547 | Lee | Jun 2013 | A1 |
20130312522 | Deng | Nov 2013 | A1 |
20140208849 | Zhang | Jul 2014 | A1 |
20140252358 | Chu | Sep 2014 | A1 |
20140283604 | Najafi | Sep 2014 | A1 |
20140361388 | Chan | Dec 2014 | A1 |
20150096378 | Kigure | Apr 2015 | A1 |
20150135831 | Nasiri | May 2015 | A1 |
20150241216 | Ahtee | Aug 2015 | A1 |
20170074653 | Kanazawa | Mar 2017 | A1 |
20180342667 | Kuisma | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
0877255 | Nov 1998 | EP |
1860418 | Nov 2007 | EP |
09054114 | Feb 1997 | JP |
Entry |
---|
J. Chae et al., “A CMOS-compatible high aspect ratio silicon-on-glass in-plane micro-accelerometer” Journal of Micromechanics and Microengineering 15.2 (2004). |
B. Amini, et al., “Sub-micro-gravity capacitive SOI microaccelerometers”., Solid-State Sensors, Actuators and Microsystems, 2005 Digest of Technical Papers. The 13th International Conference on TRANSDUCERS '05, vol. 1, IEEE (2005). |
Number | Date | Country | |
---|---|---|---|
20180113146 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
62297327 | Feb 2016 | US |